
DAGWOOD
A System for Manipulating Polynomials

Given by Straight-Line Programs*

Timothy S. Freeman† Gregory M. Imirzian‡ Erich Kaltofen‡ Lakshman Ya gati§

† Dept. Computer Science, C.M.U., Pittsburgh, PA 15213
‡, § Dept. Computer Science, R.P.I., Troy, NY 12181

‡ Mathematical Sciences Research Inst., 1000 Centennial Dr., Berkeley, CA 94720

Abstract. We discuss the design, implementation, and benchmarking of a system that can
manipulate symbolic expressions represented by their straight-line computations. Our system is
capable of performing rational arithmetic on, evaluating, differentiating, taking greatest common
divisors of, and factoring polynomials in straight-line format. The straight-line results can also
be converted to standard sparse format. We show by example that our system can handle prob-
lems for which conventional methods lead to excessive intermediate expression swell.

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391
and by an IBM Faculty Development Award. Computational resources during our stay at Berkeley were supported
in part by the Army Research Office under Grant No. DAAG29-85-K-0070 through the Center for Pure and Applied
Mathematics at the University of California. This paper appears in the ACM Transactions on Mathematical Soft-
ware, Vol. 14, No. 3, September 1988, Pages 218-240. A preliminary version of this paper also appears in the Pro-
ceedings of the 1986 ACM Symposium on Symbolic and Algebraic Computation, 169-175.

-2-

1. Introduction

Object representation, and in particular the representation of multivariate rational func-
tions, is one of the most important issues in the design of computer algebra systems. In 1971
Moses [19] classified the different approaches of representation. He observed that canonical rep-
resentation sometimes leads to exponential intermediate expression swell, a classical example
being that of expanding symbolic determinants. One way to combat this problem is to allow the
sharing of common subexpressions, and almost all major systems have some facilities to accom-
modate this. With the advent of probabilistic zero-testing [21], [9], and [8], and hash coding
[18] and [4], canonical representations for solving the zero identity problem were not required
any longer. Moreover, should the expressions after being manipulated lead to a sparse polyno-
mial answer, that answer could be retrieved by Zippel’s sparse polynomial interpolation proce-
dure [27] or, where applicable, by a sparse Hensel lifting technique [28] and [12]. However, rel-
atively few problems could be solved with expressions in non-canonical representation, com-
pared to the development of important algorithms for computing greatest common divisors
(GCDs) and factorizations of canonically represented multivariate polynomials. We refer to
Stoutemyer [22] for a comparison of several canonical representation schemes for sparse multi-
variate polynomials.

One of the most compact representations for a multivariate polynomial or rational function
is that by a straight-line program. In short, a polynomial is represented by a directed acyclic
multiple computation graph for it, e.g. a Gaussian elimination sequence encoded in a list of sin-
gle assignments would represent a polynomial determinant. Arithmetic on expressions in
straight-line format is almost trivial, since all one has to do is add an additional assignment, or a
node in the computation graph. Common subexpressions need to be computed only once and
can be referred to over and over again. The difficulty arises when one tries to manipulate
straight-line programs in some usual way, say when one tries to compute the GCD of two poly-
nomials given by a straight-line program. Fortunately, we could show [16] that one can find in
probabilistic polynomial-time another straight-line program that in fact computes the GCD of
such inputs. Other fundamental straight-line results, which are probabilistic polynomial-time
constructible, are those for the irreducible factors of a polynomial given by a straight-line pro-
gram and for the numerators and denominators of a rational function [14].

This paper describes a Lisp-based system, called Dagwood, that realizes the straight-line
representation for polynomials and rational functions and implements those operations that we
have proven to be random polynomial-time computable. In particular, our system allows rational
arithmetic, evaluation, differentiation, GCD computation, factorization, and conversion to sparse
format of polynomials given by straight-line programs. Various useful utility functions are also
provided, such as determining the degrees of a polynomial given by a straight-line program or
finding another straight-line program that computes its coefficients in an individual variable.
Several of the main algorithms, such as the GCD, factorization, and the conversion algorithm to
sparse format are of the Monte-Carlo kind, which means the algorithms always terminate in

-3-

polynomial-time but may with controllably small probability return an incorrect answer. It
should be also said that the running times depend polynomially on the degrees of the inputs as
unary integers. Clearly, a straight-line program can encode a polynomial whose degree is expo-
nential in the input size. But for such polynomials the GCD problem is NP-hard for even the
sparse representation [20], and hence a degree restriction has to be made.

It is not obvious at all that the GCD and factorization problems are feasible for polynomi-
als in straight-line representation. To prove our point, consider a seemingly easier operation, that
of computing partial derivatives. Letting

f (x1,1, . . . , xn,n, y1, . . . , yn) =
n

i=1
Π(

n

j=1
Σ xi, j y j)

Valiant [24] observes that

∂n f

∂y1 ⋅ ⋅ ⋅ ∂yn
= permanent(







x1,1

...
xn,1

⋅ ⋅ ⋅

⋅ ⋅ ⋅

x1,n

...
xn,n







).

Clearly, f can be computed by a straight-line program of length O(n2), whereas the computation
of the permanent is by Valiant’s results #P-hard. Therefore it is believed that no straight-line pro-
gram of length nO(1) exists that computes the permanent, and hence the intermediate expression
swell for iterated partial derivatives is inherent even for the straight-line representation. Note
that for less space-efficient representations this phenomenon has been observed without appeal-
ing to the theory of NP-completeness [3].

Aside from the just mentioned negative result, several efficient straight-line program trans-
formations have been developed in the context of computational algebraic complexity. Most
notably are the method by Strassen [23] for eliminating divisions from computations for polyno-
mials, the method by Baur and Strassen [1] for computing all first partial derivatives, and the
probabilistic equivalence test of straight-line programs [10]. One of the first results for polyno-
mials represented by straight-line programs is the efficient computation of their factor degree pat-
tern by von zur Gathen [6].

As a final output to an involved problem the straight-line representation may be illegible to
the user. Fortunately, the sparse interpolation algorithm allows to convert such represented
answers to sparse polynomials. In our implementation the complexity of the sparse interpolation
algorithm also depends on a given maximal number of allowed terms in the sparse answer. If the
straight-line polynomial has more terms, the algorithm indicates that without running an expo-
nential number of steps. One might argue that if one is interested in quantitative results such as
the sparse representation of the output polynomial, rather than qualitative results such as the
number of irreducible factors of the answer, which could be determined by the algorithm in [6],
then sparse interpolation can be employed without ever constructing the intermediate straight-

-4-

line result. Unfortunately, all known sparse Hensel lifting algorithms [28], [7] and [13], spoil
this hope for the following reason. Assume one of the irreducible factors of a sparse lifting prob-
lem is dense, as may happen even for sparse inputs [7], §5. Then the sparse Hensel lifting proce-
dures take time polynomially proportional to the number of terms in all factors including the
dense ones. However, it is conceivable that one is only interested in those factors that are sparse
and only wants to identify the dense ones. The straight-line factorization algorithm together with
our version of the sparse interpolation algorithm allows just that, and the running time of the
combined algorithms is also not affected by selection of unlucky evaluation points.

We view Dagwood as a prototype to assess the practicality of our algorithms for computer
algebra. Nonetheless, our functions are not just a mere implementation of our algorithms, as we
have also attempted to achieve high efficiency.

-5-

2. Top Level Description

We now describe how Dagwood can be invoked from within a standard computer algebra
system. Currently, our system contains a set of routines to interface with Macsyma. This allows
users to interact with Dagwood from the Macsyma environment, in particular to input expres-
sions in Macsyma format. However, interfaces to other Lisp-based computer algebra systems
may be provided in the future.

As noted in the introduction, most of our algorithms are probabilistic in nature. Some of
our functions are deterministic or “Las Veg as,” which means that an error exit may be taken and
a failure message produced with small probability. Of course, by calling such a function repeat-
edly an answer will eventually be returned. However, the functions StraightDegree, Straight-
GCD, StraighttoSparse, StraightFactor, StraightOpt3, and StraightNumDen in the list below are
“Monte Carlo,” which means that with small probability an incorrect result is returned. That
probability is algorithmically controllable, and a global flag epsilon could be implemented to
limit the maximal probability with which any of these functions returns an incorrect result. Cur-
rently the probability of producing an incorrect answer is approximiately 10−7, and to date such
an event has not occurred.

In the following descriptions of our Macsyma-callable functions, stprog in an argument list
means that the argument should be a straight-line program and polyexp means the argument
should be a polynomial expression. Acceptable polynomial expressions are:

(i) A Macsyma-format polynomial.

(ii) A straight-line program for a polynomial.

(iii)
“ ’determinant(M)”, where M is a Macsyma-format matrix whose entries are polynomial
expressions. The single quote prevents evaluation of the determinant.

(iv)
Any combination of (i), (ii), and (iii) using addition, subtraction, multiplication, division,
and integer exponentiation.

By (iv) straight-line programs can be added, say, by the Macsyma infix ‘+’.

PolytoStraight (polyexp)
Return a straight-line program whose last instruction evaluates to polyexp. What follows now is
a Macsyma example of this function call. For readers unfamiliar with Macsyma we mention that
lines labeled ‘(c.)’ are user input lines and lines labeled ‘(d.)’ are the corresponding results. If
input lines are terminated by a ‘$’ the output lines are suppressed. The Macsyma assignment
operator is the colon ‘:’. The timings were obtained on a Symbolics 3670 Lisp Machine.

-6-

(c 4) p1 : (x ˆ 2+2 * x * y+y ˆ 2) / (x+y) $

T ime = 16 . 7 ms e c s .

(c 5) p2 : (x−y) *p1 ;

T ime = 0 . 0 ms e c s .

2 2

(x − y) (y + 2 x y + x)

(d5) −−−−−−−−−−−−−−−−−−−−−−−−−

y + x

(c 6) s p1 : po l y t o s t r a i gh t (p1) $

T ime = 16 . 7 ms e c s .

(c 7) s p2 : po l y t o s t r a i gh t ((x−y) * s p1) ;

T ime = 33 . 3 ms e c s .

v1 : = 0

v2 : = x

v3 : = −1

v4 : = y

v5 : = v3 * v4

. . . (18 i n s t r u c t i on s t o t a l .)

StraightPrint (stprog)
Print a readable form of stprog. The global variable stprintlimit (default: 5) indicates how many
straight-line assignments will be explicitly printed. The following continues the previous Mac-
syma example.

(c 8) s t p r i n t l imi t : 20$

T ime = 16 . 7 ms e c s .

(c 9) s t r a i gh t p r i n t (s p2) $

v1 : = 0

v2 : = x

v3 : = −1

v4 : = y

v5 : = v3 * v4

v6 : = v2 + v5

v7 : = 1

v8 : = v2 + v4

v9 : = v7 / v8

v10 : = v2 * v2

v11 : = 2

v12 : = v2 * v4

v13 : = v11 * v12

v14 : = v4 * v4

v15 : = v13 + v14

v16 : = v10 + v15

v17 : = v9 * v16

v18 : = v6 * v17

T ime = 283 . 0 ms e c s .

-7-

StraightDegree (stprog)
Probabilistically determine the total degree of the polynomial given by stprog. The algorithm
works briefly as follows. If f (x1 , . . . , xn) is the polynomial given by stprog, the routine returns
the degree in x1 of g(x1) = f (x1, b2 x1 , . . . , bn x1) where the bi are random integers. This degree
is determined by comparing at a random integer a the value of g(a) to the values at a of increas-
ingly higher degree interpolation polynomials for g until agreement is found. Therefore, the
function may also return a value if stprog does not compute a polynomial, or it my ‘hang.’ In
order to test whether stprog computes a polynomial, use StraightNumDen discussed below
instead. In certain circumstances, the total degree has already been probabilistically determined,
such as by a previous call to StraightDegree, in which case that value is retrieved from stprog.

(c 10) s t r a i gh t d eg r e e (s p2) ;

T ime = 133 . 0 ms e c s .

(d10) 2

StraightProfile (stprog)
Display the total degree, input variables, counts by instruction type, and total length of stprog. A
list of these values is returned.

(c 11) s t r a i gh t p r ofi l e (s p2) $

P r og r am P r ofi l e :

I n s t r u c t i on c oun t s :

i npu t 2

c on s t a n t 4

p l u s 4

mi nu s 0

t ime s 7

quo t i e n t 1

To t a l Le ng t h 18

To t a l d eg r e e : 2

I npu t va r i a b l e s : x y

T ime = 433 . 0 ms e c s .

Evalmodp (stprog, p)
Evaluate stprog modulo the integer p and return the value of the last instruction of stprog. Each
input variable in stprog must be bound to a rational number.

RatEval (stprog, bound)
After a suitable modulus is selected, stprog is evaluated via Evalmodp and then the rational value
of the last instruction of stprog is recovered from its modular image and returned. Bound is a
bound on the absolute value of the numerator and denominator of the result. If bound is too low,
the routine usually reports an error but will sometimes return a bad result. Cf [16],. Evaluation
algorithm.

(c 12) x : 3 / 4$

T ime = 0 . 0 ms e c s .

- 8 -

(c 13) y : 1 / 4$

T ime = 0 . 0 ms e c s .

(c 14) r a t eva l (s p2 , 10) ;

T ime = 50 . 0 ms e c s .

1

(d14) −

2

StraightDiff (stprog, var [, order])
Construct a straight-line program for the order-th derivative with respect to var of the rational
function given by stprog, where var is a variable symbol. If order is omitted, it is defaulted to 1.
A new Macsyma example follows illustrating this and the two following functions. For a higher
order derivative, see the example with StraightNumDen below.

(c 6) p : r a t s imp ((x+y ̂ 2+z ˆ 3) ̂ 2* (2*x ̂ 2+3 * y ˆ 3+5 * z ˆ 5)) ;

T ime = 267 . 0 ms e c .

11 2 8 3 2 6

(d6) 5 z + (10 y + 10 x) z + (3 y + 2 x) z

4 2 2 5 5 3 2 2 3 3

+ (5 y + 10 x y + 5 x) z + (6 y + 6 x y + 4 x y + 4 x) z

7 5 2 4 2 3 3 2 4

+ 3 y + 6 x y + 2 x y + 3 x y + 4 x y + 2 x

(c 7) dp : s t r a i gh t d i f f (po l y t o s t r a i gh t (p) , x) ;

T ime = 450 . 0 ms e c .

v1 : = 0

v2 : = 2

v3 : = x

. . . (127 i n s t r u c t i on s t o t a l .)

StraightGCD (polyexp1,..., polyexpn [, db=degree-bound])
Return a straight-line program for the GCD of the input polynomials using the algorithm
described in [16]. Degree-bound is a bound on the total degrees of the input polynomials. If
omitted a bound is computed using StraightDegree. In the following examples, the flag verbose
is set so that additional information is printed during the evaluation of the procedures, which
appears here in italics. However, we hav e taken the liberty to remove some of the produced trace
information in certain places.

(c 8) ve r bo s e : t r u e $

T ime = 0 . 0 ms e c .

(c 9) / * GCD o f p a nd dp s hou l d b e t h e s qu a r e d f a c t o r o f p * /

s q f a c : s t r a i gh t g c d (p , dp) $

Comp o s i t e p rog r am l e ng t h : 165

Comp u t e d To t a l Deg r e e i s 11

Do n e c a l c u l a t i ng c o e f f i c i e n t s .

p rog r am l e ng t h = 997

De g r e e o f fi r s t po l y nom i a l = 11

- 9 -

De g r e e o f s e c ond po l y nomi a l = 11

De g r e e o f r ema i nd e r i s 7

De g r e e o f r ema i nd e r i s 6

De g r e e o f r ema i nd e r i s 5

De g r e e o f r ema i nd e r i s 4

De g r e e o f r ema i nd e r i s 3

De g r e e o f r ema i nd e r i s −1

Do n e c ompu t i ng GCD .

T ime = 3800 . 0 ms e c .

(c 10) s t r a i gh t p r ofi l e (s q f a c) $

P r og r am P r ofi l e :

I n s t r u c t i on c oun t s :

i npu t 3

c on s t a n t 11

p l u s 397

mi nu s 84

t ime s 682

quo t i e n t 7

To t a l Le ng t h 1184

To t a l d eg r e e : 3

I npu t va r i a b l e s : x y z

T ime = 433 . 0 ms e c .

StraighttoSparse (stprog, height-bound [, db=degree-bound] [, terms=term-bound]
[, norm=no])
Compute the sparse representation of the polynomial given by stprog using the sparse interpola-
tion algorithm described in [27] and [15], and return a Macsyma-format polynomial as the result.
Height-bound is a bound for the absolute values of the numerators and denominators of the ratio-
nal coefficients of the result, degree-bound is a bound for the degree of stprog, and term-bound is
the maximum number of terms allowed in the answer. The procedure returns false if the input
polynomial has probably more than term-bound many monomials. If degree-bound is omitted, a
bound is probabilistically determined. If term-bound is omitted, no interrupt occurs even if the
polynomial is dense. If norm=no is omitted, the resulting sparse answer will be multiplied by a
rational such that the coefficient of some term is 1. This is useful for converting GCDs or factors
to sparse representation, since the straight-line programs for those can compute a large scalar
multiple of the normalized result. One should realize that this normalization cannot take place
before the conversion to sparse.

(c 11) s t r a i gh t t o s p a r s e (s q f a c , 10) ;

Be g i nn i ng s pa r s e i n t e r po l a t i on .

Pr og r am l e ng t h : 1184

No rma l i z a t i on ON

Comp u t e d To t a l Deg r e e i s 3

I n t e r po l a t i ng v a r i ab l e $ x

Th e d eg r e e bound f o r t h i s v a r i ab l e i s 1 .

- 10 -

We now ha v e 1 un k nown non z e ro c o e f f i c i e n t s and 0 k nown c o e f f i c i e n t s .

Th e s y s t em ha s 2 e qua t i on s .

I n t e r po l a t i ng v a r i ab l e $ y

Th e d eg r e e bound f o r t h i s v a r i ab l e i s 2 .

We now ha v e 2 un k nown non z e ro c o e f f i c i e n t s and 0 k nown c o e f f i c i e n t s .

Th e s y s t em ha s 6 e qua t i on s .

I n t e r po l a t i ng v a r i ab l e $ z

Th e d eg r e e bound f o r t h i s v a r i ab l e i s 3 .

We now ha v e 3 un k nown non z e ro c o e f f i c i e n t s and 0 k nown c o e f f i c i e n t s .

Th e s y s t em ha s 9 e qua t i on s .

Do n e w i t h s pa r s e i n t e r po l a t i on .

T ime = 9020 . 0 ms e c s .

3 2

(d11) z + y + x

StraightCoeff (stprog, var)
Returns a list of straight-line programs for the coefficients in var of the polynomial given by
stprog, where var is a variable symbol. The list has length the degree in var plus 1, whose i-th
entry is the coefficient of xi−1 of stprog. The coefficients are computed in one of two ways [16]:

(1) Direct computation: Loop through stprog and calculate the representation of each instruc-
tion as a power series in var.

(2) Interpolation: Construct a straight-line program representation for the coefficients of the
Lagrangian interpolation polynomial for the polynomial given by stprog. Each function
evaluation in the interpolation formula is represented by a copy of stprog in which var is
replaced by a constant.

It turns out that method (1) is asymptotically inferior to method (2). However, in practice
method (1) often leads to a shorter resulting program than method (2). Therefore, StraightCoeff
estimates the length of the result for both methods and calls the one that gives a smaller esti-
mated lenght. We observed that the length estimates made are quite accurate.

(c 4) / *5 by 5 g e n e r a l Va nd e rmo n d e d e t e rm i n a n t * /

p : ’ d e t e rm i n a n t (ma t r i x ([1 , x1 , x1 ˆ 2 , x1 ˆ 3 , x1 ˆ 4] ,

[1 , x2 , x2 ˆ 2 , x2 ˆ 3 , x2 ˆ 4] ,

[1 , x3 , x3 ˆ 2 , x3 ˆ 3 , x3 ˆ 4] ,

[1 , x4 , x4 ˆ 2 , x4 ˆ 3 , x4 ˆ 4] ,

[1 , x5 , x5 ˆ 2 , x5 ˆ 3 , x5 ˆ 4])) ;

T ime = 16 . 7 ms e c s .

- 11 -

[2 3 4]

[1 x1 x1 x1 x1]

[]

[2 3 4]

[1 x2 x2 x2 x2]

[]

(d4) d e t e rm i n a n t ([2 3 4])

[1 x3 x3 x3 x3]

[]

[2 3 4]

[1 x4 x4 x4 x4]

[]

[2 3 4]

[1 x5 x5 x5 x5]

(c 5) c : s t r a i gh t c o e f f (po l y t o s t r a i gh t (p) , x1) $

Di r e c t e s t ima t e : 920

I n t e r po l a t i on e s t ima t e : 678

Co n s t r u c t i ng i n t e r po l a t i on f o rmu l a . . .

e v a l ua t i on po i n t s : 0 1 2 3 4

Do n e c ompu t i ng c o e f f i c i e n t s .

T ime = 1820 . 0 ms e c s .

StraightFactor (polyexp, height-bound [, db=degree-bound])
A list of pairs [factor, multiplicity] is returned, where factor is a straight-line program for an irre-
ducible factor of multiplicity multiplicity. Height-bound should be a bound for the absolute
value of the numerators and the common denominator of the rational coefficients of the input
polynomial. The optional degree-bound should be a bound for the total input degree and is prob-
abilistically determined if omitted. Cf [14]. and [15]. This routine calls the Macsyma univariate
factorization procedure. In particular the improvements by Wang [26] have proved important for
the efficiency of the entire process. The following example factors the coefficient of x4

1 in the
previous example. Notice that by considering a minor expansion along the first row we conclude
that that coefficient is a sub-Vandermonde determinant and therefore factors as (x3 − x2)
(x4 − x2) (x5 − x2) (x4 − x3) (x5 − x3) (x5 − x4).

(c 6) f : s t r a i gh t f a c t o r (c [5] , 100) $

Be g i nn i ng f a c t o r i z a t i on .

Ex pon e n t s o f un i v a r i a t e f a c t o r s : (1 1 1 1 1 1)

S t a r t i ng pa r t i a l f r a c t i on c ompu t a t i on . . .

Do n e c ompu t i ng pa r t i a l f r a c t i on s .

Pr og r am l e ng t h = 3711

Be g i nn i ng L i f t i ng .

Pa r t s o f d eg r e e 1 l i f t e d . 7876

L i f t i ng Comp l e t e .

T ime = 66800 . 0 ms e c s .

(c 7) s t r a i gh t t o s p a r s e (f [3] [1] , 10) ;

Pr og r am l e ng t h : 11614

- 12 -

T ime = 98400 . 0 ms e c s .

(d8) x3 − x2

StraightOpt3 (stprog)
Optimize the argument. This function probabilistically condenses stprog by removing all
instructions that compute previously computed functions. Briefly, the algorithm works as fol-
lows. All instructions in the program are evaluated at random values for the indeterminates mod-
ulo a random prime. Then a binary search tree is built to sort their values. If a value of a new
instruction is found in an existing leaf, the corresponding instructions are assumed to compute
the same function and the new one is eliminated from the program. The algorithm is Monte
Carlo and its running time is that of sorting, essentially O(l log(l)), where l is the length of the
stprog, since with high probability the search tree is well balanced. The following example opti-
mizes the result of the previous factorization.

(c 8) f 3 : s t r a i gh t op t 3 (f [3] [1]) $

3185 (27%) i n s t r u c t i on s s a v e d .

T ime = 77400 . 0 ms e c s .

(c 9) s t r a i gh t t o s p a r s e (f 3 , 10) ;

Pr og r am l e ng t h : 8429

T ime = 59100 . 0 ms e c s .

(d9) x3 − x2

StraightNumDen (ratexp, num-degree-bound [, den-degree-bound])
Returns a list of two straight-line programs for the numerator and denominator of ratexp, which
is like a polyexp but can denote a rational function. Num-degree-bound should be a bound for the
total degree of the numerator and den-deg-bound should be a bound for the denominator of rat-
exp. If the latter is omitted it is defaulted to num-degree-bound. This function can be used to test
whether ratexp computes a polynomial by applying StraightDegree to the denominator program.
For the algorithm description refer to [14] and [16], §8.

(c 1) p : y / x+1 / (x−y) ;

T ime = 233 . 0 ms e c s .

y 1

(d1) − + −−−−−

x x − y

(c 2) q : po l y t o s t r a i gh t (p) $

T ime = 117 . 0 ms e c s .

(c 3) r : s t r a i gh t d i f f (q , x , 3) $

T ime = 300 . 0 ms e c s .

(c 4) r 1 : s t r a i gh t op t 3 (r) $

6 (16%) i n s t r u c t i on s s a v e d .

T ime = 817 . 0 ms e c s .

(c 5) b : s t r a i gh t numd e n (r 1 , 10 , 10) $

Be g i nn i ng s e pa r a t i on i n t o Num e r a t o r and De nom i na t o r . . .

NumD e nMon i t o r OFF

Va r i ab l e t r an s l a t i on don e .

- 13 -

Ta y l o r e x pan s i on up t o d eg r e e 20 don e .

Pr og r am l e ng t h = 797

Nume r a t o r and De nom i na t o r t o b e no rma l i s e d

Pe r f o rm i ng r e v e r s e t r an s l a t i on

De g r e e o f t h e num e r a t o r = 5

De g r e e o f t h e d e nom i na t o r = 8

T ime = 1980 . 0 ms e c s .

(c 6) b2 : s t r a i gh t op t 3 (b [2]) $

149 (9%) i n s t r u c t i on s s a v e d .

T ime = 24900 . 0 ms e c s .

(c 7) d : s t r a i gh t t o s p a r s e (b2 , 100000000) ;

Be g i nn i ng s pa r s e i n t e r po l a t i on .

Pr og r am l e ng t h : 1381

No rma l i z a t i on ON

Comp u t e d To t a l Deg r e e i s 8

I n t e r po l a t i ng v a r i ab l e $ x

Th e d eg r e e bound f o r t h i s v a r i ab l e i s 8 .

We now ha v e 1 un k nown non z e ro c o e f f i c i e n t s and 0 k nown c o e f f i c i e n t s .

Th e s y s t em ha s 9 e qua t i on s .

I n t e r po l a t i ng v a r i ab l e $ y

Th e d eg r e e bound f o r t h i s v a r i ab l e i s 4 .

We now ha v e 4 un k nown non z e ro c o e f f i c i e n t s and 1 k nown c o e f f i c i e n t s .

Th e s y s t em ha s 14 e qua t i on s .

Do n e w i t h s pa r s e i n t e r po l a t i on .

T ime = 477000 . 0 ms e c s .

4 4 6 2 8

x y 5 3 3 x y 7 x

(d7) − −−−−− + x y − −−−−−−− + x y − −−

4 2 4

(c 8) f a c t o r (d7) ;

4 4

x (y − x)

(d8) − −−−−−−−−−−−

4

StraightLinSolve (equ-list, var-list)
Returns a list of straight-line programs that solve the system of linear equations in equ-list with
respect to the variabls in var-list. Both argument lists are as for the Macsyma LINSOLVE func-
tion, except that StraightLinSolve currently only supports square non-singular systems. For lin-
ear systems built from straight-line programs themselves, see the function StraighterLinSolve.
The following example exhibits several of the previous functions as well.

(c 4) e q1 : x1+x 2+x 3+x 4=1 ;

T ime = 0 . 0 ms e c s .

(d4) x4 + x3 + x2 + x1 = 1

(c 5) e q2 : a *x1+b * x 2+c *x3+d * x 4=y ;

- 14 -

T ime = 16 . 7 ms e c s .

(d5) d x4 + c x3 + b x2 + a x1 = y

(c 6) e q3 : a ˆ 2*x1+b ̂ 2*x2+c ̂ 2*x3+d ̂ 2*x4=y ̂ 2 ;

T ime = 100 . 0 ms e c s .

2 2 2 2 2

(d6) d x4 + c x3 + b x2 + a x1 = y

(c 7) e q4 : a ˆ 3*x1+b ̂ 3*x2+c ̂ 3*x3+d ̂ 3*x4=y ̂ 3 ;

T ime = 33 . 3 ms e c s .

3 3 3 3 3

(d7) d x4 + c x3 + b x2 + a x1 = y

(c 8) s : s t r a i gh t l i n s o l ve ([e q1 , e q2 , e q3 , e q4] , [x1 , x2 , x3 , x4]) $

T ime = 1150 . 0 ms e c s .

(c 9) s 1 : s t r a i gh t op t 3 (s [1]) $

18 (19%) i n s t r u c t i on s s a v e d .

T ime = 1020 . 0 ms e c s .

(c 10) s s : s t r a i gh t numd e n (s 1 , 3 , 3) $

Be g i nn i ng s e pa r a t i on i n t o Num e r a t o r and De nom i na t o r . . .

Ta y l o r e x pan s i on up t o d eg r e e 6 don e .

Pr og r am l e ng t h = 970

De g r e e o f t h e num e r a t o r = 3

De g r e e o f t h e d e nom i na t o r = 3

T ime = 1580 . 0 ms e c s .

(c 11) s s 1 : s t r a i gh t op t 3 (s s [1]) $

172 (15%) i n s t r u c t i on s s a v e d .

T ime = 13400 . 0 ms e c s .

(c 12) s s 1 f : s t r a i gh t f a c t o r (s s 1 , 10 ˆ 30) $

Be g i nn i ng f a c t o r i z a t i on .

Pr og r am l e ng t h : 937

Un i v a r i a t e f a c t o r s :

(8 a − 49) (27 a − 32) (68 a + 53)

Ex pon e n t s o f un i v a r i a t e f a c t o r s : (1 1 1)

Bo u n d : 4968126016000000000000000000000000000000

Co n s t an t f a c t o r : ((r a t s imp) 5 320399444309405638574187471)

Pr og r am l e ng t h = 3779

Be g i nn i ng L i f t i ng .

Pa r t s o f d eg r e e 1 l i f t e d . 10596

L i f t i ng Comp l e t e .

T ime = 174000 . 0 ms e c s .

(c 13) f o r i : 1 t h r u l e ng t h (s s 1 f) do

p r i n t (s t r a i gh t t o s p a r s e (s s 1 f [i] [1] , 10000)) $

Be g i nn i ng s pa r s e i n t e r po l a t i on .

Pr og r am l e ng t h : 14401

y − d

y − b

y − c

T ime = 635000 . 0 ms e c s .

- 15 -

(c 14) s s 2 : s t r a i gh t op t 3 (s s [2]) $

172 (15%) i n s t r u c t i on s s a v e d .

T ime = 17700 . 0 ms e c s .

(c 15) s s 2 f : s t r a i gh t f a c t o r (s s 2 , 10 ˆ 30) $

T ime = 165000 . 0 ms e c s .

(c 16) f o r i : 1 t h r u l e ng t h (s s 2 f) do

p r i n t (s t r a i gh t t o s p a r s e (s s 2 f [i] [1] , 10000)) $

Be g i nn i ng s pa r s e i n t e r po l a t i on .

Pr og r am l e ng t h : 14473

a − b

a − d

c − a

StraighterLinSolve (matrix, vector)
Returns a list of straight-line programs that solve matrix−1 × vector, where matrix is a square
non-singular matrix whose entries are straight-line programs, and vector is a one column matrix
with the same number of rows and straight-line entries as well.

(c 5) a 1 : 1$

(c 6) a 2 : −1 * a $

(c 7) a 3 : a ˆ 2$

(c 8) a 4 : b$

(c 9) a 5 : b ˆ 2$

(c 10) a 6 : c $

(c 11) a 7 : c ˆ 2$

(c 12) a 8 : y$

(c 13) a 9 : y ˆ 2$

(c 14) b1 : po l y t o s t r a i gh t (a 1) $

(c 15) b2 : po l y t o s t r a i gh t (a 2) $

(c 16) b3 : po l y t o s t r a i gh t (a 3) $

(c 17) b4 : po l y t o s t r a i gh t (a 4) $

(c 18) b5 : po l y t o s t r a i gh t (a 5) $

(c 19) b6 : po l y t o s t r a i gh t (a 6) $

(c 20) b7 : po l y t o s t r a i gh t (a 7) $

(c 21) b8 : po l y t o s t r a i gh t (a 8) $

(c 22) b9 : po l y t o s t r a i gh t (a 9) $

(c 23) m: ma t r i x ([b1 , b1 , b1] , [b2 , b4 , b6] , [b3 , b5 , b7]) $

(c 24) n :ma t r i x ([b1] , [b8] , [b9]) $

(c 25) s : s t r a i gh t e r l i n s o l ve (m, n) $

T ime = 450 . 0 ms e c s .

(c 26) s 1 : s t r a i gh t op t 3 (s [1]) $

9 (22%) i n s t r u c t i on s s a v e d .

T ime = 550 . 0 ms e c s .

(c 27) s s : s t r a i gh t numd e n (s 1 , 3 , 3) $

Be g i nn i ng s e pa r a t i on i n t o num e r a t o r and d e nom i na t o r . . .

- 16 -

Ta y l o r e x pan s i on up t o d eg r e e 6 don e .

Pr og r am l e ng t h = 316

De g r e e o f t h e num e r a t o r = 2

De g r e e o f t h e d e nom i na t o r = 2

T ime = 883 . 0 ms e c s .

(c 28) s s 1 : s t r a i gh t op t 3 (s s [1]) $

65 (16%) i n s t r u c t i on s s a v e d .

T ime = 9780 . 0 ms e c s .

(c 29) s s 1 f : s t r a i gh t f a c t o r (s s 1 , 10 ˆ 30) $

T ime = 87700 . 0 ms e c s .

(c 30) f o r i : 1 t h r u l e ng t h (s s 1 f) do

p r i n t (s t r a i gh t t o s p a r s e (s s 1 f [i] [1] , 10000)) $

y − b

c − y

T ime = 64900 . 0 ms e c s .

(c 31) s s 2 : s t r a i gh t op t 3 (s s [2]) $

65 (16%) i n s t r u c t i on s s a v e d .

T ime = 7120 . 0 ms e c s .

(c 32) s s 2 f : s t r a i gh t f a c t o r (s s 2 , 10 ˆ 30) $

T ime = 54300 . 0 ms e c s .

(c 33) f o r i : 1 t h r u l e ng t h (s s 2 f) do

p r i n t (s t r a i gh t t o s p a r s e (s s 2 f [i] [1] , 10000)) $

c + a

b + a

T ime = 95100 . 0 ms e c s .

-17-

3. More Examples

Example 1: In this factorization example one of the factors is a dense polynomial. The straight-
line method finds the sparse factor relatively quickly, while the standard factorization method is
bogged down by computing the dense factor as well.

(c 1) p : (a+b+ c +d+w+ x + y +z) ̂ 4 - a *b* c *d ;

T ime = 33 . 3 ms e c s .

4

(d1) (z + y + x + w + d + c + b + a) − a b c d

(c 2) q : a ˆ 2+z ̂ 2 ;

T ime = 0 . 0 ms e c s .

2 2

(d2) z + a

(c 3) s pq : po l y t o s t r a i gh t (p*q) $

T ime = 83 . 3 ms e c s .

(c 4) s f : s t r a i gh t f a c t o r (s pq , 100) $

T ime = 11700 . 0 ms e c s .

(c 5) s t r a i gh t p r ofi l e (s f [1] [1]) $

P r og r am P r ofi l e :

I n s t r u c t i on c oun t s :

i npu t 8

c on s t a n t 56

p l u s 476

mi nu s 53

t ime s 662

quo t i e n t 0

To t a l Le ng t h 1255

To t a l d eg r e e : 2

I npu t va r i a b l e s : a z b c d w x y

T ime = 817 . 0 ms e c s .

(c 6) s f 1 : s t r a i gh t op t 3 (s f [1] [1]) $

374 (29%) i n s t r u c t i on s s a v e d .

T ime = 4930 . 0 ms e c s .

(c 7) s t r a i gh t t o s p a r s e (s f 1 , 10 , t e rms =3) ;

T ime = 10300 . 0 ms e c s .

2 2

(d7) z + a

(c 8) s t r a i gh t t o s p a r s e (s f [2] [1] , 10 , t e rms =3) ;

Te rm bound ex c e e d e d .

T ime = 3780 . 0 ms e c s .

(d8) f a l s e

(c 9) f a c t o r (p*q) $

T ime = 641000 . 0 ms e c s .

Example 2: For this example we took the GCD of the 8 by 8 Vandermonde determinant

det([x j
i]1≤i≤8,0≤ j≤7) and x27

1 − x27
2 . The straight-line program for the GCD took 2 minutes to

-18-

compute and was 21,174 instructions long. It took 5 minutes to convert it to the sparse polyno-
mial x1 − x2. Macsyma used a sparse modular GCD scheme only after expanding the determi-
nant and it took 10 hours to arrive at the solution.

Example 3: Not in all cases can the straight-line representation compete with the sparse meth-
ods. The following factorization example is Claybrook’s polynomial 17 [5]. Macsyma uses
Wang’s improved factorizer [25] and is an order of magnitude faster. Notice that all factors are
sparse and there are only four variables, conditions that generally favour the sparse method.

(c 1) p : (z− r −x ˆ 2*y+w−x * y ˆ 2) * (−1−x+y− z ˆ 2*w−z+z *wˆ 2+w) ;

T ime = 467 . 0 ms e c s .

2 2 2 2

(d1) (z − x y − x y + w − r) (− w z + w z − z + y − x + w − 1)

(c 2) s f : s t r a i gh t f a c t o r (po l y t o s t r a i gh t (p) , 10) $

T ime = 12600 . 0 ms e c s .

(c 3) s t r a i gh t t o s p a r s e (s f [1] [1] , 10) ;

T ime = 15300 . 0 ms e c s .

2 2

(d3) − w z + w z − z + y − x + w − 1

(c 4) f a c t o r (p) ;

T ime = 383 . 0 ms e c s .

2 2 2 2

(d4) − (z − x y − x y + w − r) (w z − w z + z − y + x − w + 1)

Example 4: This example shows a factorization with multiplicities. It also displays the fact that
normalization in the conversion to sparse format is not so crucial as for GCD results. This is a
small example and the Macsyma factorizer necessarily wins.

(c 1) p : (2*u ̂ 2+3 * v+5 *w+ 7*x+1 1 * y+1 3 * z+17) ˆ 2 ;

T ime = 33 . 3 ms e c s .

2 2

(d1) (13 z + 11 y + 7 x + 5 w + 3 v + 2 u + 17)

(c 2) q : (z ˆ 2−y−x−w− v − u + 11) ̂ 3 ;

T ime = 33 . 3 ms e c s .

2 3

(d2) (z − y − x − w − v − u + 11)

(c 3) s f : s t r a i gh t f a c t o r (po l y t o s t r a i gh t (p*q) , 1000) $

T ime = 14300 . 0 ms e c s .

(c 4) s t r a i gh t t o s p a r s e (s f [1] [1] , 100) ;

T ime = 22900 . 0 ms e c s .

2

13 z 11 y 7 x 3 v 2 u 17

(d4) −−−− + −−−− + −−− + w + −−− + −−−− + −−

5 5 5 5 5 5

(c 5) s f [1] [2] ;

T ime = 0 . 0 ms e c s .

(d5) 2

- 19 -

(c 6) f a c t o r (p*q) ;

T ime = 450 . 0 ms e c s .

2 2

(d6) (13 z + 11 y + 7 x + 5 w + 3 v + 2 u + 17)

2 3

(z − y − x − w − v − u + 11)

(c 7) s t r a i gh t t o s p a r s e (s f [1] [1] , 100 , no rm = no) ;

T ime = 20300 . 0 ms e c s .

2

(d7) 13 z + 11 y + 7 x + 5 w + 3 v + 2 u + 17

Example 5: In this GCD example of several polynomials the straight-line approach and Mac-
syma’s sparse modular approach perform approximately equal.

(c 1) p : u ˆ 2*v ̂ 2*wˆ 2+x ̂ 2*y ̂ 2* z ˆ 2 ;

T ime = 283 . 0 ms e c s .

2 2 2 2 2 2

(d1) x y z + u v w

(c 2) q1 : (u+2 * v+3 *w+ 4*x+5 * y+6 * z) ̂ 6 ;

T ime = 66 . 7 ms e c s .

6

(d2) (6 z + 5 y + 4 x + 3 w + 2 v + u)

(c 3) q2 : (u ˆ 3*v ̂ 3+w ̂ 3*x ̂ 3+y ̂ 3* z ̂ 3) ;

T ime = 33 . 3 ms e c s .

3 3 3 3 3 3

(d3) y z + w x + u v

(c 4) q3 : ’ d e t e rm i n a n t (ma t r i x ([u+v , w+ x , y+z] ,

[(u+ z) ˆ 2 , (v+y) ˆ 2 , (w+x) ˆ 2] ,

[(z+y) ̂ 3 , (x+w) ̂ 3 , (v+u) ˆ 3])) ;

T ime = 333 . 0 ms e c s .

[v + u x + w z + y]

[]

[2 2 2]

(d4) d e t e rm i n a n t ([(z + u) (y + v) (x + w)])

[]

[3 3 3]

[(z + y) (x + w) (v + u)]

(c 5) s g c d : s t r a i gh t g c d (p*q1 , p*q2 , p*q3) $

T ime = 4150 . 0 ms e c s .

(d5) s t r a i gh t t o s p a r s e (s g c d , 10) ;

T ime = 41000 . 0 ms e c s .

2 2 2 2 2 2

(d6) x y z + u v w

(c 7) g c d (p*q1 , p*q2 , p*d e t e rm i n a n t (p a r t (q3 , 1))) ;

T ime = 47600 . 0 ms e c s .

- 20 -

2 2 2 2 2 2

(d7) x y z + u v w

Example 6: The next example again makes a strong case for the straight-line representation.
The determinant to be factored is extremely dense, but obviously contains a sparse factor, which
is easily found by our algorithms. We note that the Macsyma took 1.7 hours to factor the
expanded determinant.

(c 1) p : ’ d e t e rm i n a n t (ma t r i x ([w+ x + y +z , a+b+ c , u+v , 0] ,

[(a−x−y− z) ˆ 2 , (u−b− c) ˆ 2 , (d−w) ̂ 2 , 0] ,

[(a+b+ c +d) ˆ 3 , (x+y+ z) ˆ 3 , (u+v) ˆ 3 , 0] ,

[(u+ z) ˆ 5 , (x+d) ˆ 5 , (a+w) ˆ 5 , x ˆ 2+y ̂ 2+z ˆ 2])) ;

T ime = 250 . 0 ms e c s .

[z + y + x + w c + b + a v + u 0]

[]

[2 2 2]

[(− z − y − x + a) (u − c − b) (d − w) 0]

(d1) d e t e rm i n a n t ([])

[3 3 3]

[(d + c + b + a) (z + y + x) (v + u) 0]

[]

[5 5 5 2 2 2]

[(z + u) (x + d) (w + a) z + y + x]

(c 2) s f : s t r a i gh t f a c t o r (po l y t o s t r a i gh t (p) , 1000) $

T ime = 37100 . 0 ms e c s .

(c 3) s t r a i gh t l e ng t h (s f [1] [1]) ;

T ime = 100 . 0 ms e c s .

(d3) 11565

(c 4) s f o : s t r a i gh t op t 3 (s f [1] [1]) $

1811 (15%) i n s t r u c t i on s s a v e d .

T ime = 110000 . 0 ms e c s .

(c 5) s t r a i gh t t o s p a r s e (s f o , 10 , t e rms =3) ;

T ime = 111000 . 0 ms e c s .

2 2 2

(d5) z + y + x

(c 6) s t r a i gh t t o s p a r s e (s f [2] [1] , 10 , t e rms =3) ;

Te rm bound ex c e e d e d .

T ime = 28900 . 0 ms e c s .

(d6) f a l s e

(c 7) f a c t o r (d1) $

T ime = 6120000 . 0 ms e c .

Example 7: As in the previous example, this one considers the factorization of a symbolic deter-
minant. Here it is not obvious at all what the factors would be. This computation is one of sev-
eral carried out jointly with K. Johnson for his investigations on determinants of Moufang loops
[11].

-21-

[1 1 1 1 1 1 1 1]

[]

[x2 x1 x4 x3 x6 x5 x8 x7]

[]

[x3 x4 x1 x2 x8 x7 x5 x6]

[]

[x4 x3 x2 x1 x7 x8 x6 x5]

(d7) []

[x5 x6 x7 x8 x1 x2 x3 x4]

[]

[x6 x5 x8 x7 x2 x1 x4 x3]

[]

[x7 x8 x5 x6 x4 x3 x1 x2]

[]

[x8 x7 x6 x5 x3 x4 x2 x1]

(c 8) po l y t o s t r a i gh t (’ d e t e rm i n a n t (d7)) $

T ime = 1550 . 0 ms e c s .

(c 9) s t r a i gh t op t 3 (d8) $

62 (14%) i n s t r u c t i on s s a v e d .

T ime = 3880 . 0 ms e c s .

(c 10) s t r a i gh t f a c t o r (d9 , 1000) $

Un i v a r i a t e f a c t o r s :

(75 x 2 − 457) (169 x 2 − 51) (229 x 2 − 37)

2 2

(94405 x 2 + 11958 x 2 − 20049) (114645 x 2 − 69158 x 2 + 7881)

Ex pon e n t s o f un i v a r i a t e f a c t o r s : (1 1 1 1 1)

Pr og r am l e ng t h = 3474

Be g i nn i ng l i f t i ng .

Pa r t s o f d eg r e e 1 l i f t e d . 8936

Pa r t s o f d eg r e e 2 l i f t e d . 7418

L i f t i ng c omp l e t e .

T ime = 105000 . 0 ms e c s .

(c 11) s t r a i gh t op t 3 (d11 [1] [1]) $

1000 (5%) i n s t r u c t i on s s a v e d .

T ime = 172000 . 0 ms e c s .

(c 12) s t r a i gh t t o s p a r s e (d12 , 1000) ;

T ime = 278000 . 0 ms e c s .

(d12) x8 + x7 + x6 + x5 − x4 − x3 − x2 − x1

(c 13) s t r a i gh t t o s p a r s e (d11 [4] [1] , 1000) ;

T ime = 386000 . 0 ms e c s .

2 2 2 2 2 2

x8 x7 x6 x5 x4 x3

(d13) − −−− + x7 x8 − −−− + −−− − x5 x6 + −−− + −−− − x3 x4 + −−−

2 2 2 2 2 2

- 22 -

2 2

x2 x1

− −−− + x1 x2 − −−−

2 2

(c 14) l e ng t h (exp a nd (d e t e rm i n a n t (d3))) ;

T ime = 1800000 . 0 ms e c s .

(d14) 2792

-23-

4. Data Structure for Straight-Line Programs

Straight-line programs are represented internally by triples of the form

(label instruction-list last-instruction).

Label indicates that an object is a straight-line program, and its format depends on the top-level
system being used. Under Macsysma, label is always ‘(straight simp)’. Instruction-list is a list
of straight-line instructions. Instruction formats are described below. Last-instruction is a
pointer to that instruction in instruction-list whose value the program represents. Instructions
following this last instruction are irrelevant for the computation of that value. This field is
included so that one instruction list can be shared by several different straight-line programs.

There are three types of straight-line instructions:

(value-cell input input-variable),
(value-cell constant scalar),
and (value-cell opcode var1 var2).

Opcode is one of {plus, minus, times, quotient}, input-variable is a variable symbol, scalar is
either an integer or a form for a rational number (e.g., ‘((rat simp) m n)’ in Macsyma), and var1

and var2 are pointers to previous instructions. The value-cell is used by the system to store
information about an instruction, for example the value of that instruction during an evaluation or
the total degree of the polynomial given by the instruction.

-24-

5. Assessment

It is evident that the creation of a system for manipulating polynomials in straight-line rep-
resentation was possible only after fundamental operations such as GCD and factoring were
known to be feasible. However, we realize that additional effort and ingenuity is required to
make a polynomial-time process practically efficient. It should be clear that our system is geared
towards objects that cannot be manipulated by sparse techniques due to their denseness. This
implies that our system should be applied to large problems. We observe also that the complex-
ity of all our algorithms, except the sparse interpolation algorithm, is independent of the number
of indeterminates in the input polynomials. Therefore, Dagwood is very competitive on prob-
lems with many variables. Dagwood in its current version only allows rational coefficients.
There are no theoretical problems in extending the system to allow coefficients from algebraic
extensions of the rationals represented by polynomials in the generators of these extensions mod-
ulo their minimal polynomial, and to coefficicients from finite fields. Also, recently new meth-
ods for the StraighttoSparse procedure were discovered [2], [29], and [17], and should signifi-
cantly speed that process.

We must warn, however, that the straight-line representation is not yet a panacea for inter-
mediate expression swell. Currently, our main procedures such as the GCD or factorization rou-
tines return a straight-line answer whose length is at least the length of the input program times
the input degree. This growth, although polynomial, makes it virtually impossible to stack our
routines back to back in the process of an algebraic computation. There are, of course, possible
attacks against this problem. One is to retain additional information in the straight-line answer.
The factorization procedure, for instance, needs to compute the coefficients of an individual vari-
able, and this is exactly the way a straight-line GCD is determined. Therefore, if we were to fac-
tor a straight-line GCD, the step of retrieving the coefficients of a variable could be skipped, pro-
vided that additional information were also returned by the GCD routine. Another attack is to try
to optimize the straight-line programs after they get constructed. One somewhat trivial optimiza-
tion scheme is to convert to sparse and back to straight-line representation. In light of our exam-
ples leading to sparse answers this idea should not be underestimated. Another optimization
scheme is used in the function StraightOpt3 with worthwhile results. Optimization, however,
definitely warrants future research.

In Moses’s terminology [19] the straight-line representation belongs to the “new left” for it
is non-canonical and permits naturally the sharing of subexpressions. However, our algorithms
operate entirely within this representation and Dagwood therefore also exhibits the traits of a
“radical” one. It is our belief that our approach to a certain extent unifies the advantages of both,
the new left covering a larger class of inputs and the radical supplying well-understood algo-
rithms.

Acknowledgement: We like to thank Richard Fateman for his insightful help with Macsyma.

-25-

References

1. Baur, W. and Strassen, V., “The complexity of partial derivatives,” Theoretical Comp. Sci., 22, pp. 317-330
(1983).

2. Ben-Or, M. and Tiwari, P., “A deterministic algorithm for sparse multivariate polynomial interpolation,”
Manuscript (October 1987).

3. Caviness, B. F. and Epstein, H. I., “A note on the complexity of algebraic differentiation,” Inf. Proc. Lett., 7,
pp. 122-124 (1978).

4. Char, B. W., Geddes, K. O., Gentleman, W. M., and Gonnet, G. H., “The design of MAPLE: A compact,
portable, and powerful computer algebra system,” Proc. EUROCAL ’83, Springer Lec. Notes Comp. Sci.,
162, pp. 102-115 (1983).

5. Claybrook, B. G., “A new approach to the symbolic factorization of multivariate polynomials,” Artificial
Intelligence, 7, pp. 203-241 (1976).

6. Gathen, J. von zur, “Irreducibility of multivariate polynomials,” J. Comp. System Sci., 31, pp. 225-264
(1985).

7. Gathen, J. von zur and Kaltofen, E., “Factoring sparse multivariate polynomials,” J. Comp. System Sci., 31,
pp. 265-287 (1985).

8. Gonnet, G. H., “Determining equivalence of expressions in random polynomial time,” Proc. 16th ACM
Symp. Theory Comp., pp. 334-341 (1984).

9. Heintz, J. and Schnorr, C. P., “Testing Polynomials which are easy to compute,” Monographie de
L’Enseignement Mathématique, 30, pp. 237-254, Imprimerie Kundig, Gen`eve (1982).

10. Ibarra, O. H. and Moran, S., “Probabilistic algorithms for deciding equivalence of straight-line programs,” J.
ACM, 30, pp. 217-228 (1983).

11. Imirzian, G. M., Johnson, K., and Kaltofen, E., “Factoring determinants of Latin squares,” in preparation
(1987).

12. Kaltofen, E., “Sparse Hensel lifting,” Proc. EUROCAL ’85, Vol. 2, Springer Lec. Notes Comp. Sci., 204, pp.
4-17 (1985).

13. Kaltofen, E., “Computing with polynomials given by straight-line programs II; Sparse factorization,” Proc.
26th IEEE Symp. Foundations Comp. Sci., pp. 451-458 (1985).

14. Kaltofen, E., “Uniform closure properties of p-computable functions,” Proc. 18th ACM Symp. Theory Comp.,
pp. 330-337 (1986).

15. Kaltofen, E., “Factorization of polynomials given by straight-line programs,” Math. Sci. Research Inst.
Preprint, 02018-86, Berkeley, CA (1986). To appear in: ‘‘Randomness in Computation,’’ Advances in Com-
puting Research, S. Micali ed., JAI Press Inc., Greenwich, CT, January 1987.

16. Kaltofen, E., “Greatest common divisors of polynomials given by straight-line programs,” J. ACM, 35, 1, pp.
231-264 (1988).

17. Kaltofen, E. and Yagati, Lakshman, “An improved sparse multivariate polynomial interpolation algorithm,”
Manuscript, Dept. Computer Sci., Rensselaer Polytechnic Institute (February 1988).

18. Martin, W. A., “Determining the equivalence of algebraic expressions by hash coding,” J. ACM, 18, pp.
549-558 (1971).

-26-

19. Moses, J., “Algebraic simplification: A guide for the perplexed,” Commun. ACM, 14, pp. 548-560 (1971).

20. Plaisted, D. A., “Sparse complex polynomials and polynomial reducibility,” J. Comp. System Sci., 14, pp.
210-221 (1977).

21. Schwartz, J. T., “Fast probabilistic algorithms for verification of polynomial identities,” J. ACM, 27, pp.
701-717 (1980).

22. Stoutemyer, D. R., “Which polynomial representation is best?,” Proc. Third MACSYMA Users’ Conference,
pp. 221-243, General Electric, Schenectady, New York (1984).

23. Strassen, V., “Vermeidung von Divisionen,” J. reine u. angew. Math., 264, pp. 182-202 (1973). (In German).

24. Valiant, L., “Reducibility by algebraic projections,” L’Enseignement mathématique, 28, pp. 253-268 (1982).

25. Wang, P. S., “An improved multivariate polynomial factorization algorithm,” Math. Comp., 32, pp.
1215-1231 (1978).

26. Wang, P. S., “Early detection of true factors in univariate polynomial factorization,” Proc. EUROCAL ’83,
Springer Lec. Notes Comp. Sci., 162, pp. 225-235 (1983).

27. Zippel, R. E., “Probabilistic algorithms for sparse polynomials,” Proc. EUROSAM ’79, Springer Lec. Notes
Comp. Sci., 72, pp. 216-226 (1979).

28. Zippel, R. E., “Newton’s iteration and the sparse Hensel algorithm,” Proc. ’81 ACM Symp. Symbolic Alge-
braic Comp., pp. 68-72 (1981).

29. Zippel, R. E., “Interpolating polynomials from their values,” Manuscript, Symbolics Inc. (January 1988).

