Single-Factor Hensel Lifting and its Application to the
Straight-Line Complexity of Certain Polynomials*

Erich Kaltofen

Rensselaer Polytechnic Institute
Department of Computer Science
Troy, New York 12180-3590
Arpa-Net: kaltofen@cs.rpi.edu

Abstract

Three theorems are presented that establish polynomial straight-line complexity for cer-
tain operations on polynomials given by straight-line programs of unbounded input degree.
The first theorem shows how to compute a higher order partial derivative in a single variable.
The other two theorems impose the degree of the output polynomial as a parameter of the
length of the output program. First it is shown that if a straight-line program computes an
arbitrary power of a multivariate polynomial, that polynomial also admits a polynomial
bounded straight-line computation. Second, any factor of a multivariate polynomial given by
a division-free straight-line program with relatively prime co-factor also admits a straight-line
computation of length polynomial in the input length and the degree of the factor. This result
is based on a new Hensel lifting process, one where only one factor image is lifted back to
the original factor. As an application we get that the greatest common divisor of polynomials
given by a division-free straight-line program has polynomial straight-line complexity in terms
of the input length and its own degree.

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-
04391 and by an IBM Faculty Development Award. This paper appears in Proc. 19th Annual ACM Symp.
Theory Comp., pp. 443--452 (1986).

1. Introduction

The construction of straight-line programs for certain multivariate polynomials, such as
the irreducible factors or the GCD of polynomials given by straight-line programs, was
discovered to be feasible within the past three years [5], [8], and [6]. The program transfor-
mations are in random polynomial-time in the input size and the total degrees of the inputs.
If the degrees of the input polynomials are allowed to be exponential in the straight-line pro-
gram length, some basic constructions such as determining the coefficient of a single variable
power can become #P-hard with respect to the straight-line program size alone [18], [8], §5
(see also §2 below). In this article we study how the input degree restriction can be weak-
ened while retaining polynomial straight-line complexity for the anwers.

The first theorem shows how to compute a higher order partial derivative in a single
variable of a rational function given by a straight-line program. The simple construction is
based on the Leibniz rule for higher derivatives of products and can even be carried out in
polynomial-time. The next two theorems impose the degree of the output polynomial rather
than the input polynomial as a parameter of the length of the output program. Polynomial-
time constructibility of the answer programs is lost, however, in part due to the need of
scalars derived from the input polynomials of possibly exponential degree, which thus can be
exponential in size. We show first that if a straight-line program computes an arbitrarily high
power of a polynomial, that base polynomial also admits a polynomial bounded straight-line
computation, provided the characteristic of the scalar field does not divide the exponent. Our
construction is based on taking roots of univariate power series. Second, we prove that any
factor of a polynomial given by a division-free straight-line program with relatively prime co-
factor admits a straight-line computation of length polynomial in the input length and its own
degree. The proof of this result introduces a new Hensel lifting procedure [22], one where
only one factor image is restored back to its original factor.

The assumption of co-primeness in our factorization result can be enforced in the setting
of computing the greatest common divisor of polynomials by Hensel lifting, the so-called
EZ-GCD procedure [12]. Therefore, we get as an application that the GCD of polynomials
given by a division-free straight-line program has polynomial straight-line complexity in terms
of the input length and the degree of the GCD. Furthermore, we also can derive from this
results another solution to Strassen’s problem [16] on the straight-line complexity of the
reduced numerator and denominator of a multivariate rational function given by a straight-line
program. The new approach does not make use of Padé approximations at all, as was the
basis for our first solution to this problem [7], §4.

Notation: Generally, F, F, K denote fields, char(.) their charcteristic, x, vy, Z, o indeter-
minates, f, g, h (multivariate) polynomials, a, b field elements, P, Q straight-line programs.
Permitted operands in the instruction sequence of straight-line programs are field elements,
indeterminates, and previous program variables. Permitted operators are +, —, X, and +. If the
latter does not occur we call the program division-free. For a precise definition of the

-3

straight-line model we refer to [8], §2, or to [15]. By ldcfxl(f) € Flx,,..., x,] we denote

the coefficient of the highest power of x; in f € (F[x,,..., x,])[x;]. M(d) denotes a func-
tion for the asymptotic complexity of d-degree polynomial multiplication, at best M (d) = d
log(d) log(log(d)) [14], [4]. Finally, we use := and =: as a shorthand to indicate the intro-
duction of symbols, the new symbols occurring on the side of the colon.

2. Higher Derivatives

We now show how to compute the k-th order derivative in a single variable of a
straight-line program. For polynomials of bounded degree this problem can be solved by
computing straight-line programs for the coefficients in the single variable [18], [8]. The fol-
lowing solution, based on the Leibniz formula of higher derivatives, is much simpler and
works also for rational functions and does not depend on the input degrees.

Theorem 1: Let f € F(xy,..., x,,) be given by a straight-line program P of length I. Then
o f /ax]f can be computed by a straight-line program Q of length len(Q) = O (k*1).

Proof: For every program variable v,, 1 < A <[, in P we introduce k additional variables
vi®, 1 <k <k, v® =v,, such that v{* computes the k-th derivative of the function com-
puted in v,. Now let an individual assignment be w < u o v. The following relations

apply:
o=+ w®=y®4,®

K
o=x w®=¥% [E] u (5, ()

”':
o= wh = Oy [KJ (K10, (07, 0)
umt - M
Therefore, clearly w™® can be determined from u© ..., 4™ v©@ y® 1, O 0D gy

O (x) assignments. Notice that if an operand, u say, is an indeterminate or scalar, then u) =
0 except if u = x{, then u® = 1. Overall, each assignment in P gets expanded into at most
0 (k?) assignments and the result follows. [

The construction of Q from P can be accomplished in polynomial-time, that is the
transformation is uniform in the sense of [8]. That means that we have another Monte-Carlo
solution for finding the degree of a polynomial f € F[x, ,..., x,], namely by testing pro-
grams for

Of G ody) IO ty)
% 3~ ,
for zero by random evaluation. Our first solution used an interpolation approach [8], §5, and
is in general more efficient. Notice that if the first k derivatives do not evaluate to zero, the
input is either a polynomial of higher degree or a non-polynomial rational function. In the
latter case, a more general test is available, cf [7],. Corollary 4.1.

There is evidence that it is impossible to compute the k-th derivative in (/ log(k))O(l)
assignments. Consider the example from [18],

n n
8O L Y21)71 1 { Zyjzi,j}'

i=1 | j=I

Then the coefficient of the monomial y; -~ y, in g is the permanent of the matrix
[z; jli<i j<n- Notice that in contrast to theorem 1,

d"g
0

n

= perm([z; ; l1<; j<n)-

which makes taking partial derivatives in mixed variables #P-hard. Now performing a
Kronecker substitution x®*D"" for y; this permanent appears as the coefficient ¢, (zy ,...,

Zp.n) Of xk for
k = l+Hn+1)+n+1)>++n+1)""!,
in
F O,z s 2y) = g0, X" x ZLeer Znn)-
Therefore

k
a f(x9zl’l"-')zn7n)

Bxk x=0

computes k! perm([z; ;1), whereas f can be computed by a division-free program of length
O (n?). One may argue that divisions in the program for the k-th derivative can make the
substitution x = 0 invalid, but we do not believe that divisions endow the straight-line com-
plexity model with exponentially more power (see §6, problem 5). Also the exponentially
sized constant k! should not enable an exponential speed up of the computation of the per-
manent.

3. Large Exponent Roots

Our next theorem shows, for instance, that a very high power of a hard polynomial, such
as the n by n permanent raised to the power 2", cannot have a straight-line computation of
polynomial length. It is based on the fact that the d-degree root of a polynomial only
depends on its d+1 low order coefficients, provided the constant coefficient is non-zero [9],
§4.7. Our proof, however, will be based on the asymptotically faster Newton iteration.

Theorem 2: Let f € Flxy,..., x,] be given by a straight-line program P of length I, card(F)
> 2% and let g € Flxy..., x,], d = deg(g), be such that g¢ = f, e not divisible by

char(F'). Then g can be computed by a straight-line program Q of length len(Q) =
O(IM()).

Proof: By working with the translated polynomial

Gy x,,y)=f&y+tay,..., x,y+a,),

a; € F, we can find the Taylor series coefficients ¢ ,..., ¢; € F[xy,..., x,,] of

F@penx, y) =coX g X, 0 (X e,y + 4y (X . 0x,)y? mod yd+!

in O(l M(d)) assignments [8]. Moreover, the a; can be chosen such that ¢y, # 0. Here we
make use of the assumption that the field is sufficiently large. Let

d .
8y, Xy, y) = Y up(x ., X))y =g xy+ay,..., x,y+a,).

i=0
Since
coxp..ox,)=f (x1,....x,,0)=f (ay,...,a,)eF
we have u, € F with u§ = c,. We determine u, ,..., u; by Newton iteration of z¢ — f =

on the power series approximation of f. We now describe this iteration in detail.
Fori < 1,..., [logy(d+1)] Do

At this point we have computed
U ooor Ujs Wopoo, Wi € Flxy,..o, x,],

j =271 — 1, such that for
l k L k
o)=Y u y", Bi 1))=Y wi v,
k=0 k=0
we have

o B;_1=1 mod y/*!, ot ;=f mod y/*.

We now encode straight-line assignments for u; ,..., uy;_j, Wiy ,..., wo;_; that satisty

1 1 = B : ;
o;(y) = (1_;)0%—1@) + zf B,_1(»)¢! mod ymin@+1.2).

and if 2 < d+1,

B (0)=2B;_1(0")-B2 1 (»)e; (v)mody .
Notice that

(xiEOL,'_l_Zei__f mod yZi
d(z—f)0z | z=a_,
and
B 1/z—a; 2
BFB"“_aa/z——a,.)/az z=B,-71mOd ye.

The amount of straight-line code for this step is O (log(e)M (21)) using binary exponen-
tiation for finding B! mod y?'.

The total cost for the Newton iteration is O (log(e)M (d)), or with log(e) = O (), O(M(d))
assignments. [

The construction of Q in the above proof is ‘‘almost’” in random polynomial-time, all
that is required as additional input is u € F and e (given in binary). If e is polynomial in
value, we could have also used the factorization algorithm in [6] to construct a program for g,
but then the above method also leads to a random polynomial time algorithm for constructing
the program Q. Moreover, this approach is more efficient both in terms of the asymptotic
length of the resulting program as well as practicality.

We remark that the cardinality restriction on F is unessential in the above and also in
the following theorems. If card(F) < 2!*!, we can carry out the construction in an algebraic
extension F(0) of degree m := [F(0):F]. The point is now that the resulting program Q,
which uses scalars in F(0), can be transformed to a program Q over F (x{,..., x,). For
future reference, let us formulate the following lemma.

Lemma 1: Let f € F(xy,..., x,,) be given by a straight-line program P over K(x ,..., x,,),
K = F[0]/(g(0)) where g(0) € F|[0] is irreducible. Furthermore, let | :=len(P) and m :=
deg(g). Then g can be computed by a straight-line program Q over F(xq ,..., x,,) of length
len(Q) = O (M (m)log(m)1).
Proof: The idea is to construct for each function vy € K(xy,..., x,), | <A <[, computed in
the A-th assignment of P a straight-line code segment for Wy € Fx;,...x,),0<u<m,
such that

m—1

v = Y, wy 0" mod g (6).
u=0

Division is the most costly operation and requires O (M (m)log(m)) assignments to determine
wyu from the corresponding coefficients of the dividend and divisor, using the extended poly-
nomial version of the Knuth-Schbnhage GCD algorithm to invert the divisor modulo g (0), see

e.g [2]..

If one were to carry out this step constructively, certain program variables in F(x; ,..., x,,)
would need to be tested for zero, which can be accomplished by the Monte-Carlo algorithm in
[8], §3. These tests can be avoided, however, by computing the coefficients of the inverse
modulo g as quotients of minors in the Sylvester matrix [3] employing a division-free deter-
minant program. The cost is then m @2 () where ® is the matrix multiplication exponent,
and Q is obtained deterministically in polynomial time in /[and m. [J

4. Low Degree Factors

In [6] we have established that any factors of a family of multivariate polynomials with
polynomially bounded degree and straight-line complexity can themselves be computed by
straight-line programs of polynomial length. We now generalize this result by relaxing the
degree bound condition on the input polynomials. The additional restrictions in the following
theorem needed for our argument are discussed further after its proof.

Theorem 3: Let f € Flx,,..., x,] be given by a division-free straight-line program P of
length I, and let g € Flx,,..., x,], d = deg(g), be a factor of f such that GCD(g, f/g) = 1.
Furthermore, assume that card(F) > 2! (2d+1). Then g can be computed by a division-free
straight-line program Q of length

len(Q) = O M (d>) + d*M (d?)).

Before we can prove theorem 3 we need to introduce a new approach to Hensel lifting
[22], [13], [21]. This new algorithm only lifts the original image of one factor and we
hence refer to it by the name single-factor lifting.

Algorithm Single-Factor Lifting

Assume f(x,y) = gx,y) h(x,y), f, g, h € Flx,yl, F a field, d, := deg,(g), d,:=
deg, (g), such that

Idef, (f) e F,GCD(g (x,0),h(x,0))=1. (1)
This algorithm describes a method for lifting the equation

g(x,0) h(x,0)=f(x,y) mody

to obtain g(x,y) without accessing deg, (f) coefficients. Its inputs are a truncated g (x,0)-

adic expansion of 4 (x,0) and f (x,y) mod yd~"+1.

Input: gy(x) := g (x,0),
d)’ A [.
h(x,0) mod go(x)™ =Y A§ (g ox),
i=0
ﬁéi) e Flx], deg(ﬁéi)) <d,, and

Zf](l)(X)yj 8 O(X)i s

dy
i

d,
fx,y) mod (go)® ™, yd*hy = ¥
i=0 j

f j(i) e F[x], deg(f j(i)) < d,. Here and in the following the polynomials ‘‘with hats’” are
always in F[x]. (It might be unclear at the moment how to obtain the f j(’) without accessing

all coefficients of f, but as we will explain later, for f given by division-free straight-line
programs this is not difficult.)

- 10 -

Output: g (x,y).
d‘ n .
For k < 0,..., d, Do Step L. Then Return g(x,y) = Zj;Ogj(x)yJ

Step L: This step lifts by one degree in y. For a polynomial y(x,y) € Flx,y] let y;(x,y)

= (Y(x,y) mod y**N), yy (x)y* =y (. y) — W (x,y), k =1, Yy = . In normal lifting,
at this point we have g;, h; and determine g, 4, ﬁk+1 by

) - Fe1(8y)=8, (6 .yl (x,y) mod y**2
RGO () + 8oy (x) = == — ,
y
deg($y11) < dy, deg(y,) < deg(h). Let
B OO = i — gy mod yF 2,
frs1 € Flx1, deg(f;,) < deg, (f) by (1). The key identity is
o8 + 8oksr = liar- 2)
In this algorithm we determine g, ,; by
8t = (Gphg! mod go). 3)

We will compute along sufficiently high-order g,-adic expansions of the /;,’s € F[x,y]. For
Y(x,y) € Flx,y] let

\’I\f(i) ’ \Vk mod gl+1 - {[fk mod 86
k Dl

i

80

e Flx],

i 2 0. Notice that \Ap,g) is the i-th digit in the g -adic expansion of \Ifk. Also deg(ﬁf,gi)) < d,.

As the loop invariant, at this point we have g, and ﬁ(i), 0<j<k,0<i<d—j. Wefirst
find tk +1 ,0<i <d,—k. This is done by multiplying

dy—k k+1
(z+zg,<x>yf)<2 zh(”(x)y =Y Yw izt mod 47, ¥R, @)
j=1 i=0 j=0 i=0 j=0

s -(i) e Flx], deg(ﬂ/ (@)) < 2d,—1. Here z is a placeholder for g,. Also by the invariant we

must have w.) =

;' =0forall 0 <j <k and all corresponding i.

Then the g-adic ‘‘digits’” and ‘‘carries’’ are determined by division with remainder for i =0
soey dy—k,

)) = A () + go(0)SE (),

deg(rk +1) <d,. Finally, fori =0,..., d—k, by (2) set

A (i -1
i = F8 - ¢+ 58, 85 =0.
Thus by (3) 84y = A '5Y) mod g, Now the h,j_?l ,0<i <d—k-1, are determined by

dy—k-1

d\'_kA .
Z hgh™t = ¥ 688k — i Z h gl mod g8
i=0 i=0

d k+1

-11 -

Again, ‘‘digits and carries’” of g, +1ﬁ (§") have to be computed by remaindering. [

Lemma 2: Algorithm Single-Factor Lifting requires O(dsz (dd,)) arithmetic operations in
F.

Proof. Each iteration in the loop is dominated by the cost of computing the Wj(i) in (4). That
is essentially O (d,) bivariate multiplications of polynomials degree < d, in x and degree k <
dy in y, each of which can be done in O (M (d, dy)) arithmetic operations. []

We now can prove theorem 3.

Proof of Theorem 3: For a polynomial { € F[x,..., x,] let
Xxp.o, x,,y) =X tay, yx+box +a,,..., yx,+b,x +a,).
Now we choose a ,..., a,,, b, ,..., b, € F such that for h := f/g
deg(f) = deg, (f) and GCD(g(x},0....,0), 2 (x},0,...,0) = 1. 5)

This means that the points must not be a zero of a certain leading coefficient and resultant.
We refer to the analysis of the Factorization algorithm in [7] for more detail. Observe that
deg(f) < 2'. The idea is now to interpret f as a bivariate polynomial in x; and y over the
field F := F(x, ,..., x,). The key property that allows us to use the Single-Factor Lifting
algorithm is that

Xo = X(X1,.enr X,, 0) € Flxy]

is actually an element in F'[x;]. Therefore the coefficients of g, and ﬁéi) € F[x,] required
as input for single-factor lifting are scalars and most certainly have short computations. The
input assumptions (1) to the lifting algorithm are satisfied by (5). In addition we need a
straight-line program that computes f J(’) e F, where

d d d-1 . . _
Z > Zf,(’)(xz, L X)Xy go(e)’ = f mod (Zo(x),y
=0 j=0 m=0

Notice that
degx (g)=d and degy (g)=<d

We determine f i.m by finding the corresponding polynomials for each program variable in P,
where P is the straight-line program for f. We illustrate this process for the assignment w
«— u X v. Assume u](’,%, vj(,ln)1 compute the coefficients of x7'y/ in the i-th digit of the g,-
adic expansion of the polynomials computed in # and v, respectively. First we find the tri-

variate convolutions

NN
Z Z Z ujl;ﬂlvjzjnz’

i1+i2=i j1+j2=j m+mo=m

0<i<d,0<j<d,0<m<2d-2. This we can do in O M (d?)) assignments per

-12 -

multiplication in P. We now take care of the ‘‘carries with radix g,.’~ We encode the divi-
sion with remainder for all 0 < i, j <d,

P om0 m s o T o
Y WX = Y X T + 8o) X S xT
=0 m=0 m=0
There are O (d?) divisions each of which can be carried out in O (M (d)) assignments. Finally
we set

O

i i-1 -1 _
im rj(’”)l + sj(’m), sj(’m)—(),

0<m<d-1,0<i,j<d.

Additive assignments in P are a much simpler affair, and the overall cost for computing f j(f,%
is O(I M(d?). We like to point out that it is here that we must exclude divisions from P.
The reason is that we cannot necessarily invert all functions modulo g, by which is divided.

It appears that this problem cannot be handled by translating the input.

Now we have straight-line computations for all elements in f needed as inputs to the Single-
Factor Lifting algorithm. It remains to encode the arithmetic operations performed during this
algorithm at an additional cost of 0 (d*M (d?)) assignments (see lemma 2). Notice that we
obtain f by setting y = 1 and performing the proper back-translations. [

If deg(f) = 19U the result in [7] is obviously stronger than this theorem, so let us sup-
pose that deg(f) is super-polynomial in /. Our proof methods based on the Single-Factor
Hensel Lifting procedure above then do not permit an unconditionally uniform, that is random
polynomial-time, construction of Q from P alone, although if d is significantly smaller than
deg(f), the Single-Factor Lifting algorithm may prove more efficient than standard lifting
even in practice.

The assumption that GCD(g, f/g) = 1 is essentially equivalent to stating that g be
irreducible and its multiplicity e in f be small, that is e = /9. Unfortunately, we do not
know how to eliminate this condition on e (see §6, problem 3). Notice first, however, that if
deg(f/g¢) = 19U, a straight-line program of length (I d)° for g could still be constructed.
For we could apply theorem 3 to f/g°¢ in place of g and find a straight-line program with
divisions for g¢. The construction of g then follows by Theorem 2. Second, observe that the
elimination of the multiplicity bound e of g in f would also eliminate the assumption that P
be division-free. This follows by replacing each straight-line assignment in P with assign-
ments that compute the unreduced polynomial numerator and denominator of the rational
function corresponding to that assignment. Clearly the irreducible g would be a factor of the
numerator corresponding to the assignment that computes the polynomial f .

- 13 -

5. Low Degree Greatest Common Divisors

Two interesting corollaries follow from theorem 3. The first concerns the determination
of a straight-line program for the degree bounded GCD of polynomials given by a division-
free straight-line program. Surprisingly, the Euclidean algorithm does not enter in its proof,
instead it is based on the so-called EZ-GCD method [12]. It is not even clear to us how an
equivalent statement can be derived by using a remainder sequence.

Theorem 4: Let f; € Flx,..., x,], 1 <i <r, be given by a division-free straight-line pro-
gram P of length I, g = GCD(f,..., f,), d := deg(g), card(F) > 2!(2d+1). Then g can be
computed by a straight-line program Q of length

len(Q) = O(I M (d>) + d*M (d?)).

Proof: We observe that if card(F') > d there exist a; € F', 1 <i < r, such that

GCD(g,a1&+---+arf—r)= 1. (6)
8 8

In [20] this observation is attributed to D. Spear. Here is a justification. Temporarily define
forf € Flx,,..., x,]
[= f O yatzoX e Va2, X0),
where z; are new variables. Let
o(ay,..., a,.) € Flay,..., o]
be a non-zero coefficient of a monomial in the variables y, ,..., y,, z,,..., z, of

r .
resultant, (g, Y 0y).
i=1

Since the two arguments of the resultant are relatively prime polynomials such a G exists.

Now
o(ay,...,a,)#0 (7
implies that
o T
GCD(g, Ya,—) =1 ®)
i=1 8
over F(y, ,..., z,)[x;]. However, ldcf, (§) € F(z;,..., z,) so (8) remains true over F(z,
yoeus ZIXxq ..., ¥, 1. Furthermore, since the substitution x; = y;+z;x; 1s an isomorphism on

that domain (7) must imply (6). By deg(c) < deg, (g) = d the existence of g;’s satisfing (6)

1s established.

We can now apply theorem 3 to }'/_,a; f; in place of f and obtain a straight-line program for
g. U

- 14 -

The second application provides a new solution to Strassen’s problem on computing the
numerator and denominator of a rational function. Let P be a straight-line program that com-
putes f/g, f,g € Flx;,..., x,1, GCD(f, g) = 1. Atissue is to find a straight-line program
for f and g. Clearly, we can compute fh and gh for some h € F[x;,..., x,] by carrying
the unreduced numerators and denominators of the intermediate rational functions explicitly
along. As for the previous theorem we can find a{, b, a,, b, € F such that

GCD(h, a ,f+b,g) =1, GCD(h, ayf+bog) =1, a,by—ab; # 0.

Now using theorem 3 on both a; fh+b;gh we can find straight-line programs for a; f +b;g of
length (deg(fg)len(P))°®D, i =1, 2. From those f and g are computed as linear combina-
tions. The length of the straight-line program obtained in such a fashion is asymptotically
much longer than the one obtained by the Padé approximation solution for this problem [7].
We feel, however, that this new approach further emphasizes the usefulness of theorem 3 even
to programs with divisions. For the record, let us state the following theorem, which extends
Corollary 4.3 in [7] in case F is a small finite field.

Theorem 5: Let P be a straight-line program of length | over F(xq ,..., x,,), I an arbitrary
field, that computes flg, f, g € Flx, ,..., x,] relatively prime, and let d := max(deg(f),
deg(g)). Then there exists a straight-line program Q over F (x| ,..., x,) of parallel depth
O (log(d) log(d 1)) and size (d DOW that also computes f /g .

Proof: The construction compounds the following results.
P

0 by the above, or by [7], algorithm Rational Numera-
tor or Denominator

0, over F(0)(xy ,..., x,,), 0 algebraic over F, that com-
putes f and g separately

d by [16] (see also [8], Theorem 7.1)

0, over F(O)[x,..., x,,] that computes f, g

0 by a variation of the Lemma 1

Q3 over F[x,,..., x,] that computes f, g

4 by [19] or by [10]

Q4 over F[x,,..., x,] that computes f and g in parallel

divide f by g

- 15 -

6. Conclusion

This article proves theorems on polynomial straight-line complexity for higher deriva-
tives, roots, factors, and greatest common divisors derived from polynomials given by
straight-line programs that can have arbitrarily high degree. It thus extends the theory of clo-
sure properties of p-computable polynomials [18], [7], to polynomials of unbounded input
degree. We conclude with a collection of carefully considered open problems in the theory of
straight-line complexity of polynomials.

Problem 1 (Strassen [17], §7, Problem 1): Can theorem 1 be combined with the Baur and
Strassen result [1], that is given f € F(xq,..., x,) by a straight-line program of length /, can
all oF f /ax,.k, 1 <i <n, be computed by a straight-line program of length O (k%1)?

Problem 2 (Moses [11], Strassen [17], §9, Problem 2): Given f € C[x], C the complex
numbers, by a division-free straight-line program over C[x] of length /, can jf (x)dx be com-
puted by a straight-line program of length /9 (D2

Problem 3: Can the condition GCD(g,f/g) = 1 in theorem 3 be eliminated keeping len(Q) =
(1 d)°M2 A positive answer to this problem would imply the following: For f € C[x,,...,
x,] consider a zero-test tree of minimal height & for f, which includes straight-line code
segements and tests v, ?= 0 at which the computation forks, where v, is a previously com-
puted intermediate result. The leaves in the tree output f=0 or f#0, which must be true if
we execute the tree for any specialization in C" of the variables x;. Then a solution to this
problem implies that f can be computed by a straight-line program of length A deg(f)° (V.

Problem 4: Can theorem 4 be proven with len(Q) = 19U, that is for arbitrarily high degrees
of the GCD?

Problem S: If f € F[x] has straight-line complexity / with divisions, can f be computed by
a division-free straight-line program of length ¢ ()?

Problem 6: In theorem 5, does there hold a lower bound on the depth better than the trivial
Q(log(d))?

Acknowledgements: Theorem 1 was jointly derived with B. David Saunders. Volker Strassen first indicated to
me the consequence of a solution to problem 3, and later Thomas Spencer refreshed my memory. Problem 2
was first brought to my attention by Leslie Valiant, problem 4 by Joos Heintz and Malte Sieveking, and problem
5 by Charles Rackoff. I also thank Lakshman Yagati for his comments.

- 16 -

References

10.

11.

12.

13.

14.

15.

16.

17.

Baur, W. and Strassen, V., ‘“The complexity of partial derivatives,”” Theoretical Comp. Sci., vol. 22, pp.
317-330, 1983.

Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y., ‘‘Fast solution of Toeplitz systems of equations and com-
putation of Padé approximants,”’ J. Algorithms, vol. 1, pp. 259-295, 1980.

Brown, W. S. and Traub, J. F., ““On Euclid’s algorithm and the theory of subresultants,”” J. ACM, vol. 18,
pp. 505-514, 1971.

Cantor, D. G. and Kaltofen, E., ‘‘Fast multiplication of polynomials with coefficients from an arbitrary
ring,”” Manuscript, March 1987.

Gathen, J. von zur, ‘‘Irreducibility of multivariate polynomials,”” J. Comp. System Sci., vol. 31, pp. 225-264,
1985.

Kaltofen, E., ‘‘Factorization of polynomials given by straight-line programs,”” Math. Sci. Research Inst. Pre-
print, vol. 02018-86, Berkeley, CA, 1986. To appear in: ‘‘Randomness in Computation,”” Advances in
Computing Research, S. Micali ed., JAI Press Inc., Greenwich, CT, January 1987.

Kaltofen, E., ‘‘Uniform closure properties of p-computable functions,”” Proc. 18th ACM Symp. Theory
Comp., pp. 330-337, 1986.

Kaltofen, E., ‘‘Greatest common divisors of polynomials given by straight-line programs,’”” J. ACM, vol. 35,
no. 1, pp. 231-264, 1988.

Knuth, D. E., The Art of Programming, vol. 2, Semi-Numerical Algorithms, ed. 2, Addison Wesley, Reading,
MA, 1981.

Miller, G. L., Ramachandran, V., and Kaltofen, E., ‘‘Efficient parallel evaluation of straight-line code and
arithmetic circuits,”” Proc. AWOC ’86, Springer Lec. Notes Comp. Sci., vol. 227, pp. 236-245, 1986.

Moses, J., ‘‘Algebraic simplification: A guide for the perplexed,”” Commun. ACM, vol. 14, pp. 548-560,
1971.

Moses, J. and Yun, D. Y. Y., ““The EZ-GCD algorithm,”” Proc. 1973 ACM National Conf., pp. 159-166,
1973.

Musser, D. R., ‘“Multivariate polynomial factorization,”” J. ACM, vol. 22, pp. 291-308, 1975.

Schdnhage, A., ‘‘Schnelle Multiplikation von Polynomen {iber Kérpern der Charakteristik 2,”” Acta Inf., vol.
7, pp. 395-398, 1977. (In German).

Strassen, V., ‘‘Berechnung und Programm 1,”” Acta Inf., vol. 1, pp. 320-335, 1972. (In German).

Strassen, V., ‘“Vermeidung von Divisionen,”” J. reine u. angew. Math., vol. 264, pp. 182-202, 1973. (In
German).

Strassen, V., ‘‘Algebraische Berechnungskomplexitit,”” in Anniversary of Oberwolfach 1984, Perspectives in
Mathematics, pp. 509-550, Birkhduser Verlag, Basel, 1984. (In German).

18.

19.

20.

21.

22.

-17 -

Valiant, L., ‘‘Reducibility by algebraic projections,”” L’Enseignement mathématique, vol. 28, pp. 253-268,
1982.

Valiant, L., Skyum, S., Berkowitz, S., and Rackoff, C., ‘‘Fast parallel computation of polynomials using few
processors,”” SIAM J. Comp., vol. 12, pp. 641-644, 1983.

Wang, P. S., ““The EEZ-GCD algorithm,”” SIGSAM Bulletin, vol. 14/2, pp. 50-60, 1980.

Yun, D. Y. Y., “The Hensel lemma in algebraic manipulation,”” Ph.D. Thesis, M.L.T., 1974. Reprint: Gar-
land Publ., New York 1980.

Zassenhaus, H., ‘On Hensel factorization 1,”” J. Number Theory, vol. 1, pp. 291-311, 19609.

