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Abstract. Boolean circuits of polynomial size and poly-logarithmic depth are given for comput-
ing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of
rational numbers.The circuits for the Smith normal form computation are probabilistic ones and
also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time
deterministic sequential algorithm for the Smith normal form over the rationals. The Smith nor-
mal form algorithms are applied to the Rational canonical form of matrices over finite fields and
the field of rational numbers.
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1. Introduction

The main results of this paper establish fast parallel algorithms for computing the Hermite
and Smith normal form of matrices with polynomial entries. The Hermite or Smith normal form
of a square matrix is generally defined for the case of entries from a principal ideal domain. For
example the entry domain may be the integers or univariate polynomials over a field. Theforms
are, roughly speaking, a triangularization, respectively a diagonalization, of the input matrix and
they are computed entirely within the domain of the entries.Sequential algorithms for comput-
ing the forms are known at least since Hermite [7] and Smith [20], but it requires some effort to
show that the forms can be computed in polynomial-time. We refer to Kannan and Bachem [13]
for integer entries and Kannan [12] for polynomial entries. Applications of both forms include
solving linear systems over the domain of entries, computing the geometric multiplicities of the
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eigenvalues of a matrix, computing the invariant factors of a matrix over a field, and others.For
discussion of applications see [1] and [18].

We will show that computing the Hermite normal form over F [x], F a field, isNC1 reduc-
ible to solving singular linear systems.We refer to Cook [4] for the definitions of the complexity
classesNC andRNC andNC1 reductions. Sincethe classNC requires us to perform field oper-
ations on Boolean circuits, the previous claim is precise only for concrete fields such asQ or
GF(p), the field withp elements. Asa corollary we get from the parallel complexity of linear
systems [2] and [16] thatHERMITE FORMover Q[x] and GF(p)[x] is in NC2, whereHER-
MITE FORM over D is the problem of computing Hermite normal forms over D. Our parallel
reduction is completely different from any of the sequential solutions, discussed for example in
[13]. Of course, it has Kannan’s result thatHERMITE FORMover Q[x] is in P as a conse-
quence, whereP is the class of sequential polynomial-time problems.

Secondly, we will present a probabilistic parallel algorithm for computing the Smith nor-
mal form over F [x], that is we establish thatSMITH FORMover F [x] is in RNC2. The nature
of our probabilistic algorithm is such that with controllably small probability an incorrect result
might be returned, similar to the fast probabilistic parallel rank algorithm [2]. Since Kannan [12]
does not prove that his sequential algorithm forSMITH FORMover Q[x] runs in polynomial-
time we will also present another sequential algorithm with which we can establishing that
SMITH FORMover Q[x] is in P. Neither our probabilistic parallel algorithm nor our determin-
istic sequential algorithm for the Smith normal form is based on repeated computations of Her-
mite normal forms as is Kannan and Bachem’s algorithm. Ourkey idea in the parallel algorithm
is that though each entry in the Smith normal form is a quotient of two GCDs of possibly expo-
nentially many minors we can quickly produce random linear combinations of these minors
whose GCD is with high probability equal to the needed GCD.Unlike our parallel Hermite nor-
mal form algorithm our parallel solution for the Smith normal form also provides a practical
algorithm superior to previously known methods.

We wish to add two remarks. Onecan useHERMITE FORMover Q[x] as a tool to solve
linear systems over Q[x] in polynomial-time. Also,however, the fact that solving linear systems
over F [x1,...,xv], v fixed, isNC1 reducible to singular linear systems over F is a consequence of
Hermann’s [8] degree estimates of Hilbert’s [9] reduction. See also the appendix of Mayr and
Meyer [15] for several corrections to Hermann’s proof. Secondly, we cannot hope to provide fast
parallel algorithms forHERMITE FORMover Z andSMITH FORMover Z unless progress is
made on computing GCDs of integers in parallel, a problem easily shown to beNC1 reducible to
2 by 2 Hermite or Smith normal forms over Z.

In this paper we will restrict ourselves to non-singular square input matrices but we note
that there are no great difficulties to generalize our approach to rectangular inputs of non-maxi-
mal rank (cf. [23]).
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2. Parallel Hermite Normal Form Computation

In this section we construct anNC1-reduction fromHERMITE FORMover F [x], F a
field, to singular linear systems over F . But first we present the necessary definitions and lem-
mas.

A non-singularn by n matrix H over F [x] is in Hermite normal formif it is lower triangu-
lar, the diagonal entries are monic, and the entries before the diagonal entry in each row are of
lower degree than the diagonal entry. It is well-known that for every non-singular matrixA there
exists a unique unimodular matrixU and matrixH in Hermite normal form such thatAU = H .
H is referred to as the Hermite normal form ofA. It is fairly clear that Hermite [7] knew the
uniqueness though he did not offer a proof. In any case, we need the uniqueness in a stronger
form than is usually presented, which we will include as lemma 2.1.

For a matrix A over F [x] let ai , j ,k denote the coefficient ofxk in thei , j th entry.

Lemma 2.1: Given the n by n nonsingular matrixA over F [x] with entry degrees less thand,
and the vector (d1,...,dn) of nonnegative integers, consider the systemAP = G, whereG is lower
triangular, and more specifically,

pi , j are are polynomials of degree less thannd + max1≤i≤n di , whose coefficients are
unknowns.
gi ,i are monic of degreedi with lower order coefficients unknowns, and
for i > j , gi , j are polynomials of degree less thandi with unknowns as coefficients.

This is a system of linear equations over F in the unknown pi , j ,k andgi , j ,k for which the follow-
ing statements hold.

1. Thesystem has at least one solution, if and only if eachdi is no less than the degree of the
i th diagonal entry of a Hermite normal form ofA.

2. If eachdi is exactly the degree of thei th diagonal entry of a Hermite normal form ofA,
then the system has a unique solution, henceG is the unique Hermite normal form ofA
andP is unimodular.

Proof: Let H be a Hermite Normal Form ofA andU a unimodular matrix such thatAU = H .

SupposeG andP solve the system for for a given degree vector (d1,...,dn). SinceU is invertible
in F [x], we have G = AP = HU−1P. BecauseG and H are triangular and nonsingular, U−1P
must be also. It follows that the degreesdi must be no less than the degrees ofhi ,i , which proves
1. in one direction.

On the other hand, if for eachi , we hav edi ≥ deg(hi ,i ), let D = diag(xd1−deg(h1,1), ..., xdn−deg(hn,n)).
Then the system is solved withP = UD andG = HD. Thus 1. is proved if we can show that this
solution is expressible within the degree bound given for P. Since det(A)P = adj(A)G, the
degrees in P are bounded by the degrees in adj(A)G, which are bounded by
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(n − 1)d + max1≤i≤n di .

It remains to show the solution is unique (i.e.,G = H , P = U) whendi = deg(hi ,i ). Let R denote
the lower triangular matrix,U−1P. It suffices now to show that if G andH are in Hermite normal
form andR is a unimodular lower triangular matrix such thatG = HR, thenR = I (andG = H).
This we do by induction on n, the size of the matrices.Partition this system so that the upper left
block is 1 by 1:





g

gc

0

G′




=




h

hc

0

H ′








r

r c

0

R′




We see thatg = hr, gc = hcr + H ′r c, and G′ = H ′R′. Now G′ and H ′ are in Hermite normal
form, R′ is unimodular, so by induction,R′ is then − 1 by n − 1 identity matrix andG′ = H ′.
Also, sinceg andh are of the same degree and monic, we have r = 1 and g = h. If any entry in
the column vectorr c is non-zero, leti be the index of the first non-zero entry. Then

gc
i = hc

i + h′i ,i r c
i . (†)

Since deg(hc
i ) < deg(h′

i ,i ) = di , the degree of the right hand side of (†) is no less thandi . On the

other hand, since deg(gc
i ) < deg(g′

i ,i ) = di , the degree of the left hand side is strictly less, a contra-
diction. Henceall entries ofr c are 0, andgc = hc, which completes the proof.

We now define the size of a matrixA over F [x]. Let A be ann by n matrix of d degree
polynomials with coefficients inF representable inl bits. Then size(A) = n2d l, which is the
number of bits required to write downA in binary.

Lemma 2.2: For di ≤ nd the linear system of lemma 2.1 consists ofO(n3d) equations inO(n3d)
unknowns. Itsentries are of sizel (0’s, 1’s, and coefficients ofA).

Now let LINEAR SYSTEMSover F be the problem of computing one solution to the (pos-
sibly) singular linear SystemAx = b or indicating that a solution does not exist, given an n by n
matrix A and lengthn column vector ofl bit entries fromF . Following Cook [4], we say prob-
lem X is NC1 reducible to problemY, if there is a uniform family of Boolean circuits for solving
X which use oracle circuits to solve Y. For the purpose of defining the depth of such circuits an
oracle contributes a depth of log(r ), wherer is the fan-in to the oracle. The main theorem of this
section now follows.

Theorem 2.1: HERMITE FORMover F [x] is NC1 reducible toLINEAR SYSTEMSover F .

Proof: We construct our circuit as follows from processing units at three levels.

1. Let e = nd ≥ deg(det(A)). Theinput matrix A is passed to each ofn(e+ 1) processors which
work in parallel. They are numbered by pairs (i , j ) where 1≤ i ≤ n and 0≤ j ≤ e. The (i , j ) pro-
cessor constructs fromA the appropriate input for aLINEAR SYSTEMcircuit over F which
determines if the system as described in lemma 2.1 can be solved when the degree vector is given
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by di = j anddk = e, for k ≠ i . If the oracle produces a solution thentrue is passed to the next
step. If the oracle indicates no solution exists, thenfalse is passed on. By lemma 2.1 the (i , j )
circuit answerstrue just in case thei th diagonal entry of the Hermite normal form has degree
less than or equal toj . The depth of the circuit at this point isO(log(size(A))), by lemma 2.2.

2. Then circuits numbered 1 throughn work in parallel. The i th processor gets input from the
e+ 1 circuits of step 1 numbered (i , 0) to (i , e). Its output,di , is the minimum j such that the
output of processor (i , j ) is true. Clearly, these circuits have O(log(size(A))) depth and polyno-
mial size.

3. One processor recieves the di ’s which are the exact degrees of the diagonal entries of the Her-
mite normal form. It feeds aLINEAR SYSTEMSoracle the system described in lemma 2.1, and
by part 3, obtains the desired Hermite normal form.

Corollary: HERMITE FORMover Q[x] and over GF(p)[x] is in NC2.

Proof: The corollary follows from the fact thatLINEAR SYSTEMSover Q or GF(p) is in NC2

[2], [3], [10] [16].

3. Parallel Probabilistic Smith Normal Form Computation

A polynomial matrixS is in Smith normal formif it is diagonal, each diagonal entry is
monic, and each diagonal entry except the last is a divisor of the succeeding one. IfS is equiv-
alent toA, i.e. A = PSQ, whereP andQ are unimodular, thenS is called the Smith normal form
of A.

Lemma 3.1: Let A be ann by n non-singular matrix over F [x].

1. Thereis ann by n matrix S in Smith normal form and unimodular matricesP andQ such
that A = PSQ.

2. Let s*
i denote the greatest common divisor of alli by i minors of A. Then the diagonal

entries in the Smith normal form ofA ares1,1 = s*
1, and si ,i = s*

i /s*
i−1, for i > 1.

3. Two n by n matricesA and B have the same Smith normal form if and only if they are
equivalent.

For a proof see Gohberg, Lancaster, and Rodman [5] or Newman [17].

Let Cn
i denote alli element subsets of {1,..., n} and let AI ,J, for I , J ∈ Cn

i , denote the
minor of A restricted to the rows inI and columns inJ. By the above theorem we could com-
pute the Smith normal form ofA by computings*

i = GCDI ,J ∈ Cn
i

AI ,J. The problem is that there
are exponentially many i by i minors. To overcome this problem we compute two random linear
combinations ofAI ,J whose GCD is likely to be the wanted GCD. These are the principali by i
minors of two randomly selected matrices equivalent to A. The following lemma shows this suf-
fices. Let1. . .i denote the set {1,...,i}.
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Lemma 3.2: let A be ann by n matrix over F [x], and lets*
i be as in lemma 3.1.2.Let F be the

extension ofF [x] by 4n2 indeterminants,F = F [x][κ j ,k, λ j ,k, µ j ,k, ν j ,k] Then there exists a poly-
nomial π i ∈ F of total degree no more than 4i2d with the following property. For any n by n

matricesR, T, U , V over F , π i (r j ,k, t j ,k, u j ,k, v j ,k) ≠ 0 implies that GCD(B1...i ,1...i , C1...i ,1...i ) = s*
i

whereB = RAT, C = UAV.

Proof: First let the matrices have indeterminate entries,R = (κ j ,k), T = (λ j ,k), U = (µ j ,k) and
V = (ν j ,k). In this case, we first show G = GCD(B1...i ,1...i , C1...i ,1...i ) = s*

i in F[x] whereB = RAT
andC = UAV, and F is F with the indeterminates inR, T, U , and V adjoined. We observe that
s*

i is the only factor ofB1...i ,1...i or C1...i ,1...i which lies inF [x]. By the Binet-Cauchy formula,

B1...i ,1...i =
K ,L ∈Cn

i

Σ R1...i ,K AK ,LTL,1...i

and

C1...i ,1...i =
K ,L ∈Cn

i

Σ U1...i ,K AK ,LVL,1...i .

Now, clearly the factor ofB1...i ,1...i (or C1...i ,1...i ) in F [x] must divide eachAK ,L . On the other
hand,B1...i ,1...i andC1...i ,1...i have no factor in common inF[x] \ F [x] since each involves a differ-
ent set of indeterminates. This shows our claim onG.
We now consider

B* =
B1...i ,1...i

s*
i

andC* =
C1...i ,1...i

s*
i

.

B* andC* are relatively prime in F[x], thusπ i = resultantx(B* , C* ) is non-zero. Ifπ i (r j ,k, t j ,k,
u j ,k, v j ,k) ≠ 0 then the polynomialsB* (r j ,k, t j ,k, u j ,k, v j ,k) and C* (r j ,k, t j ,k, u j ,k, v j ,k) in F [x]
remain relatively prime. (For the theory of resultants, consult for example [21, section 5.8].)
Therefore GCD(B1...i ,1...i ,C1...i ,1...i ) = s*

i .
It remains to estimate the degree ofπ i . Clearly, degx(B* ), degx(C* ) ≤ id. Their degrees in the
other indeterminants are bounded by 2i , thus the degree ofπ i ≤ id×2i + id×2i = 4i2d.

Lemma 3.3: With the notation of the previous lemma, if we select the entries inR, T, U , V ran-
domly from a setS ⊂ F then the probability

Prob(s*
i = GCD(B1...i ,1...i ,C1...i ,1...i ), for all i , 1 ≤ i ≤ n) ≥ 1 −

4n3d

cardinality(S)
.

Proof: Let π = Πn
i=1 π i . We are unlucky only if the randomly selectedr j ,k, t j ,k, u j ,k andv j ,k are

a zero ofπ . By a result of Schwartz [19] this happens with probability no more than deg(π )/car-
dinality(S). Thedegree estimate forπ i now immediately implies that deg(π ) ≤ 4n3d.

We now can prove the following theorem.
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Theorem 3.1: There is a uniform family of probabilistic circuits of depthO(log2(size(A)/ε )) and
polynomial size which compute the Smith normal form over F [x] correctly with probability
1 − ε . These circuits make O(n2 log(nd/ε )) random bit choices. In short,SMITH FORMover
Q[x] or GF(p)[x] is in RNC2.

Proof: By lemma 3.3 the problem reduces to matrix multiplications, determinant and GCD com-
putations. Theseare inNC2 [2]. We must make our 4n2 random choices from a subsetS of Q
for which 4n3d/cardinality(S) < ε . The integers less in absolute value than 4n3d/ε will do.
These areO(log(nd/ε )) bit numbers.
If the field is too small to allow choice of a sufficiently large setS, S may be chosen from an
extension field. Like GCD’s, the Smith normal form is an entirely rational form and thus is
unchanged if one computes over an extension of the given field.

Lemma 3.2 remains true if we replaceU by an upper triangular andV by a lower triangu-
lar matrix, as well as if we do not randomizeB. This saves in both matrix multiplications and
number of random bits required.

4. Sequential Deterministic Smith Normal Form Computation

The purpose of this section is to establish thatSMITH FORMover Q[x] is in P. First we
note that it is a consequence of Kannan [12] thatSMITH FORMover GF(p)[x] is in P, a result
on which we will have to depend. We can assume without loss of generality that our input
matrix A has integer coefficients. Thefollowing lemma is the key to our argument.

Lemma 4.1: Let A be a non-singularn by n matrix over Q[x] with integer coefficients, d =
max{deg(ai , j ) |  1 ≤ i , j ≤ n}, L = max{|ai , j ,k| |  1≤ i , j ≤ n, 0 ≤ k ≤ deg(ai , j )}, l A be the leading
coefficient of det(A), and letS be the Smith normal form ofA, di = deg(si ,i ). Thenfor any prime
p which does not divide l A, exactly one of the following two conditions can occur forS, the
Smith normal form ofA mod p.

1. S mod p = S or

2. (d1 ,..., dn) ≠ (d1 ,..., dn) with di = deg(si ,i ).

Furthermore, there exists an integer BA ≤ (n (d + 1) L)3n3d such that ifp does not divide BA con-
dition 1 must occur.

Proof: Let s*
i = GCDJ,K ∈ Cn

i
(AJ,K mod p), 1 ≤ i ≤ n, s*

0 = 1. Then by lemma 3.1,si ,i = s*
i /s*

i−1 for

1 ≤ i ≤ n. It is clear thats*
i mod p dividess*

i . Let ei = deg(s*
i ), ei = deg(s*

i ). Thenei ≥ ei , e0 =
e0 = 0, di = ei − ei−1, di = ei − ei−1. Either ei = ei for all 1 ≤ i ≤ n or there is a first i such thatei

> ei . In the first case, sinces*
i and s*

i are both monic, we have that s*
i mod p = s*

i and hence
si ,i mod p = si ,i , In the later case, we have di > di .

It remains to establish a condition under which
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

GCDJ,K ∈ Cn

i
(AJ,K )


mod p = GCDJ,K ∈ Cn

i
(AJ,K mod p) (†)

for all 1 ≤ i ≤ n. First we note that forAJ,K = Σ b j x
j , b j ∈ Z and |b j | ≤ B = (√ n (d + 1) L)n (cf.

[6], problem 73-17). Secondly we appeal to the following (cf. [11], lemma 4).

Proposition: If f1 ,..., ft ∈ Q[x] are polynomials with integer coefficients and deg( f j ) ≤ e, then
there exists ane by e determinant∆ ∈ Z \ { 0}, e ≤ 2e, whose entries are coefficients of thef j

such that for any prime p which does not divide∆

GCD1≤ j≤t( f j mod p) = (GCD1≤ j≤t( f j )) mod p

Proof: Let d(x) = GCD( f j ). For any prime p, it is clear thatd mod p divides GCD(f j mod p),
since d mod p divides eachf j mod p. We show the converse holds for most primes.There
exist s1 ,..., st ∈ Q[x] with deg(sj ) < e such that GCD(f j ) = Σ f j sj . Since each term has
degree at moste+ (e− 1), this equation may be viewed as a linear system,d = Fs of at most 2e
equations over Q in te varibles, the coefficients of thesj . The entries of the matrixF are the
coefficients of thef j . Such a linear system has a solution just in case the rank ofF is the same
as the rank of the augmented matrix (F , d). Sincethe system has a solution over Q, the rank
condition holds. If the rank ofF mod p is e ≤ 2e, then ane by e minor, ∆, of F must be
nonzero. If∆ is nonzero modp as well, it follows that the rank condition will hold mod p and
hence the system will have a solution, s′. Thus GCD(f j mod p) divides

Σ( f j mod p)(s′
j )=d mod p, for polynomialss′

j appropriately constructed froms′.

Continuing the proof of lemma 4.1, we apply this proposition toAJ,K and obtain as the asserted
determinant an integerBi ,

Bi ≤ √ 2di B2di ≤ √ 2dn

n (d + 1)2 L2



dn2

< (n (d + 1) L)3dn2
,

such that ifp does not divideBi (†) is satisfied fori . It remains to setBA = Πn
i=1 Bi .

The deterministic algorithm is now easy to describe. First we selectk =

2

log2(l A(n (d + 1) L)3n3d)


≥ 2log2(l ABA) primes p j and compute for all primes not dividing

l A the Smith normal formSj of A mod p j . We note that thekth prime pk is ≤ k log(k), k ≥ 6,
which makes this step a polynomial-time process.Also more than half of the primes considered
do not divide l ABA. Hence by the above lemma a majority of theSj must possess the same diag-
onal-degree vector, say these modp j , j ∈ J. Also by the lemmaSj , j ∈ J, is an image ofS. By
Chinese remaindering we compute

S̃ ≡ S mod p̃, p̃ =
j ∈ J
Π p j .

It remains to recover the coefficientssi ,i ,k from their modular images̃si ,i ,k. We first observe that
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the si ,i are monic factors of det(A) over Q[x]. Thereforeby Gauss’ lemma the denominators of
si ,i ,k are factors ofl A and hence relatively prime to p̃. We now claim that

si ,i ,k =
l A s̃i ,i , j mod p̃

l A
,

where the modulus in the numerator is taken balanced. The only problem could be thatp̃ were
too small to capturel A × the numerator ofsi ,i ,k. But the integral coefficients of factors of det(A)
are absolutely bounded by 2ndB (see [14], Section 4.6.2, Exercise 20).Now clearly 2l A 2nd B <
p̃ and we have the following theorem.

Theorem 4.1: SMITH FORMover Q[x] is in P.

5. Rational Canonical form and Similarity

If A is a matrix over a field F , then the diagonal entries of the Smith normal form of
xI − A (over F [x]) are the invariant factors ofA. The invariant factors characterizeA up to simi-
larity and their companion matrices form the diagonal blocks of the rational canonical formR of
A. Thus we can computeRATIONAL FORMin RNC2 and inP. Furthermore, we can compute
the similarity transformU such thatUAU−1 = R, whereas for the Smith normal formS such that
PAQ = S, we did not obtainP andQ. Knowing U , we can verify thatUAU−1 = R, Thus the
probabilistic algorithm for Rational normal form is of Las Veg as type (controllably small proba-
bility of no result), whereas the Smith normal form algorithm was of Monte Carlo type (control-
lably small probability of incorrect result).

To compute the transformU , first computeR via the Smith form ofxI − A, as indicated
above. Then solve the linear systemUA = RU. An arbitrary U satisfying this equation will not
do, as it may be singular. Howev er, we may do the following. We compute a basisU1, ...,Uk of
the solution space. Letλ1, ..., λ k be indeterminants and let

π (λ1, . . . ,λ k) = det(
k

i=1
Σ λ iUi )

We chooser1, ..., r k at random fromF and let

U =
k

i=1
Σ r iUi

ThenU is nonsingular unlessπ (r1 , ..., r k) = 0. We know thatπ is not identically zero since ifR
is the rational form ofA, then by definition, a nonsingularU such thatUA = RU must exist. By
Schwartz’ result [19] the probability that we unluckily obtain a singularU is less than deg(π )/s,
wheres is the size of the set from which we choose the components of (r1, ..., r k). Thus,if
det(U) is nonzeroR is a verified rational canonical form ofA. If it is zero then we return no
solution. Eitherwe were unlucky in computingR via the probabilistic Smith normal form algo-
rithm, or we were unlucky in computingU . If F is finite, and a largers is desired, ther i may be
chosen from an extension ofF .
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More details on this and the construction of the Jordan normal form can be found in [22].

6. Conclusion

In the meantime, we have discovered a Las Veg as solution for the Smith normal form
problem of polynomial matrices [23].This solution hinges greatly on the Hermite normal form
process, as opposed to the Monte-Carlo solution proposed here.Its analysis, however, is similar
to the one here.The new algorithm also finds the multipliers. In the future we will carry out
practical experiments with our randomized algorithms.
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