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Abstract Boolean circuits of polynomial size and poly-logarithmic depth arengor comput-

ing the Hermite and Smith normal forms of polynomial matrices fonite fields and the field of
rational numbersThe circuits for the Smith normal form computation are probabilistic ones and
also determine very efficient sequential algorithms. Furthermore, weeaglynomial-time
deterministic sequential algorithm for the Smith normal fouer ¢the rationals. The Smith nor

mal form algorithms are applied to the Rational canonical form of matneeginite fields and

the field of rational numbers.
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1. Introduction

The main results of this paper establish fast parallel algorithms for computing the Hermite
and Smith normal form of matrices with polynomial entries. The Hermite or Smith normal form
of a square matrix is generally defined for the case of entries from a principal ideal damnain. F
example the entry domain may be the g&es or uniariate polynomials eer a field. Theforms
are, roughly speaking, a triangularization, respelgtia diagonalization, of the input matrix and
they are computed entirely within the domain of the entri8gquential algorithms for comput-
ing the forms are known at least since Hermite [7] and Smith [R0]t bequires some effort to
shaw that the forms can be computed in polynomial-time. fiéfer to Kannan and Bachem [13]
for integer entries and Kannan [12] for polynomial entries. Applications of both forms include
solving linear systemsver the domain of entries, computing the geometric multiplicities of the

* This material is based upon work supported by the National Sciencel&tion under Grant No. MCS-83-14600.
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eigervalues of a matrix, computing thevariant factors of a matrix\wer a field, and othersFor
discussion of applications see [1] and [18].

We will show that computing the Hermite normal formeo F[x], F a field, isNC* reduc-
ible to solving singular linear systemg/e refer to Cook [4] for the definitions of the comyatyg
classeNC andRNC andNC? reductions. Sincthe classNC requires us to perform field oper
ations on Boolean circuits, the pr@us claim is precise only for concrete fields suctQagr
GF(p), the field withp elements. As crollary we get from the parallel complexity of linear
systems [2] and [16] thadERMITE FORMover Q[x] and GF({p)[X] is in NC?, where HER-
MITE FORMover D is the problem of computing Hermite normal fornvgroD. Our parallel
reduction is completely different from yaof the sequential solutions, discussed for example in
[13]. Of course, it has Kannan'result thatHERMITE FORMover Q[X] is in P as a conse-
guence, wher® is the class of sequential polynomial-time problems.

Secondlywe will present a probabilistic parallel algorithm for computing the Smith nor
mal form wver F[x], that is we establish th&MITH FORMover F[x] is in RNC?. The nature
of our probabilistic algorithm is such that with controllably small probability an incorrect result
might be returned, similar to the fast probabilistic parallel rank algorithm [2]. Since Kannan [12]
does not pree that his sequential algorithm f@MITH FORMove Q[x] runs in polynomial-
time we will also present another sequential algorithm with which we can establishing that
SMITH FORMover Q[X] is in P. Neither our probabilistic parallel algorithm nor our determin-
istic sequential algorithm for the Smith normal form is based on repeated computations of Her
mite normal forms as is Kannan and Bacledgorithm. Ourkey idea in the parallel algorithm
is that though each entry in the Smith normal form is a quotient@@G@Ds of possibly xpo-
nentially may minors we can quickly produce random linear combinations of these minors
whose GCD is with high probability equal to the needed GOBlike aur parallel Hermite ner
mal form algorithm our parallel solution for the Smith normal form alsviges a practical
algorithm superior to previously known methods.

We wish to add tw remarks. Onean useHERMITE FORMove Q[x] as a bol to sohe
linear systemswer Q[x] in polynomial-time. Alsohowever, the fact that solving linear systems
over F[xy,... %], v fixed, isNC?! reducible to singular linear systemgoF is a consequence of
Hermanns [8] degree estimates of Hilbext[9] reduction. See also the appendix of Mayr and
Meyer [15] for seeral corrections to Hermamnjroof. Secondlywe annot hope to providest
parallel algorithms foHERMITE FORMove Z and SMITH FORMover Z unless progress is
made on computing GCDs of integers in parallel, a problem easily showmN@'teducible to
2 by 2 Hermite or Smith normal formsver Z.

In this paper we will restrict ourseds to non-singular square input matrices but we note
that there are no great difficulties to generalize our approach to rectangular inputs of non-maxi-
mal rank (cf. [23]).
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2. Parallel Hermite Normal Form Computation

In this section we construct atiC!-reduction fromHERMITE FORMover F[x], F a
field, to singular linear systemse F. But first we present the necessary definitions and lem-
mas.

A non-singulam by n matrix H over F[x] is in Hermite normal formf it is lower triangu-
lar, the diagonal entries are monic, and the entries before the diagonal entry inveach ob
lower degree than the diagonal enthyis well-known that for @ery non-singular matridA there
exists a unique unimodular matrix and matrixH in Hermite normal form such th#&U = H.
H is referred to as the Hermite normal formAf It is fairly clear that Hermite [7] kive the
uniqueness though he did nofesfa proof. In ap case, we need the uniqueness in a stronger
form than is usually presented, which we will include as lemma 2.1.

For a matrix A over F[x] leta ;  denote the coefficient of¢ in thei, jth entry.

Lemma 2.1: Given the n by n nonsingular matrixA over F[x] with entry degrees less thahn
and the vectordy, ... d,,) of nonnayative integers, consider the systeA = G, whereG is lower
triangular and more specifically,

pi,j are are polynomials of degree less thah+ max.<, d;, whose coefficients are
unknowns.

g;; are monic of degred; with lower order coefficients unknowns, and

fori > j, g;; are polynomials of degree less thlirwith unknowns as coefficients.

This is a system of linear equationsoF in the unknavn p; ;  andg; ; « for which the follav-
ing statements hold.

1. Thesystem has at least one solution, if and only if ehdbk no less than the degree of the
ith diagonal entry of a Hermite normal form Af

2. If eachd; is exactly the degree of thth diagonal entry of a Hermite normal form Af
then the system has a unique solution, h&hade the unique Hermite normal form &t
andP is unimodular.

Proof. LetH be a Hermite Normal Form & andU a unimodular matrix such thaaU = H.

Supposes and P solve the system for for a gen degee vectord,,...d,). SinceU is invertible
in F[x], we hare G = AP = HU'P. BecauseG and H are triangular and nonsingulds 1P
must be also. It follows that thegteesd; must be no less than the degreeb;ofwhich proses
1. in one direction.

On the other hand, if for eachwe haved; > degf;), let D = diag(x®9e00w0 - x%=degbnn)y,
Then the system is solved with=UD andG = HD. Thus 1. is preed if we can sha that this
solution is expressible within the degree bounebmgifor P. Since det@®)P = adj(A)G, the
degrees in P are bounded by the degrees in Ak, which are bounded by



(n—=1)d + maxi<, d;.

It remains to shw the solution is unique (i.eG = H, P =U) whend; = deg(;;). Let Rdenote
the lower triangular matrix) *P. It suffices nav to show that if G andH are in Hermite normal
form andR is a unimodular lower triangular matrix such tat HR, thenR =1 (andG = H).
This we do by induction on n, the size of the matridestition this system so that the upper left
block is 1 by 1:

B o0 th od of
Cc LT C I C 1

o Gg ot W@ Rp

We e thatg=hr, g° =h°r +H'r, and G’ = H'R. Now G' and H' are in Hermite normal
form, R is unimodulay so by induction,R’ is then—1 by n—1 identity matrix andG’' = H'.
Also, sinceg andh are of the same degree and monic, weeha= 1 and g = h. If any entry in
the column vector® is non-zero, let be the inde of the first non-zero entryThen

gf = hi+hijrf. (t)

Since dg(h) < deg(h},i) = d;, the degree of the right hand side of () is no less tha®n the
other hand, since dé&j’) < dqu},i) = d;, the degree of the left hand side is strictly less, a contra-
diction. Hencaall entries ofr ¢ are 0, and)® = h®, which completes the proofi

We row define the size of a matriA over F[x]. Let A be ann by n matrix of d degree
polynomials with coefficients it representable i bits. Then size) = n?d |, which is the
number of bits required to write dowkin binary.

Lemma 2.2: For d; < nd the linear system of lemma 2.1 consist©@h>d) equations inO(nd)
unknowns. ltsentries are of size(0's, 1's, and coefficients o&). O

Now let LINEAR SYSTEMBver F be the problem of computing one solution to the (pos-
sibly) singular linear SysterAx = b or indicating that a solution does neist, given an n by n
matrix A and lengthn column vector of bit entries fromF. Following Cook [4], we say prob-
lem X is NC?* reducible to probleny, if there is a uniformamily of Boolean circuits for solving
X which use oracle circuits to selY. For the purpose of defining the depth of such circuits an
oracle contributes a depth of logy(wherer is the fan-in to the oracle. The main theorem of this
section nw follows.

Theorem 2.1: HERMITE FORMover F[x] isNC? reducible toLINEAR SYSTEM®&ver F.
Proof. We construct our circuit as follows from processing units at thnessle

1. Lete = nd > deg(detp)). Theinput matrix A is passed to each afe + 1) processors which
work in parallel. Thg are numbered by pairs, (j) where 1<i <nand O< j <e. The (, j) pro-
cessor constructs frorA the appropriate input for RINEAR SYSTEMircuit over F which
determines if the system as described in lemma 2.1 can be solved when theelggraes gven
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by d, = j anddy = e, for K #i. If the oracle produces a solution theue is passed to the xe
step. If the oracle indicates no solution exists, tlaseis passed on. By lemma 2.1 thejj
circuit answerdrue just in case theéth diagonal entry of the Hermite normal form hagrde
less than or equal tp The depth of the circuit at this point@¢log(size@))), by lemma 2.2.

2. Then circuits numbered 1 throughwork in parallel. Theith processor gets input from the
e+ 1 drcuits of step 1 numbered, Q) to (i,€). Its output,d;, is the minimumj such that the
output of processolii(j) istrue. Clearly, these circuits hae O(log(size(d))) depth and polyno-
mial size.

3. One processor rewies the d;’s which are the exact deees of the diagonal entries of the Her
mite normal form. It feeds BINEAR SYSTEMSracle the system described in lemma 2.1, and
by part 3, obtains the desired Hermite normal form.

Corollary: HERMITE FORMover Q[x] and over GF(p)[x] is in NC2,

Proof: The corollary follows from the fact thatNEAR SYSTEMSver Q or GF(p) is in NC?
[2], [3]. [10] [16]. O

3. Parallel Probabilistic Smith Normal Form Computation

A polynomial matrixS is in Smith normal formf it is diagonal, each diagonal entry is
monic, and each diagonal entrycept the last is a divisor of the succeeding on&.iff equv-
alent toA, i.e. A= PSQ whereP andQ are unimodularthenS s called the Smith normal form
of A.

Lemma 3.1: Let A be ann by n non-singular matrixer F[X].

1.  Thereis ann by n matrix Sin Smith normal form and unimodular matrid@sandQ such
that A= PSQ

2. Lets denote the greatest common divisor ofiatly i minors of A. Then the diagonal
entries in the Smith normal form éfares; ; = s;, ands;; = 5 /s, fori > 1.

3. Two n by n matricesA and B have the same Smith normal form if and only if yhare
equialent.

For a proof see Gohberg, Lancastand Rodman [5] or Newman [17]0

Let C" denote alli element subsets of {1.., i} and let A, j, for I, J O C", denote the
minor of A restricted to the rows ih and columns inJ. By the abee theorem we could com-
pute the Smith normal form & by computings = GCD; 5 oer Aig- The problem is that there
are exponentially man by i minors. D overcome this problem we computedwandom linear
combinations ofA, ; whose GCD is likely to be theamted GCD. These are the principdly i
minors of two randomly selected matrices egaient to A. The following lemma shas this suf-
fices. Letl...i denote the set {1..}.
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Lemma 3.2: let A be ann by n matrix over F[x], and lets be as in lemma 3.1.2.et F be the
extension ofF[x] by 4n? indeterminantsk = FIXI[«jx: Ajk 4jk Vjkl Then there exists a poly-
nomial 7z O F of total degree no more thai’d with the following property For ary n by n
matricesR, T, U, V over F, (. tj, Ujk Vjk) # 0 implies that GCDB;_ ;1 ;, C1 j1.i) = S
whereB = RAT, C = UAV.

Proof. First let the matrices ha indeterminate entriesR = (kjx), T = (4 ), U= (ux) and
V = (vjx)- Inthis case, we first sihoG = GCD(By. ;1 j, C1.i1.4) = § in F[X] whereB = RAT
andC = UAV, andF is F with the indeterminates iR, T, U , andV adjoined. V& dosene that
s is the only factor 0B, j1.jorCy j1.j which lies inF[x]. By the Binet-Cauchformula,

Biii1.i= 2 RiikAx LT
K,LOCP
and
Ciini= 2 UrikAcLViai-
K,LOCn

Now, dearly the factor oB; ;; ; (or Cq_j1 ;) in F[X] must divide eachA . On the other
hand,B; ;1 ; andCy_;; ;j have ro factor in common ifr[x] \ F[x] since each iwolves a difer-
ent set of indeterminates. This shows our clainGon

We row consider

B = Bl...i*,l..j andC” = Cl"'i’l"j .

B” andC’ are relatvely prime inF[X], thus 7z = resultan}(B", C") is non-zero. If7(r;y, tjx,
Uik Vjx) % O then the polynomial®™(rx, tjx, Uik, Vi) and C (I tix Ujk Vjk) in F[X]
remain relatrely prime. (For the theory of resultants, consult foraeple [21, section 5.8].)
Therefore GCDBy ;1.i,C1.i1.5) = S .

It remains to estimate the glee of . Clearly, degX(B*), degX(C*) <id. Their degrees in the
other indeterminants are bounded bytBus the degree of <idx2i +idx2i = 4i’d. O

Lemma 3.3: With the notation of the previous lemma, if we select the entri&s T U, V ran-
domly from a sef [0 F then the probability

4nd

Probe =GCD®B; ;4 :,Cy i1 ), foralli,1<i<n=21-———— .

Proof. Let 7= [{L; . We ae unlucly only if the randomly selected i, tjx, Ujx andv; are
a zero of 7. By a result of Schwartz [19] this happens with probability no more thg(rmlear-
dinality(S). Thedegree estimate for now immediately implies that deg) < 4n°d. O

We row can prave the following theorem.
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Theorem 3.1: There is a uniform family of probabilistic circuits of de@tog?(size(d)/¢)) and
polynomial size which compute the Smith normal formeroF[x] correctly with probability
1- ¢. These circuits makO(n?log(nd/s)) random bit choices. In sholSMITH FORMover
Q[x] or GF(p)[x] is in RNC?.

Proof. By lemma 3.3 the problem reduces to matrix multiplications, determinant and GCD com-
putations. Thesare inNC? [2]. We nmust male aur 4n? random choices from a subsebf Q

for which 4°d/cardinality(S) < . The integers less in absolutalve than 43d/s will do.
These ar®(log(nd/¢)) bit numbers.

If the field is too small to all@ choice of a sufficiently large s& S may be chosen from an
extension field. Like GCD'’s, the Smith normal form is an entirely rational form and thus is
unchanged if one computegep an etension of the geen field. O

Lemma 3.2 remains true if we replddeby an upper triangular and by a lower triangu-
lar matrix, as well as if we do not randomiBe This saes in both matrix multiplications and
number of random bits required.

4. Sequential Deter ministic Smith Normal Form Computation

The purpose of this section is to establish 8iTH FORMover Q[x] is in P. First we
note that it is a consequence of Kannan [12] 8MiTH FORMover GF(p)[X] is in P, a result
on which we will hae t depend. W can assume without loss of generality that our input
matrix A has integer coétients. Theollowing lemma is the &y t our argument.

Lemma 4.1: Let A be a non-singulan by n matrix over Q[x] with integer codifcients,d =
max{deg@ ;)| 1<i,j<n}, L = max{|a ;«l| 1<i,j <n, 0<k <deg@ j)}, | a be the leading
coeficient of det@), and letS be the Smith normal form o4, d; = deq(s;;). Thenfor ary prime
p which does not dide | 5, exactly one of the follwing two conditions can occur foB, the
Smith normal form ofA mod p.

1. Smodp=Sor
2. (@1,..., ) #(dy,...,dn) with d; = ded(s;).

Furthermore, there exists an iggg B, < (n(d +1) L)3”3d such that ifp does not diide B, con-
dition 1 must occur.

Proof: Lets = GCD; x ncr(Asx mod p), 1<i<n, 5 =1 Then by lemma 3.%5; = §/5_, for
1<i<n. Itisdear thats mod p dividess . Lete = deqs ), e = degs). Theng =g, &, =
&=0d =6 -6_,d =¢ —e_,. Eitherg =¢ forall 1<i < northere is a first i such that
> @. In the first case, sincg ands are both monic, we ka tats modp = § and hence
s; mod p=5, In the later case, we vad; > d;.

It remains to establish a condition under which
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O
SBCDJ,K DC{‘(AJ,K)DmOd p=GCD;k gcr(Ayk mod p) ()

for all 1<i < n. Frst we note that foA; x = 2 bjxj, b; 0Z and p;|<B=(n(d+1)L)" (cf.
[6], problem 73-17). Secondly we appeal to the following (cf. [11], lemma 4).

Proposition: If f;,..., £ OQ[x] are polynomials with integer coefficients anayfg) < e, then
there exists a@ by € determinan®d [0 Z \ {0}, & < 2e, whose entries are coefficients of the
such that for anprime p which does not divid&

GCDicj<(fj mod p) = (GCDy<j«(f;)) mod p

Proof. Letd(x) = GCD(f;). For ary prime p, it is clear thatd mod p divides GCD§; mod p),
sinced mod p divides eachf; mod p. We show the cowerse holds for most primesThere
exist s; ,..., § O Q[x] with deg(s;) < e such that GCD{;) = > f;s;. Since each term has
degree at mose + (e — 1), this equation may be viewed as a linear systemFs of at most 2
equations eer Q in te varibles, the coefficients of thg. The entries of the matrik are the
coeficients of thef;. Such a linear system has a solution just in case the raRkiothe same
as the rank of the augmented matiix ). Sincethe system has a solutionen Q, the rank
condition holds. If the rank oF mod p is € < 2e, then ane by & minor, A, of F must be
nonzero. IfA is nonzero modp as well, it follows that the rank condition will hold mod p and
hence the system will ka a ®lution, s. Thus GCDf; modp) divides
2 (fj mod p)(s'j):d mod p, for polynomialss'j appropriately constructed frogh O

Continuing the proof of lemma 4.1, we apply this propositioAf@ and obtain as the asserted
determinant an integds;,

n2
B, < VZ2di B < ?/Tzan%(d +IPL2 <(n(d+ )L™,

such that ifp does not divideB; (1) is satisfied for. It remains to seB, =[], Bj. O

The deterministic algorithm is mo easy to describe. First we seledt =
Zgogz(lA(n(d +1) L)S”Ed)gz 2rtog, (I ABa)Oprimes p; and compute for all primes notviling

| o the Smith normal fornSj of Amod p;. We rote that thekth prime p, is < klog(k), k = 6,
which makes this step a polynomial-time proce&so more than half of the primes considered
do not dvidel ,B,. Hence by the alv@ lemma a majority of théj must possess the same diag-
onal-dgree \ector say these mog;, j [1J. Also by the lemm&;, j I J, is an mage ofS. By
Chinese remaindering we compute

S

smodp, p= T .
jad

It remains to reoeer the coeficientss;; , from their modular image§; ;. We first obsere that
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the s;; are monic factors of ded) over Q[x]. Thereforeby Gauss’ lemma the denominators of
S k are factors of , and hence relately prime top. We now daim that

A5 modp
Sik= =

LA
where the modulus in the numerator is taken balanced. The only problem could pevtrat
too small to capturk, x the numerator o$;; . But the integral coefficients oaftors of detd)

are absolutely bounded byB (see [14], Section 4.6.2, Exercise 20)ow clearly 21 , 2" B <
p and we hae the following theorem.

Theorem 4.1: SMITH FORMove Q[x] isinP.
5. Rational Canonical form and Similarity

If Ais a matrix @er a field F, then the diagonal entries of the Smith normal form of

xI = A (over F[x]) are the inariant factors ofA. The invariant factors characteriz& up to simi-
larity and their companion matrices form the diagonal blocks of the rational canonicdr fafrm
A. Thus we can computRATIONAL FORMn RNC? and inP. Furthermore, we can compute
the similarity transforn such thatJAU™ = R, whereas for the Smith normal forSsuch that
PAQ=S, we dd not obtainP andQ. KnowingU, we an verify thatUAU™ = R, Thus the
probabilistic algorithm for Rational normal form is of Lasg# type (controllably small proba-
bility of no result), whereas the Smith normal form algorithaswf Monte Carlo type (control-
lably small probability of incorrect result).

To compute the transforrd, first computeR via the Smith form ol — A, as ndicated
above. Then sole the linear systeA = RU. An abitrary U satisfying this equation will not
do, as it may be singulaHoweve, we may do the follving. WWe compute a basidy, ..., Uy of
the solution space. Lét, ..., A, be indeterminants and let

77'(/\1, e !Ak) = deté AiUi)
i=1

We choosery, ..., ry at random fronf and let

ThenU is nonsingular unless(r, , ..., r,) = 0. We know that 77 is not identically zero since R

is the rational form ofA, then by definition, a nonsingular such thatJA = RU must &ist. By
Schwartz’ result [19] the probability that we unluckily obtain a singllais less than dgn)/s,
wheres is the size of the set from which we choose the components,of.(r,). Thus,if
detU) is nonzeroR is a verified rational canonical form &f If it is zero then we return no
solution. Eithemve were unluck in computingR via the probabilistic Smith normal form algo-
rithm, or we were unlugkin computingU. If F is finite, and a layersis desired, the; may be
chosen from an extension bt
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More details on this and the construction of the Jordan normal form can be found in [22].
6. Conclusion

In the meantime, we kia dscovered a Las ¥ga lution for the Smith normal form
problem of polynomial matrices [23]This solution hinges greatly on the Hermite normal form
process, as opposed to the Monte-Carlo solution proposedlteemalysis, hwever, is amilar
to the one hereThe nev agorithm also finds the multipliers. In the future we will carry out
practical experiments with our randomized algorithms.
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