
Single-Factor Hensel Lifting and its Application to the
Straight-Line Complexity of Certain Polynomials*

Erich Kaltofen

e
D
Rensselaer Polytechnic Institut
epartment of Computer Science

A
Troy, New York 12180-3590
rpa-Net: kaltofen@cs.rpi.edu

T

Abstract

hree theorems are presented that establish polynomial straight-line complexity for cer-
.

T
tain operations on polynomials given by straight-line programs of unbounded input degree

he first theorem shows how to compute a higher order partial derivative in a single variable.

l
The other two theorems impose the degree of the output polynomial as a parameter of the
ength of the output program. First it is shown that if a straight-line program computes an

l
b
arbitrary power of a multivariate polynomial, that polynomial also admits a polynomia

ounded straight-line computation. Second, any factor of a multivariate polynomial given by
e

c
a division-free straight-line program with relatively prime co-factor also admits a straight-lin
omputation of length polynomial in the input length and the degree of the factor. This result

t
is based on a new Hensel lifting process, one where only one factor image is lifted back to
he original factor. As an application we get that the greatest common divisor of polynomials

s
o
given by a division-free straight-line program has polynomial straight-line complexity in term

f the input length and its own degree.

*
� ���������������������������

This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-
.

T
04391 and by an IBM Faculty Development Award. This paper appears in Proc. 19th Annual ACM Symp

heory Comp., pp. 443--452 (1986).

- 2 -

1. Introduction

The construction of straight-line programs for certain multivariate polynomials, such as
s

d
the irreducible factors or the GCD of polynomials given by straight-line programs, wa

iscovered to be feasible within the past three years [5], [8], and [6]. The program transfor-
.

I
mations are in random polynomial-time in the input size and the total degrees of the inputs
f the degrees of the input polynomials are allowed to be exponential in the straight-line pro-

p
gram length, some basic constructions such as determining the coefficient of a single variable

ower can become #P-hard with respect to the straight-line program size alone [18], [8], §5
-

e
(see also §2 below). In this article we study how the input degree restriction can be weak
ned while retaining polynomial straight-line complexity for the anwers.

e
v

The first theorem shows how to compute a higher order partial derivative in a singl
ariable of a rational function given by a straight-line program. The simple construction is

p
based on the Leibniz rule for higher derivatives of products and can even be carried out in
olynomial-time. The next two theorems impose the degree of the output polynomial rather

-
t
than the input polynomial as a parameter of the length of the output program. Polynomial
ime constructibility of the answer programs is lost, however, in part due to the need of

e
scalars derived from the input polynomials of possibly exponential degree, which thus can be
xponential in size. We show first that if a straight-line program computes an arbitrarily high

e
c
power of a polynomial, that base polynomial also admits a polynomial bounded straight-lin
omputation, provided the characteristic of the scalar field does not divide the exponent. Our

f
construction is based on taking roots of univariate power series. Second, we prove that any
actor of a polynomial given by a division-free straight-line program with relatively prime co-

d
factor admits a straight-line computation of length polynomial in the input length and its own

egree. The proof of this result introduces a new Hensel lifting procedure [22], one where
only one factor image is restored back to its original factor.

The assumption of co-primeness in our factorization result can be enforced in the setting
d

E
of computing the greatest common divisor of polynomials by Hensel lifting, the so-calle

Z-GCD procedure [12]. Therefore, we get as an application that the GCD of polynomials
s

o
given by a division-free straight-line program has polynomial straight-line complexity in term

f the input length and the degree of the GCD. Furthermore, we also can derive from this

r
results another solution to Strassen’s problem [16] on the straight-line complexity of the
educed numerator and denominator of a multivariate rational function given by a straight-line

e
b
program. The new approach does not make use of Padé approximations at all, as was th

asis for our first solution to this problem [7], §4.

-
m
Notation: Generally, F , F

� �
, K denote fields, char(.) their charcteristic, x , y , z , α indeter

inates, f , g , h (multivariate) polynomials, a , b field elements, P , Q straight-line programs.
,

i
Permitted operands in the instruction sequence of straight-line programs are field elements
ndeterminates, and previous program variables. Permitted operators are +, –, ×, and ÷. If the

elatter does not occur we call the program division-free. For a precise definition of th

- 3 -

estraight-line model we refer to [8], §2, or to [15]. By ldcf (f) ∈ F [x ,. . . , x] we denotx 2 n1

1t 1 2 nhe coefficient of the highest power of x in f ∈ (F [x ,. . . , x])[x]. M (d) denotes a func-

l
tion for the asymptotic complexity of d -degree polynomial multiplication, at best M (d) = d
og(d) log(log(d)) [14], [4]. Finally, we use := and =: as a shorthand to indicate the intro-

duction of symbols, the new symbols occurring on the side of the colon.

- 4 -

2. Higher Derivatives

We now show how to compute the k -th order derivative in a single variable of a

c
straight-line program. For polynomials of bounded degree this problem can be solved by
omputing straight-line programs for the coefficients in the single variable [18], [8]. The fol-

w
lowing solution, based on the Leibniz formula of higher derivatives, is much simpler and

orks also for rational functions and does not depend on the input degrees.

nTheorem 1: Let f ∈ F (x ,. . . , x) be given by a straight-line program P of length l. The1 n
k

1
k 2 .

P

∂ f /∂x can be computed by a straight-line program Q of length len(Q) = O (k l)

roof: For every program variable v , 1 ≤ λ ≤ l , in P we introduce k additional variables

λ

λ
(κ)

λ
(0)

λ λ
(κ)v , 1 ≤ κ ≤ k , v = v , such that v computes the κ-th derivative of the function com-

puted in v . Now let an individual assignment be w ← u v . The following relationsλ
�

apply:

= +: w = u + v(κ) (κ) (κ)

�
�

(κ)

µ=0

κ
(κ−µ) (µ)= ×: w =

��
µ
κ�� u vΣ

Σ(κ) (κ)

µ=1

κ
(κ−µ) (µ) (0).

(

� = ÷: w = (u −
��

µ
κ�� w v)/v

κ) (0) (κ) (0) (κ) (0) (κ−1) n
O
Therefore, clearly w can be determined from u ,.. . , u , v ,. . . , v , w ,.. . , w i

(κ) assignments. Notice that if an operand, u say, is an indeterminate or scalar, then u =
0 1

(1)

(j)

except if u = x , then u = 1. Overall, each assignment in P gets expanded into at most
O (k) assignments and the result follows. �2

The construction of Q from P can be accomplished in polynomial-time, that is the

s
transformation is uniform in the sense of [8]. That means that we have another Monte-Carlo
olution for finding the degree of a polynomial f ∈ F [x ,. . . , x], namely by testing pro-

grams for
1 n

∂y

∂ f (yx ,. . . ,yx)	 	
	
	
	
	
	
	
	
	
	
	
	
	 , . . . ,
∂y

∂ f (yx ,. . . ,yx)	
	
	
	
	
	
	
	
	
	
	
	
	
	 ,. . .
κ

1 n
κ

f

1 n

or zero by random evaluation. Our first solution used an interpolation approach [8], §5, and
e

i
is in general more efficient. Notice that if the first k derivatives do not evaluate to zero, th
nput is either a polynomial of higher degree or a non-polynomial rational function. In the

latter case, a more general test is available, cf [7],. Corollary 4.1.

There is evidence that it is impossible to compute the k -th derivative in (l log(k)))

assignments. Consider the example from [18],

O (1

g (y ,. . . ,y ,z ,. . . ,z)=

���
y z

� �� .
n

j i , j
1

n

j =1
1 n 1,1 n ,n

i =
Π Σ

T

- 5 -

hen the coefficient of the monomial y .. . y in g is the permanent of the matrix
[i , j 1≤i , j ≤n

1 n

z] . Notice that in contrast to theorem 1,

,� �
�
�
�
�
�
�
� = perm([z])g∂
y∂y .. .∂1 n

n

i , j 1≤i , j ≤n

a
K
which makes taking partial derivatives in mixed variables #P-hard. Now performing

ronecker substitution x for y this permanent appears as the coefficient c (z ,. . . ,(n +1)
i k 1,1

i −1

zn ,n
k) of x for

k = 1+(n +1)+(n +1) +. . .+(n +1) ,

in

2 n −1

f (x , z ,. . . , z) = g (x , x ,. . . , x , z ,. . . , z).1,1 n ,n
n +1 (n +1)

1,1 n ,n
n −1

Therefore

∂x

∂ f (x , z ,. . . , z)� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0

k
1,1 n ,n

x =k

i , jcomputes k ! perm([z]), whereas f can be computed by a division-free program of length
eO (n). One may argue that divisions in the program for the k -th derivative can make th2

substitution x = 0 invalid, but we do not believe that divisions endow the straight-line com-

s
plexity model with exponentially more power (see §6, problem 5). Also the exponentially
ized constant k ! should not enable an exponential speed up of the computation of the per-

manent.

- 6 -

3. Large Exponent Roots

Our next theorem shows, for instance, that a very high power of a hard polynomial, such
fas the n by n permanent raised to the power 2 , cannot have a straight-line computation on

y
d
polynomial length. It is based on the fact that the d -degree root of a polynomial onl
epends on its d +1 low order coefficients, provided the constant coefficient is non-zero [9],

T

§4.7. Our proof, however, will be based on the asymptotically faster Newton iteration.

heorem 2: Let f ∈ F [x ,. . . , x] be given by a straight-line program P of length l, card(F)
l

1 n
+1

1 n
e y

c
> 2 , and let g ∈ F [x ,. . . , x], d = deg(g), be such that g = f , e not divisible b
har(F). Then g can be computed by a straight-line program Q of length len(Q) =

P

O (l M (d)).

roof: By working with the translated polynomial

,f� (x ,. . . , x , y):= f (x y +a ,.. . , x y +a)1 n 1 1 n n

nai 0 d 1∈ F , we can find the Taylor series coefficients c ,. . . , c ∈ F [x ,. . . , x] of

yf� (x ,. . . ,x ,y) ≡ c (x ,. . . ,x)+c (x ,. . . ,x)y +. . .+c (x ,. . . ,x)y mod1 n 0 1 n 1 1 n d 1 n
d d +1

i 0 e
m
in O (l M (d)) assignments [8]. Moreover, the a can be chosen such that c ≠ 0. Here w

ake use of the assumption that the field is sufficiently large. Let

.g� (x ,. . . , x , y) := u (x ,. . . , x)y := g (x y +a ,.. . , x y +a)1 n
i =0

d

i 1 n
i

1 1 n n

Since

Σ

c (x ,. . . ,x)= f� (x ,. . . ,x ,0)= f (a ,.. . ,a)∈F

0

0 1 n 1 n 1 n

0
e

0 1 d
e 0

o
we have u ∈ F with u = c . We determine u ,.. . , u by Newton iteration of z − f� =
n the power series approximation of f� . We now describe this iteration in detail.

For i ← 1, . . . , � log (d +1)� Do2

At this point we have computed

u ,.. . , u , w ,.. . , w ∈ F [x ,. . . , x],

j i −1

0 j 0 j 1 n

:= 2 – 1, such that for

α (y)= u y , β (y)= w y ,
j

k
k

0

j

k
k

i −1
k =0

i −1
k =
Σ Σ

we have

α β ≡1 mod y , α ≡ f� mod y .e j +1
1i −1 i −1

j +1
i −

j +1 2 j −1 j +1 2 j −1 yWe now encode straight-line assignments for u ,.. . , u , w ,.. . , w that satisf

α (y) = (1 −
e
� 1�)α (y) +

e
� 1� f� β (y) mod y ,

i i −1 i −1
e −1 min(d +1, 2)i

and if 2 < d +1,

- 7 -

i

i i −1 i −1
2

i
2i

.

Notice that

β (y)=2β (y)−β (y)α (y)mody

α ≡ α −
∂(z − f�)/∂z

z − f����
�
�
�
�
�
�
�
�
��� mod y 2

i i −1 e

e

z =αi −1

i

and

β ≡ β −
∂(1/z −α)/∂z

1/z −α� �
�
�
�
�
�
�
�
�
�
�
��� mod y .i i −1

i

i

z =β

2

i −1

i

i -
t
The amount of straight-line code for this step is O (log(e)M (2)) using binary exponen
iation for finding β mod y .e −1 2

1i −
i

The total cost for the Newton iteration is O (log(e)M (d)), or with log(e) = O (l), O (l M (d))
assignments. �

The construction of Q in the above proof is ‘‘almost’’ in random polynomial-time, all
that is required as additional input is u ∈ F and e (given in binary). If e is polynomial in0
value, we could have also used the factorization algorithm in [6] to construct a program for g ,

t
but then the above method also leads to a random polynomial time algorithm for constructing
he program Q . Moreover, this approach is more efficient both in terms of the asymptotic

length of the resulting program as well as practicality.

We remark that the cardinality restriction on F is unessential in the above and also in
cthe following theorems. If card(F) ≤ 2 , we can carry out the construction in an algebrail +1

extension F (θ) of degree m := [F (θ):F]. The point is now that the resulting program Q ,
which uses scalars in F (θ), can be transformed to a program Q� � over F (x ,. . . , x). For1 n

L

future reference, let us formulate the following lemma.

emma 1: Let f ∈ F (x ,. . . , x) be given by a straight-line program P over K (x ,. . . , x),
K

1 n 1 n

:= F [θ]/(g (θ)) where g (θ) ∈ F [θ] is irreducible. Furthermore, let l := len(P) and m :=
hdeg(g). Then g can be computed by a straight-line program Q over F (x ,. . . , x) of lengt1 n

P

len(Q) = O (M (m)log(m) l).

roof: The idea is to construct for each function v ∈ K (x ,. . . , x), 1 ≤ λ ≤ l , computed inλ 1 n

nλ,µ 1 ,
s
the λ-th assignment of P a straight-line code segment for w ∈ F (x ,. . . , x), 0 ≤ µ < m
uch that

v ≡ w θ mod g (θ).
m −1

λ,µ
µ

0
i

µ=
Σ

Division is the most costly operation and requires O (M (m) log(m)) assignments to determine
-w from the corresponding coefficients of the dividend and divisor, using the extended polyλ,µ

nomial version of the Knuth-Sch"onhage GCD algorithm to invert the divisor modulo g (θ), see

I

e.g [2]..

- 8 -

f one were to carry out this step constructively, certain program variables in F (x ,. . . , x)1 n

n
[
would need to be tested for zero, which can be accomplished by the Monte-Carlo algorithm i
8], §3. These tests can be avoided, however, by computing the coefficients of the inverse

-
m
modulo g as quotients of minors in the Sylvester matrix [3] employing a division-free deter

inant program. The cost is then m , where ω is the matrix multiplication exponent,ω+2+o (1) �
and Q is obtained deterministically in polynomial time in l and m .

- 9 -

4. Low Degree Factors

In [6] we have established that any factors of a family of multivariate polynomials with
y

s
polynomially bounded degree and straight-line complexity can themselves be computed b
traight-line programs of polynomial length. We now generalize this result by relaxing the

t
degree bound condition on the input polynomials. The additional restrictions in the following
heorem needed for our argument are discussed further after its proof.

fTheorem 3: Let f ∈ F [x ,. . . , x] be given by a division-free straight-line program P o1 n

1 nlength l, and let g ∈ F [x ,. . . , x], d := deg(g), be a factor of f such that GCD(g , f /g) = 1.
Furthermore, assume that card(F) > 2 (2d +1). Then g can be computed by a division-freel

straight-line program Q of length

len(Q) = O (l M (d) + d M (d)).

B

3 2 2

efore we can prove theorem 3 we need to introduce a new approach to Hensel lifting
e

h
[22], [13], [21]. This new algorithm only lifts the original image of one factor and w

ence refer to it by the name single-factor lifting.

A

Algorithm Single-Factor Lifting

ssume f (x , y) = g (x , y) h (x , y), f , g , h ∈ F [x , y], F a field, d := deg (g), d :=
d y

x x y

eg (g), such that

ldcf (f) ∈ F , GCD(g (x , 0), h (x , 0)) = 1. (1)x

nThis algorithm describes a method for lifting the equatio

g (x , 0) h (x , 0) ≡ f (x , y) mod y

-to obtain g (x , y) without accessing deg (f) coefficients. Its inputs are a truncated g (x , 0)x
1d +y .

I

adic expansion of h (x , 0) and f (x , y) mod y

nput:���
�
�
� g (x) := g (x , 0),0

0
d +1

i =0

d

0
(i)

0
iy

y

Σ ,h (x , 0) mod g (x) =: ĥ (x)g (x)

dĥ ∈ F [x], deg(ĥ) < d , an0
(i)

0
(i)

x

0
d +1 d +1

i =0

d

j =0

d

j
(i) j

0
iy y

y y

Σ Σ ,

f

f (x , y) mod (g (x) , y) =: f̂ (x)y g (x)

ˆ ∈ F [x], deg(f̂) < d . Here and in the following the polynomials ‘‘with hats’’ arej
(i)

j
(i)

x

j
(i) g

a
always in F [x]. (It might be unclear at the moment how to obtain the f̂ without accessin
ll coefficients of f , but as we will explain later, for f given by division-free straight-line

programs this is not difficult.)

- 10 -

� �
�
�
�
�
� g (x , y).:

F

Output

or k ← 0, . . . , d Do Step L. Then Return g (x , y) = ĝ (x)y .Σ jd
j0y j =

y

k)
:
Step L: This step lifts by one degree in y . For a polynomial ψ(x , y) ∈ F [x , y] let ψ (x , y
= (ψ(x , y) mod y), ψ̂ (x)y := ψ (x , y) − ψ (x , y), k ≥ 1, ψ̂ = ψ . In normal lifting,k +1

k
k

k k −1 0 0

k k k +1 k +1 yat this point we have g , h and determine ĝ , ĥ b

h (x)ĝ (x) + g (x)ĥ (x) =
y

f (x ,y)−g (x ,y)h (x ,y) mod y���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� ,k +1 k k
k +2

1

k

0 k +1 0 k +1 k +

+1 x k +1 0 tdeg(ĝ) < d , deg(ĥ) < deg(h). Le

t̂ (x)y :≡ f − g h mod y ,

k

k +1
k +1

k +1 k k
k +2

+1 k +1 xt̂ ∈ F [x], deg(t̂) < deg (f) by (1). The key identity is

h ĝ + g ĥ = t̂ . (2)

k +1

0 k +1 0 k +1 k +1

yIn this algorithm we determine ĝ b

ĝ = (t̂ h mod g). (3)k +1 k +1 0
−1

0

0 k r
ψ
We will compute along sufficiently high-order g -adic expansions of the h ’s ∈ F [x , y]. Fo

(x , y) ∈ F [x , y] let

ψ̂ :=
g

ψ̂ mod g − ψ̂ mod g���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� ∈ F [x],k 0
i +1

k 0
i

i
0

k

k
(i)

(i)
0 k k

(i)
x .

A

i ≥ 0. Notice that ψ̂ is the i -th digit in the g -adic expansion of ψ̂ . Also deg(ψ̂) < d

s the loop invariant, at this point we have g and ĥ , 0 ≤ j ≤ k , 0 ≤ i ≤ d − j . We first
(i)

y

k j
(i)

y

1fi k +nd t̂ , 0 ≤ i ≤ d − k . This is done by multiplying

)(z + ĝ (x)y)(ĥ (x)y z) ≡: w̃ (x)y z mod (z , y), (4Σ Σ Σ Σ Σ 2
k +1

j
(i) j i d −k k +

0

d −k

j =0

k

j
(i) j i

i =0

d −k

j =0

k

j
j

i =1j =

y y
y

w j
(i)

j
(i)

x 0˜ ∈ F [x], deg(w̃) < 2d −1. Here z is a placeholder for g . Also by the invariant we
must have w̃ = 0 for all 0 ≤ j ≤ k and all corresponding i .j

(i)

T 0hen the g -adic ‘‘digits’’ and ‘‘carries’’ are determined by division with remainder for i = 0
, . . . , d −k ,y

k +1
(i)

k +1
(i)

0 k +1
(i) ,w̃ (x) =: r̂ (x) + g (x)ŝ (x)

tdeg(r̂) < d . Finally, for i = 0 , . . . , d −k , by (2) sek +1
(i)

x

k +1
(i)

k +1
(i)

k +1
(i)

k +1
(i −1)

k +1
(−1) .

T

t̂ = f̂ − (r̂ + ŝ), ŝ =0

hus by (3) ĝ ≡ (ĥ) t̂ mod g . Now the ĥ , 0 ≤ i ≤ d −k −1, are determined by(i)
1

(0)
0 k +1k +1 0

(0) −1
k +

i =0

d −k −1

k +1
(i)

0
i +1

i =0

d −k

k +1
(i)

0
i

k +1
i =0

d −k

0
(i)

0
i

0
d −k +1

y y y

Σ Σ Σ .ĥ g ≡ t̂ g − ĝ ĥ g mod g

- 11 -

�
Again, ‘‘digits and carries’’ of ĝ ĥ have to be computed by remaindering.k +1 0

(i)

y
2

x y n
F
Lemma 2: Algorithm Single-Factor Lifting requires O (d M (d d)) arithmetic operations i

.

Proof: Each iteration in the loop is dominated by the cost of computing the w̃ in (4). That
i y x

j
(i)

s essentially O (d) bivariate multiplications of polynomials degree < d in x and degree k ≤
d in y , each of which can be done in O (M (d d)) arithmetic operations.

�
y x y

P

We now can prove theorem 3.

roof of Theorem 3: For a polynomial χ ∈ F [x ,. . . , x] let1 n

nχ 1 n 1 1 2 2 1 2 n n 1
�

(x ,. . . , x , y) := χ(x +a , yx +b x +a ,.. . , yx +b x +a).

Now we choose a ,.. . , a , b ,.. . , b ∈ F such that for h := f /g1 n 2 n

x 1 1d
1

eg(f
�

) = deg (f) and GCD(g
�

(x , 0, . . . , 0), h
�

(x , 0, . . . , 0)) = 1. (5)

.
W
This means that the points must not be a zero of a certain leading coefficient and resultant

e refer to the analysis of the Factorization algorithm in [7] for more detail. Observe that
deg(f) ≤ 2 . The idea is now to interpret f

�
as a bivariate polynomial in x and y over thel

1
fi 2 neld F

� �
:= F (x ,. . . , x). The key property that allows us to use the Single-Factor Lifting

algorithm is that

χ� := χ� (x ,. . . , x , 0) ∈ F
� �

[x]

1

0 1 n 1

0 0
(i)

1 d
a
is actually an element in F [x]. Therefore the coefficients of g

�
and ĥ ∈ F

� �
[x] require

s input for single-factor lifting are scalars and most certainly have short computations. The
a

s
input assumptions (1) to the lifting algorithm are satisfied by (5). In addition we need
traight-line program that computes f̂ ∈ F

� �
, where(i)

m

i

j ,

=0

d

j =0

d

m =0

d −1

j ,m
(i)

2 n 1
m j

0 1
i

0 1
d +1 d +1Σ Σ Σ

 !
" f̂ (x ,. . . , x) x y

#$!
% g

�
(x) :≡ f

�
mod (g

�
(x) , y).

Notice that

deg (g
�

) = d and deg (g
�

) ≤ d.x y1

j ,m
(i)We determine f̂ by finding the corresponding polynomials for each program variable in P

� �
,

←
where P

� �
is the straight-line program for f

�
. We illustrate this process for the assignment w

u × v . Assume û , v̂ compute the coefficients of x y in the i -th digit of the g
�

-(i)
1
m j

0m
(i)

j ,m

a
j ,

dic expansion of the polynomials computed in u and v , respectively. First we find the tri-
variate convolutions

w̃ = û v̂ ,2

2

1

21j
1 2 1 2 1 2

1,m
(i)

i +i =i j + j = j m +m =m
j ,m
(i)

j ,m
(i)

Σ Σ Σ
3 r0 ≤ i ≤ d , 0 ≤ j ≤ d , 0 ≤ m ≤ 2d −2. This we can do in O (M (d)) assignments pe

- 12 -

-multiplication in P& & . We now take care of the ‘‘carries with radix g& .’’ We encode the divi0
sion with remainder for all 0 ≤ i , j ≤ d ,

w̃ x =: r̂ x + g& (x) ŝ x .
m
Σ Σ Σ

=0

2d −2

j ,m
(i)

1
m

m =0

d −1

j ,m
(i)

1
m

0 1
m =0

d −2

j ,m
(i)

1
m

T 2here are O (d) divisions each of which can be carried out in O (M (d)) assignments. Finally
we set

ŵ ← r + s , s = 0,(−1)
m

(i −1)
j ,m

(i)
j ,m

(i)
j ,m

A

0 ≤ m ≤ d −1, 0 ≤ i , j ≤ d .

j ,

dditive assignments in P& & are a much simpler affair, and the overall cost for computing f̂)(i
m

i 3
j ,

s O (l M (d)). We like to point out that it is here that we must exclude divisions from P .
.The reason is that we cannot necessarily invert all functions modulo g& by which is divided0

N

It appears that this problem cannot be handled by translating the input.

ow we have straight-line computations for all elements in f& needed as inputs to the Single-

a
Factor Lifting algorithm. It remains to encode the arithmetic operations performed during this
lgorithm at an additional cost of O (d M (d)) assignments (see lemma 2). Notice that we2 2 '

obtain f by setting y = 1 and performing the proper back-translations.

If deg(f) = l the result in [7] is obviously stronger than this theorem, so let us sup-
p

O (1)

ose that deg(f) is super-polynomial in l . Our proof methods based on the Single-Factor

p
Hensel Lifting procedure above then do not permit an unconditionally uniform, that is random

olynomial-time, construction of Q from P alone, although if d is significantly smaller than
g

e
deg(f), the Single-Factor Lifting algorithm may prove more efficient than standard liftin
ven in practice.

The assumption that GCD(g , f /g) = 1 is essentially equivalent to stating that g be
tirreducible and its multiplicity e in f be small, that is e = l . Unfortunately, we do noO (1)

f
d
know how to eliminate this condition on e (see §6, problem 3). Notice first, however, that i
eg(f /g) = l , a straight-line program of length (l d) for g could still be constructed.e O (1) O (1)

eFor we could apply theorem 3 to f /g in place of g and find a straight-line program with
edivisions for g . The construction of g then follows by Theorem 2. Second, observe that the

elimination of the multiplicity bound e of g in f would also eliminate the assumption that P
-

m
be division-free. This follows by replacing each straight-line assignment in P with assign

ents that compute the unreduced polynomial numerator and denominator of the rational

n
function corresponding to that assignment. Clearly the irreducible g would be a factor of the

umerator corresponding to the assignment that computes the polynomial f .

5. Low Degree Greatest Common Divisors

- 13 -

Two interesting corollaries follow from theorem 3. The first concerns the determination
-

f
of a straight-line program for the degree bounded GCD of polynomials given by a division
ree straight-line program. Surprisingly, the Euclidean algorithm does not enter in its proof,

e
instead it is based on the so-called EZ-GCD method [12]. It is not even clear to us how an
quivalent statement can be derived by using a remainder sequence.

-Theorem 4: Let f ∈ F [x ,. . . , x], 1 ≤ i ≤ r , be given by a division-free straight-line proi 1 n

1 r
l e

c
gram P of length l, g := GCD(f , . . . , f), d := deg(g), card(F) > 2 (2d +1). Then g can b
omputed by a straight-line program Q of length

.len(Q) = O (l M (d) + d M (d))3 2 2

i tProof: We observe that if card(F) > d there exist a ∈ F , 1 ≤ i ≤ r , such tha

GCD(g , a
g

(f(
(+. . .+ a
g

(f(
() = 1. (6)

I

1
1

r
r

n [20] this observation is attributed to D. Spear. Here is a justification. Temporarily define
for f ∈ F [x ,. . . , x]1 n

1 2 2 1 n n 1 ,f) := f (x , y +z x ,. . . , y +z x)

twhere z are new variables. Lei

1 r 1 r]

b

σ(α , . . . , α) ∈ F [α , . . . , α

e a non-zero coefficient of a monomial in the variables y ,. . . , y , z ,. . . , z of

r

i
i

2 n 2 n

1
x

i =
1 Σ .(*(
()

)f
)

S

resultant (g) , α
g

ince the two arguments of the resultant are relatively prime polynomials such a σ exists.
Now

σ(a ,.. . , a) ≠ 0 (7)

implies that

1 r

GCD(g) , a
g)
f)(*(
() = 1 (8)

r

i
i

1i =
Σ

2 1n 1 x 2 n 2

,

over F (y ,. . . , z)[x]. However, ldcf (g)) ∈ F (z ,. . . , z) so (8) remains true over F (z
.. . , z)[x ,. . . , y]. Furthermore, since the substitution x = y +z x is an isomorphism onn 1 n i i i 1

x i1
)

i
that domain (7) must imply (6). By deg(σ) ≤ deg (g)) = d the existence of a ’s satisfing (6
s established.

We can now apply theorem 3 to a f in place of f and obtain a straight-line program forΣi =1
r

i i

g . +

- 14 -

The second application provides a new solution to Strassen’s problem on computing the
-

p
numerator and denominator of a rational function. Let P be a straight-line program that com

utes f /g , f , g ∈ F [x ,. . . , x], GCD(f , g) = 1. At issue is to find a straight-line program1 n

1 n g
t
for f and g . Clearly, we can compute f h and gh for some h ∈ F [x ,. . . , x] by carryin
he unreduced numerators and denominators of the intermediate rational functions explicitly

along. As for the previous theorem we can find a , b , a , b ∈ F such that1 1 2 2

1G 1 1 2 2 1 2 2CD(h , a f +b g) = 1, GCD(h , a f +b g) = 1, a b − a b ≠ 0.

fNow using theorem 3 on both a f h +b gh we can find straight-line programs for a f +b g oi i i i

l O (1)ength (deg(f g)len(P)) , i = 1, 2. From those f and g are computed as linear combina-

m
tions. The length of the straight-line program obtained in such a fashion is asymptotically

uch longer than the one obtained by the Padé approximation solution for this problem [7].

t
We feel, however, that this new approach further emphasizes the usefulness of theorem 3 even
o programs with divisions. For the record, let us state the following theorem, which extends

T

Corollary 4.3 in [7] in case F is a small finite field.

heorem 5: Let P be a straight-line program of length l over F (x ,. . . , x), F an arbitrary
fi 1 n

1 n

eld, that computes f /g , f , g ∈ F [x ,. . . , x] relatively prime, and let d := max(deg(f),
deg(g)). Then there exists a straight-line program Q over F (x ,. . . , x) of parallel depth1 n

O (1) .

P

O (log(d) log(d l)) and size (d l) that also computes f /g

roof: The construction compounds the following results.

P

↓ by the above, or by [7], algorithm Rational Numera-

Q

tor or Denominator

1 1 nover F (θ)(x ,. . . , x), θ algebraic over F , that com-

↓

putes f and g separately

by [16] (see also [8], Theorem 7.1)

Q 2 1 nover F (θ)[x ,. . . , x] that computes f , g

↓ by a variation of the Lemma 1

Q 3 1 nover F [x ,. . . , x] that computes f , g

↓ by [19] or by [10]

Q 4 1 nover F [x ,. . . , x] that computes f and g in parallel

↓ divide f by g

Q ,

6. Conclusion

- 15 -

This article proves theorems on polynomial straight-line complexity for higher deriva-

s
tives, roots, factors, and greatest common divisors derived from polynomials given by
traight-line programs that can have arbitrarily high degree. It thus extends the theory of clo-

t
d
sure properties of p-computable polynomials [18], [7], to polynomials of unbounded inpu

egree. We conclude with a collection of carefully considered open problems in the theory of

P

straight-line complexity of polynomials.

roblem 1 (Strassen [17], §7, Problem 1): Can theorem 1 be combined with the Baur and
nStrassen result [1], that is given f ∈ F (x ,. . . , x) by a straight-line program of length l , ca1 n

2a k
i
kll ∂ f /∂x , 1 ≤ i ≤ n , be computed by a straight-line program of length O (k l)?

x
n
Problem 2 (Moses [11], Strassen [17], §9, Problem 2): Given f ∈ C[x], C the comple
umbers, by a division-free straight-line program over C[x] of length l , can f (x)dx be com-

O (1)
∫

?

P

puted by a straight-line program of length l

roblem 3: Can the condition GCD(g , f /g) = 1 in theorem 3 be eliminated keeping len(Q) =
,(l d) ? A positive answer to this problem would imply the following: For f ∈ C[x ,. . .O (1)

1
xn] consider a zero-test tree of minimal height h for f , which includes straight-line code

-segements and tests v ?= 0 at which the computation forks, where v is a previously comλ λ
f

w
puted intermediate result. The leaves in the tree output f =0 or f ≠0, which must be true i

e execute the tree for any specialization in C of the variables x . Then a solution to thisn
i

)O (1 .

P

problem implies that f can be computed by a straight-line program of length h deg(f)

roblem 4: Can theorem 4 be proven with len(Q) = l , that is for arbitrarily high degrees

P

of the GCD?

O (1)

roblem 5: If f ∈ F [x] has straight-line complexity l with divisions, can f be computed by
a division-free straight-line program of length l ?O (1)

l
Ω
Problem 6: In theorem 5, does there hold a lower bound on the depth better than the trivia

(log(d))?

Acknowledgements: Theorem 1 was jointly derived with B. David Saunders. Volker Strassen first indicated to
2

w
me the consequence of a solution to problem 3, and later Thomas Spencer refreshed my memory. Problem

as first brought to my attention by Leslie Valiant, problem 4 by Joos Heintz and Malte Sieveking, and problem
5 by Charles Rackoff. I also thank Lakshman Yagati for his comments.

- 16 -

1

References

. Baur, W. and Strassen, V., ‘‘The complexity of partial derivatives,’’ Theoretical Comp. Sci., vol. 22, pp.

2

317-330, 1983.

. Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y., ‘‘Fast solution of Toeplitz systems of equations and com-

3

putation of Padé approximants,’’ J. Algorithms, vol. 1, pp. 259-295, 1980.

. Brown, W. S. and Traub, J. F., ‘‘On Euclid’s algorithm and the theory of subresultants,’’ J. ACM, vol. 18,

4

pp. 505-514, 1971.

. Cantor, D. G. and Kaltofen, E., ‘‘Fast multiplication of polynomials with coefficients from an arbitrary

5

ring,’’ Manuscript, March 1987.

. Gathen, J. von zur, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,

6

1985.

. Kaltofen, E., ‘‘Factorization of polynomials given by straight-line programs,’’ Math. Sci. Research Inst. Pre-

C
print, vol. 02018-86, Berkeley, CA, 1986. To appear in: ‘‘Randomness in Computation,’’ Advances in

omputing Research, S. Micali ed., JAI Press Inc., Greenwich, CT, January 1987.

y7. Kaltofen, E., ‘‘Uniform closure properties of p-computable functions,’’ Proc. 18th ACM Symp. Theor
Comp., pp. 330-337, 1986.

8. Kaltofen, E., ‘‘Greatest common divisors of polynomials given by straight-line programs,’’ J. ACM, vol. 35,

9

no. 1, pp. 231-264, 1988.

. Knuth, D. E., The Art of Programming, vol. 2, Semi-Numerical Algorithms, ed. 2, Addison Wesley, Reading,

1

MA, 1981.

0. Miller, G. L., Ramachandran, V., and Kaltofen, E., ‘‘Efficient parallel evaluation of straight-line code and

1

arithmetic circuits,’’ Proc. AWOC ’86, Springer Lec. Notes Comp. Sci., vol. 227, pp. 236-245, 1986.

1. Moses, J., ‘‘Algebraic simplification: A guide for the perplexed,’’ Commun. ACM, vol. 14, pp. 548-560,

1

1971.

2. Moses, J. and Yun, D. Y. Y., ‘‘The EZ-GCD algorithm,’’ Proc. 1973 ACM National Conf., pp. 159-166,

1

1973.

3. Musser, D. R., ‘‘Multivariate polynomial factorization,’’ J. ACM, vol. 22, pp. 291-308, 1975.

.14. Sch"onhage, A., ‘‘Schnelle Multiplikation von Polynomen "uber K"orpern der Charakteristik 2,’’ Acta Inf., vol
7, pp. 395-398, 1977. (In German).

15. Strassen, V., ‘‘Berechnung und Programm I,’’ Acta Inf., vol. 1, pp. 320-335, 1972. (In German).

n16. Strassen, V., ‘‘Vermeidung von Divisionen,’’ J. reine u. angew. Math., vol. 264, pp. 182-202, 1973. (I
German).

17. Strassen, V., ‘‘Algebraische Berechnungskomplexit"at,’’ in Anniversary of Oberwolfach 1984, Perspectives in
Mathematics, pp. 509-550, Birkh"auser Verlag, Basel, 1984. (In German).

- 17 -

,18. Valiant, L., ‘‘Reducibility by algebraic projections,’’ L’Enseignement mathématique, vol. 28, pp. 253-268
1982.

19. Valiant, L., Skyum, S., Berkowitz, S., and Rackoff, C., ‘‘Fast parallel computation of polynomials using few

2

processors,’’ SIAM J. Comp., vol. 12, pp. 641-644, 1983.

0. Wang, P. S., ‘‘The EEZ-GCD algorithm,’’ SIGSAM Bulletin, vol. 14/2, pp. 50-60, 1980.

-21. Yun, D. Y. Y., ‘‘The Hensel lemma in algebraic manipulation,’’ Ph.D. Thesis, M.I.T., 1974. Reprint: Gar
land Publ., New York 1980.

22. Zassenhaus, H., ‘‘On Hensel factorization I,’’ J. Number Theory, vol. 1, pp. 291-311, 1969.

