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Abstract

We present a sequential deterministic polynomial-time algorithm for testing dense mul-
tivariate polynomials over a large finite field for irreducibility. All previously known algo-
rithms were of a probabilistic nature. Our deterministic solution is based on our algorithm for
absolute irreducibility testing combined with Berlekamp’s algorithm.

1. Introduction

Berlekamp (1970)2 first showed how the factoring problem for univariate polynomials
over large finite fields could be solved in polynomial-time be introducing random choices.
However, already Butler (1954)3 had established that the determination of the number of fac-
tors in polynomial-time does not require random choices. Although great effort has been
spent in the last fifteen years to remove the necessity for random choices for the factoring
problem (cf. Zassenhaus 196921, Shanks 197219, Moenck 197716, Cantor & Zassenhaus
19815, Camion 19834, Schoof 198518, Huang 198510, von zur Gathen 19858, and Adleman &
H. Lenstra 1986)1 the problem remains in general unresolved. Only within the last five years
has it been shown that for multivariate polynomials probabilistic polynomial-time solutions
exist as well (cf. Chistov & Grigoryev 19826, von zur Gathen & Kaltofen 19859, and A. K.
Lenstra 1985)15 However, in the dense representation case these results did not quite parallel
the univariate factorization theory. The reason was that all the algorithms known needed to
factor a univariate polynomial in order to determine irreducibility and therefore were not
deterministic. Here we present an algorithm that tests dense multivariate polynomials over
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large finite fields for irreducibility in deterministic polynomial-time. Contrary to most
univariate deterministic factoring results our solution is not subject to any unproven
mathematical conjecture such as the Riemann hypothesis.

We have observed in (Kaltofen 1985a)11 that absolute irreducibility of multivariate poly-
nomials over large finite fields could be decided in polynomial-time. Here we essentially
modify the algorithm presented there to solve the problem of irreducibility over the field
itself. It comes as a small surprise that irreducibility can be related to absolute irreducibility.
Absolute irreducibility is a purely rational question, that is it can be decided by field arith-
metic alone (Noether 1922)17 whereas irreducibility over certain constructive fields can be
shown undecidable (Fr"ohlich & Shepherdson 1955)7 Our solution, which makes use of the
Butler-Berlekamp Q -matrix construction seems to establish this relationship only for finite
fields. It is therefore very special and does not contradict the differences of the problems
known for arbitrary fields.

In this paper we restrict ourselves to bivariate polynomials. It is fairly easy to generalize
our algorithms to dense multivariate polynomials, see e.g. Algorithm 2 in (Kaltofen 1985b)12

Notation: Fq denotes a finite field with q elements; degx ( f ) denotes the highest degree
of x in f ∈ Fq [y , x ] and deg(f ) the total degree of f . The coefficient of the highest power
of x in f , a polynomial in y , is referred to as the leading coefficient of f in x and will be
denoted by ldcfx ( f ). We call f monic in x if ldcfx ( f ) is the one of Fq .

2. Previous Results Needed

We now discuss several facts needed in the deterministic irreducibility test. First we
observe that the input polynomial f ∈ Fq [y , x ] can be assumed monic in x and f (0, x ) can
be assumed squarefree. The preprocessing necessary to enforce these conditions is discussed,
e.g., in (Kaltofen 1985b)12, §4, or in (Kaltofen 1985a)11, §2. Notice that the translation
necessary to make f (0, x ) squarefree requires

q ≥ 2 degx ( f ) degy ( f ).

We can also assume this because otherwise even the factorization problem in Fq [y , x ] can be
solved in deterministic polynomial-time, cf. (von zur Gathen & Kaltofen 1985)9, §4.2. It
should be also noted that the monicity requirement can be at all avoided by slightly changing
the algorithm along the lines of (von zur Gathen & Kaltofen 1985)9, Remark 2.4. An even
simpler way to get monicity than the methods refered to above would be to translate the ori-
ginal polynomial as f (x , y +bx ) for a suitable b ∈ Fq , see (Kaltofen 1985c)13, Lemma 6.1.
We could also have restricted ourselves to q being a prime since the algorithm in (Trager
1976)20 can reduce the problem of irreducibility testing over algebraic extensions to that of
irreducibility testing over the base field in deterministic polynomial-time. However, this res-
triction does not simplify our proofs but would drastically increase the complexity of the
complete algorithm.
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We now outline the basic algorithm from (Kaltofen 1985b)12 for testing multivariate
polynomials for irreducibility. We will not prove the correctness of this algorithm here but
refer the reader to (Kaltofen 1985b)12, §5, for more details on the algorithm and the necessary
arguments.

Algorithm 1:
[Given f (y , x ) ∈ F [y , x ] monic in x , f (0, x ) squarefree, F an arbitrary field, and given an
irreducible factor t (z ) of f (0, z ) in F [z ], this algorithm determines irreducibility of f over
F :]

(N) [Compute approximation of root in G [[y ]], where G = F [z ]⁄(t (z )):]
n ← degx ( f ); d ← degy ( f ); k ← (2n −1)d ; a 0 ← (z mod t (z )) ∈ G .
By Newton iteration, calculate a 1 , . . . , ak ∈ G such that

f (y , a 0 + a 1y +. . .+ ak y k ) ≡ 0 mod y k +1.

FOR i ← 0 , . . . , n −1 DO α(i ) ← (a 0 +. . .+ ak y k )i mod y k +1 ∈ G [y ].

(L) [Try to find a polynomial of degree n −1 in F [y , x ] for which α(1) is the approximation
for one of its roots:]
Try to solve the equation

α(n −1) +
i =0
Σ

n −2
ui (y )α(i ) ≡ 0 mod y k +1 (1)

for polynomials ui ∈ F [y ] with deg(ui ) ≤ d . This equation leads to a linear system
over F in (k +1) deg(t ) equations and (n −1) (d +1) unknown coefficients of ui . If there
exists a solution then RETURN (‘‘reducible’’). Otherwise RETURN (‘‘irreducible’’).

The problem is that t (z ) cannot be found in deterministic polynomial-time. It turns out
that in the absolute irreducibility test we can work with f (0, z ) instead. The following
theorem establishes the connection between working with any irreducible factor of f (0, z ), as
we may, and working with f (0, z ).

Theorem 1 (Butler 1954)3: Let f (z ) ∈ Fq [z ] be monic and squarefree of degree n , f = f 1
. . . f r be its factorization into monic irreducible polynomials. Consider the sub-algebra of
Fq [z ]⁄( f (z )),

V ( f (z )) := {v (z )  deg(v ) < n , v mod f j ∈ Fq for all 1 ≤ j ≤ r },

and the matrix

Q ( f ) := [ai ,j ]0≤i , j ≤n −1, where ai ,0+ai ,1z +. . .+ai ,n −1z n −1 :≡ (z iq mod f (z )).

Then

v 0 + v 1z + . . . + vn −1z n −1 ∈ V ( f (z ))
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if and only if

(v 0, v 1, . . . , vn −1) Q ( f ) = (v 0, v 1, . . . , vn −1).

The importance of this theorem to our irreducibility test is that membership of v in
V ( f (z )) can be enforced by linear relations on the coefficients of v . Let v [1] , . . . , v [r ] be a
basis for the left null-space of Q ( f )−In , where In is the n × n identity matrix. Then v ∈
V ( f (z )) if and only if

(w 1, . . . , wr )




 v 0

[r ]

...

v 0
[1]

. . .

. . .

vn −1
[r ]

...

vn −1
[1] 





= (v 0, . . . , vn −1)

is solvable for wi over Fq .

3. Deterministic Irreducibility Testing

We now present the deterministic irreducibility test in Fq [y , x ]. The algorithm is very
similar to Algorithm 1, but instead of working in G we work in Fq [z ]⁄( f (0, z )). This leads
to an algorithm like Algorithm 2 of (Kaltofen 1985a)11 except that the final linear solution is
restricted further.

Algorithm 2:
[Given f (y , x ) ∈ Fq [y , x ] monic in x , f 0(x ) := f (0, x ) squarefree, this algorithm determines
whether f is irreducible.]

(N) [Approximate a root of f (y , x ) in R [[y ]], where R = Fq [z ]⁄( f 0(z )):]
n ← degx ( f ); d ← degy ( f ); k ← (2n −1)d ; a 0 ← z mod f 0(z ) ∈ R .
By Newton iteration (cf. Kaltofen 1985a11, Algorithm 2, Steps I and N), calculate a 1

, . . . , ak ∈ R such that

f (y , a 0 + a 1y + . . . + ak y k ) ≡ 0 mod y k +1.

FOR i ← 0 , . . . , n −1 DO α(i ) ← (a 0 + . . . + ak y k )i mod y k +1.

(Q) Find a basis {v [1] , . . . , v [r ]} for the left null-space of Q ( f 0) – In , see Theorem 1.
[More details for this step can be found in (Knuth 1981)14, §4.6.2. Note that z q

mod f 0(z ) is computed by binary exponentiation.]

(L) [Try to find a polynomial of degree n −1 in V ( f 0(z ))[y , x ], V ( f 0(z )) as defined in
Theorem 1, for which α(1) is the approximation for one of its roots:]
Examine whether the equation

α(n −1) +
i =0
Σ

n −2
ui (y )α(i ) ≡ 0 mod y k +1 (2)

is solvable for polynomials ui (y ) ∈ V ( f 0(z ))[y ] such that deg(ui ) ≤ d . Let ui (y ) =

Σδ=0
d ui ,δy δ and let
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α(i ) =
κ=0
Σ
k

a κ
(i )y κ, a κ

(i ) ∈ R.

Then (2) leads to the linear system for the coefficients of y κ

a κ
(n −1) +

i =0
Σ

n −2

δ=0
Σ
d

a κ−δ
(i ) ui ,δ = 0 (3)

for κ = 0 , . . . , k in the variables ui ,δ ∈ V ( f 0(z )), i = 0 , . . . , n −2, δ = 0 , . . . , d .

Let

ui ,δ =
j =0
Σ

n −1
ui ,δ,j z j , a κ

(i ) =
j =0
Σ

n −1
a κ,j

(i )z j

and let

z λ ≡
j =0
Σ

n −1
c λ,j z j mod f 0(z ), λ = n , . . . , 2n −2, c λ,j ∈ Fq .

Then the coefficient of z l , 0 ≤ l ≤ n −1, for each equation in (3) is, setting a δ,j
(i ) and ui ,δ,j

to 0 for j ≥ n , δ < 0,

a κ,l
(n −1) +

i =0
Σ

n −2

δ=0
Σ
d 


 j =0

Σ
l

a κ−δ,l − j
(i ) ui ,δ,j +

λ=n
Σ

2n −2

j =0
Σ
λ

c λ,l a κ−δ,λ− j
(i ) ui ,δ,j




, (4)

which is a linear expression in ui ,δ,j and which must vanish on a solution of (3).

Furthermore ui ,δ must be an element in V ( f 0(z )). We introduce new unknows wi ,δ,ρ, 1
≤ ρ ≤ r , and require that

(wi ,δ,1, . . . , wi ,δ,r )[vj
[i ]]

0≤ j ≤n −1
1≤i ≤r = (ui ,δ,0, . . . , ui ,δ,n −1) (5)

be solvable for all 0 ≤ i ≤ n −2, 0 ≤ δ ≤ d . Equation (5) leads to the linear equations

ui ,δ,j −
ρ=1
Σ
r

vj
[ρ] wi ,δ,ρ, 0 ≤ j ≤ n −1. (6)

Equations (4) and (6) determine a linear system over Fq in

n (k +1) + (n −1)n (d +1)

equations and

(n +r )(n −1)(d +1)

unknowns. If this system has a solution, we return ‘‘f is reducible in Fq ’’, otherwise,
we return ‘‘f is irreducible’’.

We will not fully analyze this algorithm because its running time is inferior to that of
Algorithm 1 in conjunction with finding t (z ) probabilistically. The algorithm is clearly poly-
nomial in log(q ) and does not require random choices. However, its correctness needs
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explanation. First let us formulate our main result in a theorem.

Theorem 2: Algorithm 2 correctly decides irreducibility of f in Fq [y , x ] in
(log(q ) deg(f ))O (1) sequential deterministic steps.

Proof: Solving the linear system determined by (4) and (6) is by theorem 1 equivalent to
solving (2) for ui (y ) ∈ V ( f 0(z ))[y ]. If (2) has a solution then for an irreducible factor t (z )
of f 0(z ), ui (y ) mod t (z ) ∈ Fq [y ]. Thus by applying Algorithm 1 to f and t , f must be
composite. On the other hand, if f is composite, Algorithm 1 will find a solution to (1) for
all_ __ irreducible factors t ρ(z ) of f 0(z ). By the Chinese remainder theorem (2) now becomes
solvable for ui (y ) ∈ V ( f 0(z ))[y ]. Therefore the algorithm will correctly determine the com-
positeness of f .

We remark that Algorithm 3 of (Kaltofen 1985a)11 applies to the solution of (4) and (6)
as well. Depending on f that algorithm may split f 0(z ).

4. Conclusion

We have resolved one problem left open during the polynomial-time polynomial factori-
zation tempest of 1982, namely that random choices are not needed to test multivariate poly-
nomials over large finite fields for irreducibility. In order to completely parallel the univariate
results it would be necessary to also compute the number and the degrees of all irreducible
factors without probabilistic choices. Unfortunately, it is not clear to us how our algorithm
could accomplish that and we must leave this question for future research.
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