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Abstract

An algorithm is presented that allows to multiply two univariate polynomials of degree no
more than n with coefficients from an arbitrary (possibly non-commutative) ring in
O(n log(n) log(logn)) additions and subtractions andO(n log(n)) multiplications. The arithmetic
depth of the algorithm isO(log(n)). Thisalgorithm is a modification of the Schönhage-Strassen
procedure to arbitrary radix fast Fourier transforms, and division by the radix is circumvented.
By a Kronecker homomorphism the method can be extended to multivariate polynomials.
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1. Introduction

The subject of this article is a generalization of the Schönhage-Strassen integer multiplica-
tion algorithm to multiplying polynomials with coefficients from an arbitrary, possibly non-com-
mutative, ring. Asour main result we construct an algorithm to multiply polynomials of degree
not higher thann with coefficients from a ring inO(n log(n) log(logn)) ring additions, subtrac-
tions, and multiplications. The non-scalar multiplicative complexity of our method is
O(n log(n)), and its parallel complexity as the depth of the corresponding arithmetic circuit is
O(log(n)).

Sch ̈onhage [14] first investigated the polynomial multiplication problem for arbitrary fields
of characteristic 2, in which the standard 2k-point Fourier transform inverts to the zero vector. If
we have a division by 2, the Scḧonhage-Strassen integer multiplication algorithm can be easily
recast as a polynomial multiplication procedure (cf [13])..Observe that it is assumed that the
fields do not automatically contain the primitive roots necessary to perform a fast Fourier trans-
form and therefore such primitive roots must be synthetically adjoined. It is that what makes the
total cost increase by a factor of log(logn). Scḧonhage’s characteristic 2 algorithm works with
3k-point Fourier transforms on polynomial rings modulo cyclotomic polynomials of the same
order. With a division by 3 he again gets anO(n log(n) log(logn)) algorithm. For subtle reasons
that approach seems not to generalize for even an order of 5k. Here we offer an alternate method
that will work for ordersk for any s ≥ 3. Theidea in our method is that we use two different
polynomial rings which support ansk-point Fourier transform and then obtain the 2n − 1 entries
in the convolutions by Chinese remaindering.

We also eliminate the divisions bys by computing scalar multiples of the convolutions
with a power ofs for two relatively prime s’s and then find a suitable integer linear combination
that cancels those multipliers.Finally, we hav eremoved the assumption of commutativity for the
coefficient rings. This is more by accident, since the Schönhage-Strassen approach is already
correct for skew-fields such as the quaternions.The reason is that only the primitive roots used
in the Fourier transforms need to commute with the ring elements, which happens to be true for
those synthetically generated roots. Our observation may prove useful, however, since we now
have asymptotically fast algorithms for multiplying ‘string polynomials’ [10], §4.6.1, Exercise
17-18, or for multiplying matrix polynomials.

If one allows the total operation count to be asymptotically worse, aO(n log(n)) non-scalar
multiplicative complexity can be achieved differently [8], or over special rings that complexity is
much smaller, for finite fields refer to [11]. The best known lower bounds for any complexity are
no better than linear in the degree [3],[9]. A practically useful algorithm of worse asymptotic
performance over finite fields is given in [4].

Our model of computation is that of a straight-line program for the coefficients of the prod-
uct from the coefficients of the inputs [1] §1.5.I, although the asymptotic complexities remain
true an algebraic random access machines as defined in [7]. Non-scalar multiplications are those
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where both factors are dependent on the coefficients of the inputs.
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2. Rings with a Fourier Transform

The main feature of our algorithm is that it works over an arbitrary ring R. We write 0 ∈
R for its additive zero element and 1∈ R for its multiplicative unit, 0 ≠ 1. Any ring isZ module
by (−1)a := −a andna := Σn

j=1 a, a ∈ R, n ∈ Z, n ≥ 0. TheintegersZ are embedded intoR by
Π(n) := n ⋅ 1, and we writen shortly for the elementn ⋅ 1. Noticethat a ‘rng’ R without a unit
can be embedded into the ringZ×R with unit (1,0) and addition and multiplication defined as

(m, a) + (n, b): = (m + n, a + b), (m, a)(n, b): = (mn, mb+ na + ab)

(cf [6],. §2.17), so all our results hold for such rngs as well.The subringΠ(Z) is either isomor-
phic toZ or to Zm, the integers modulom for somem. We write Rn for the leftR-module ofn-
dimensional vectors over R, and we writeai , 0 ≤ i ≤ n − 1, for thei-th component ofa ∈ Rn.

In the following we introduce the theory for the fast discrete Fourier transform [5], here for
the abstract moduleRn.

Definition: Let R be a ring,n ∈ Z, n ≥ 2, ω ∈ R. Thenω is aprincipal n-th root of unityin R if

(PR1) ω n = 1; note that thenω −1 = ω n−1.

(PR2) For all i ∈Z: i ≡| 0 mod n ☞
n−1

j=0
Σ ω ij = 0.

(PR3) For all w∈R: ω w = wω ; this condition is needed when computing convolutions in non-
commutative rings.

Example: Let F be a field, and letω be a primitive n-th root of unity, that is

n = min {m | ω m = 1, m∈Z, m ≥ 1}.

Thenω is also a principaln-th root of unity. Clearly, (PR1) and (PR3) are satisfied. Since

0 = ω in − 1 = (ω i − 1)
n−1

j=0
Σ ω ij

andω i = ω i mod n ≠ 1, the second factor of the RHS of the above equation must be 0.

Definition: Let R be a ring,n ≥ 1, ω a principal n-th root of unity inR, a, â ∈ Rn. Thenâ is the
discrete Fourier transformedof a with respect toω , â = DFT[[ω ]](a), respectively a is thedis-
crete Fourier inverseof â with respect toω , a = DFI[[ω ]]( â), if

for all i with 0 ≤ i ≤ n − 1: âi =
n−1

j=0
Σ ω ij a j .

For the purpose of fast computation, one choosesn = sk. Following is the now-famous algorithm
to compute the forward transform [5].
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Algorithm Fast DFT

Input: n = sk, ω ∈ R such thatω n = 1, a ∈ Rn.

Output:â = DFT[[ω ]](a) ∈ Rn.

If n = 1 Then Return â ← a = [a0].

Step S(Split-up): Since for 0≤ i < n/s, r ∈ Zs we have

âsi+r =
n−1

j=0
Σ ω (si+r ) j a j =

n/s−1

j=0
Σ

s−1

l=0
Σ ω (si+r )( j+ln/s)a j+ln/s =

n/s−1

j=0
Σ (ω s)ij 


s−1

l=0
Σ ω rln/s+rj a j+ln/s




we have

[ âsi+r ] i=0,...,n/s−1 = DFT[[ω s]]







ω rj

s−1

l=0
Σ ω rln/sa j+ln/s



 j=0,...,n/s−1




.

ρ ← ω n/s; ρ (0) ← 1; ω (0) ← 1.

For r ← 0 ,..., s− 1 Do
ρ (r ) ← ρ (r−1)ρ; ω (r ) ← ω (r−1)ω .
For j ← 0 ,..., n/s − 1 Do

ω (rj ) ← ω (rj −r )ω (r ).

u(r )
j ← ω (rj )

s−1

l=0
Σ (ρ (r ))l a j+ln/s.

Step R(Recursion):
For r ← 0 ,..., s− 1 Do

Call the algorithm recursively with n′ ← n/s, ω ′ ← ω s, and u(r ) ∈ Rn/s, obtaining û(r ) =
DFT[[ω ′]](u(r )).

Step I (Insertion):
For r ← 0 ,..., s− 1 Do

For i ← 0 ,..., n/s Do
âsi+r ← û(r )

i .
Return â.

Lemma 1: The Fast DFT algorithm requires O(snk) additions and multiplications with powers

of ω in R. Its arithmetic circuit depth isO(log(n)). If s = cl , where c  is aconstant, the complex-
ity can be reduced to O(lnk).

Proof: Step S costsO(sn) arithmetic operations, step RsT(n/s), whereT(m) is the operation
count onm-dimensional input. ThusT(n) satisfies the recursion

T(n) ≤ γ sn + s T(n/s), γ a constant ,
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which by induction onk leads toT(n) ≤ γ skn.
For s= cl we observe that for j = 0 ,..., n/s

[u(r )
j ]r=0,...,s−1 = DFT[[ρ]]([ a j+ln/s] l=0,...,s−1) × [ω (rj )]transposed

r=0,...,s−1,

which thus can be computed by the original algorithm inO(ls) operations. Hencethe cost of step
S reduces toO(ln)
Using a processor efficient parallel prefix computation one can get allω i , 0 ≤ i ≤ n − 1, in
O(log(n)) depth using no more thanO(n log(n)) operations.The parallel depth of the remaining
computation of step S isO(log(s)). Thusthe total depth ofO(k log(s)), which isO(log(n)).

As is well known, condition (PR2) allows to compute Fourier inverses by forward trans-
forms. We hav ethe following lemma.

Lemma 2: Let R be a ring andω a principal n-th root of unity, a, â ∈ Rn, â = DFT[[ω ]](a).
Thenω n−1 is also a principal n-th root of unity andDFT[[ω n−1]]( â) = na.

Proof: We first show the principality ofω n−1. Conditions (PR1) and (PR3) are clear, for (PR2)
we write

n−1

j=0
Σ (ω (n−1) j )i =

n−1

j=0
Σ (ω (n−1) j mod n)i =

n−1

j=0
Σ (ω j )i = 0.

Let ˆ̂a = DFT[[ω n−1]]( â). By definition

ˆ̂ai =
n−1

l=0
Σ ω (n−1)il âl =

n−1

l=0
Σ ω (n−1)il

n−1

j=0
Σ ω lj a j =

n−1

j=0
Σ a j

n−1

l=0
Σ (ω l )(n−1)i+ j = nai ,

since by (PR2) we must have

n−1

l=0
Σ (ω (n−1)i+ j )l = 0 for j ≡| i mod n.

Observe that in general we cannot divide byn in R, which will be taken care off by the
trick in theorem 2 below. Next we define convolutions of vectors.

Definition: Let a, b ∈ Rn. Thenc ∈ Rn is the (wrapped) convolutionof a andb, c = a * b, if

for all j with 0 ≤ j ≤ n − 1: c j =
0≤l ,m<n

l+m≡ j mod n

Σ al bm.

Convolutions of vectors can be compute by two forward and one inverse Fourier transforms.

Lemma 3: Let a, b ∈ Rn, ω a principal n-th root of unity, c = a * b. Let â = DFT[[ω ]](a), b̂ =
DFT[[ω ]](b). Then

DFT[[ω n−1]]([ ̂ai b̂i ] i=0,...,n−1) = nc.
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Proof: For all 0 ≤ i ≤ n − 1 we hav e

âi b̂i =




n−1

j=0
Σ ω ij a j









n−1

j=0
Σ ω ij b j





=
2n−2

j=0
Σ ω ij

0≤l ,m<n

l+m= j

Σ al bm =
n−1

j=0
Σ c jω

ij = ĉi .

It is here where we need (PR3). The lemma now follows from lemma 2.

Our following lemma is the key to relating ann = sk-th order root to ans-th order one and
allows us to later synthesize such roots.

Lemma 4: Let ρ be an s-th order principal root of unity in the ring R.Furthermore, for n = sk,
k ≥ 1, let ω ∈ R be such that ω n/s = ρ and ω w = wω for all w ∈ R. Thenω is an n-th order
principal root of unity in R.

Proof: The key condition is (PR2) forω . We proceed by induction onk. Suppose the statement
is true forω s. Assume now that i ≡| 0 mod n. If i ≡| 0 mod n/s then

n−1

j=0
Σ ω ij =

n/s−1

j=0
Σ

s−1

l=0
Σ ω i(sj+l ) =

s−1

l=0
Σ ω il





n/s−1

j=0
Σ (ω s)ij





= 0,

whereas ifi ≡ 0 mod n/s theni = smandm ≡| 0 mod n/s. Hence

n−1

j=0
Σ ω ij =

n−1

j=0
Σ (ω s)mj =

n−1

j=0
Σ (ω s)( j mod n/s)m = s

n/s−1

j=0
Σ (ω s) jm = 0.
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3. Polynomial Rings

Now let R be any ring. We will embedR into a ringR with a high order principal root of
unity as follows. First,we constructR := R[y]/(Ψs(y)), whereΨs(y) is thes-th order cyclotomic
polynomial whose integral coefficients are projected intoR by Π. The element y :=

y modΨs(y) in R is a principals-th root of unity. Then we constructR := R[x]/(xsk

− y). By

lemma 4,x is a principalsk+1-st root of unity inR.

Several lemmas follow now.

Lemma 5: Let R be a ring, R := R[y]/(Ψs(y)). Then yt modΨs(y) ∈ R, t ∈ Z*
s , the multiplica-

tive units inZs, is a principal s-th root of unity inR.

Proof: (PR1) is clearly satisfied sinceΨs(y) dividesyst − 1. Similarly,

(yt)is − 1 = (yti − 1)
s−1

j=0
Σ (yti ) j ≡ 0 mod Ψs(y),

so for i ≡| 0 mod s, Ψs(y) divides Σs−1
j=0(yt)ij as integer polynomials, which applyingΠ gives

(PR2). (PR3)follows from the fact that for any integern, n ⋅ 1 commutes with any ring element
in R, so any element inΠ(Z)[y] with any element inR[y].

Lemma 6: Let R be a ring, R = R[y]/(Ψs(y)), y := y modΨs(y), s ≥ 2 a fixed integer, n = sk, k ≥
1, R := R[x]/(xn − yt), t ∈ Z*

s , 0 ≤ κ ≤ k, l := n/sκ −1, ω l := xsκ
∈ R. Then we can compute the

DFT[[ω l ]](a) andDFT[[ω l−1
l ]](a), a ∈ R

l
, in O(n l log(l )) arithmetic operations in R. In particu-

lar, we can computeω j
l a, a ∈ R, j ∈ Z, in O(n) operations in R.

Proof: We compute DFT[[ω ]](a) by the Fast DFT algorithm.By lemma 1 that costs, sinces is

fixed, O(l log(l )) additions (or subtractions) and multiplications byω j
l , 1 ≤ j < l , in R. Each

addition inR costsO(n) additions inR, and, sinces is fixed, alsoO(n) additions inR. Multipli-

cation byω j
l , j ∈ Z, is done by observing that inR, xn = yt ∈ R. Let j ′ and j ′′ be such thatsκ j

mod sn= j ′n + j ′′, 0 ≤ j ′ < s, 0 ≤ j ′′ < n. Then fora = Σn−1
ν =0 αν xν ∈ R, αν ∈ R, we hav e

ω j
l a = (xsκ

) j 


n−1

ν =0
Σ αν xν 


= (yt) j ′


n−1

ν =0
Σ αν xν + j ′′


= (yt) j ′





j ′′−1

µ=0
Σ ytα n− j ′′+µxµ +

n−1

µ= j ′′
Σ αµ− j ′′ x

µ



.

Thus, the multiplication problem ofa is essentially multiplying its coefficients by powers ofy
and rearranging indices. Each such coefficient multiplication has constant cost, totalingO(n)
arithmetic steps inR.

Lemma 7: Let s ∈ Z, s ≥ 3, t ∈ Z*
s , t ≥ 2. Then there exist h1(y), h2(y) ∈ Z[y] and e∈ Z, e ≥

1, such that overZ[y],

h1(y)(yt − y) + h2(y)Ψs(y) = se.
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Moreover, if t = s − 1, a solution is possible with e= 1.

Proof: The main part of the proof centers on the resultants

δ s,t : = resy(y
t−1 − 1, Ψs(y)) ∈ Z.

First note that since

res(f1 f2, g) = res(f1, g)res(f2, g), and yt−1 − 1 =
d | t−1
Π Ψd(y)

(cf. van der Waerden [16], §28 and §36) we have

δ s,t =
d | t−1
Π resy(Ψd(y), Ψs(y)).

Now by (1.3) and theorem 4 in [2] we have for s > d ≥ 1,

res(Ψd, Ψs) =







pφ (d)

1

if
s

d
is a powerof a prime p,

else.
(†)

Therefore there exists an integer ed ≥ 0 such that res(Ψd, Ψs) | sed . Henceδ s,t | se, e :=

Σd | t−1 ed. Furthermore, resy(y, Ψs(y)) = (−1)φ (s) and therefore

resy(y
t − y, Ψs(y)) = ± δ s,t | se.

Now there exist polynomialsg1(y), g2(y) ∈ Z[y] with

g1(y)(yt − y) + g2(y)Ψs(y) = resy(y
t − y, Ψs(y)).

Hence the polynomialsh1, h2 can be chosen integral multiples ifg1 andg2.

If t = s − 1 then the only possibled’s with d | s − 2 and s/d being a power of a prime ared = 1
andd = 2. From (†) we then getδ s,s−1 = s for s = p or 2p, p a prime. Inall other casesδ s,s−1 is
a proper divisor ofs.

Lemma 8: Let R be a ring, s ∈ Z, s ≥ 3. Furthermore, let t ∈ Z*
s , t ≥ 2, and let n≥ 1,

R0 = R[x, y]/((xn − y)(xn − yt), Ψs(y)),

R1 = R[x, y]/(xn − y, Ψs(y)), R2 = R[x, y]/(xn − yt , Ψs(y)).

Moreover, let e andh1(y) be as in lemma 7, with its coefficients projected into R. Consider the
projection

P: R0

a0

→
→

R1 × R2

[a0 mod (xn − y, Ψs(y)), a0 mod (xn − yt , Ψs(y))]

and the Chinese remainder map
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C: R1 × R2

[a1, a2]

→
→

R0

sea1 + (xn − y)h1(y)(a2 − a1).

Then C(P(a0)) = sea0 for all a0 ∈ R0.

Proof: We provide the proof since the rings are somewhat unusual. First we show thatP is injec-

tive. AssumeP(a0) = P(b0) for a0, b0 ∈ R0. Now a0 ≡ b0 mod (xn − y, Ψs(y)) which means
that

a0(x, y) − b0(x, y) = (xn − y)c0(x, y) for somec0(x, y) ∈ R[x, y].

Also 0 ≡ a0 − b0 ≡ (xn − y)c0 mod xn − yt , which means thatxn − yt must divide c0(x, y). Thus

a0 ≡ b0 mod (xn − y)(xn − yt), which means thata0 = b0 in R0. Next we establish that
P(C([a1, a2])) = [sea1, sea2]. This is clear for the first component, the second component fol-
lows from lemma 7 as

sea1 + (xn − y)h1(y)(a1 − a2) mod xn − yt = sea1 + (yt − y)h1(y)(a2 − a1)

= sea1 + se(a2 − a1) = sea2.

Finally, we hav eP(C(P(a0))) = P(sea0), which by the injectivity ofP yields C(P(a0)) = sea0.
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4. Polynomial Multiplication

Let us briefly describe the idea of the algorithm.We hav ea ring R and we want to multi-
ply polynomials inR[x]. For a moment let us assume thats is invertible in R. In fact, will mul-
tiply elements in

R[x]/(xn − yt1), n = sk, t1 ∈Z*
s , R : = R[y]/(Ψs(y)), y : = y modΨs(y).

For simplicity, let us assume thatk is even. Following Scḧonhage and Strassen [15] we write two

elements inR as

f (x) =
√ n−1

i=0
Σ ai (x)(x√ n)i , ai ∈ R[x], deg(ai ) < √ n,

g(x) =
√ n−1

i=0
Σ bi (x)(x√ n)i , bi ∈ R[x], deg(bi ) < √ n.

Now

f (x) g(x) mod xn − yt1 =
√ n−1

i=0
Σ ci (x)(x√ n)i

with

ci (x) =
j+l=i
Σ a j bl + yt1

j+l=√ n+i
Σ a j bl , 0 ≤ i < √ n.

We will compute theci ’s exactly by computing certain convolutions of the√ n-dimensional vec-

tors [ai ]0≤i<√ n over the ringsRτ := R[x]/(x√ n − ytτ ), τ = 1, 2, t2 ∈ Z*
s , t1 ≠ t2. Once we have

ci (x) mod x√ n − ytτ , τ = 1, 2,

we obtain the trueci ’s by Chinese remaindering. It is here where we have departed from previ-
ous methods [15],[14], [13], which obtain theci ’s correctly by choosing a modulus of degree at
least 2√ n. We must account for the particular wrap-around in theci ’s. Here we follow the

approach in [1], theorem 7.2. First we observe that inR1, x√ n = yt1, so

[xi ai (x)]0≤i<√ n * [xi bi (x)]0≤i<√ n = [xi ci (x)]0≤i<√ n.

Thereforeci mod x√ n − yt1 can be found by premultiplication byxi and postmultiplication by

x−i . In R2 the proper multipliers arext3i with t3 ≡ t−1
2 t1 mod s. Clearly, (xt3)√ n = yt1

mod x√ n − yt2. The algorithm follows.

Algorithm Polynomial Multiplication

Input: n = sk, s ≥ 3, k ≥ 1, t ∈ {1, s − 1}, f , g ∈ R[x, y], degx( f ) < n, degx(g) < n, degy( f ) <
φ (s), degy(g) < φ (s).
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Output:(sηs(n) fg) mod (xn − yt , Ψs(y)), whereηs(n) is a non-negative integer depending onn.

Step I (Initialize): Determinethe block numberl = s k/2, and the block sizem = s k/2. Notice
that lm = n. Split f andg into

f (x) =
l−1

i=0
Σ ai (x)(xm)i , g(x) =

l−1

i=0
Σ bi (x)(xm)i ,

ai , bi ∈ R[x, y], degx(ai ) < m, degx(bi ) < m. We will compute

ci (x) = sηs(n)


 j1+ j2=i

Σ a j1
(x)b j2

(x) + yt

j1+ j2=i+l
Σ a j1

(x)b j2
(x)




, 0 ≤ i < l .

Let t1 = t, t2 = s − t,

R1 = R[x, y]/(xm − yt1, Ψs(y)), R2 = R[x, y]/(xm − yt2, Ψs(y)).

Now

ω ←




x

xs

if l = m,

if sl = m,

is a principalsl-th root of unity in bothR1 andR2. We compute

c(τ )
i (x) = ci (x) mod (xm − ytτ , Ψs(y)), 0 ≤ i < l , τ ∈ {0, 1},

as follows.

Step P(Premultiplication): Compute

a(1) ← [aiω
i ]0≤i<l , b(1) ← [biω

i ]0≤i<l ,

over R1 and

a(2) ← [ai (ω
s−1)i ]0≤i<l , b(2) ← [bi (ω

s−1)i ]0≤i<l ,

over R2 by special multiplication with powers ofx. Notice that always (s − 1)t2 ≡ t1 mod s.

Step F(Forward Transform): Forτ = 1 andτ = 2 compute

â(τ ) ← DFT[[ω s]](a(τ )), b̂
(τ ) ← DFT[[ω s]](b(τ ))

over the ringsRτ . Notice thatω s is a principall -th root of unity.

Step M (Componentwise Multiplication): Forτ = 1 andτ = 2 compute

ĉ(τ ) ← [sηs(m)â(τ )
i b̂

(τ )
i ]0≤i<l

over Rτ by recursive application of the procedure.
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Step F−1 (Inverse Transformation)
For τ = 1 andτ = 2 compute

c̃(τ ) ← DFT[[(ω s)l−1]]( ĉ(τ )) = lDFI[[ω s]]( ĉ(τ )).

Step P−1 (Componentwise postmultiplication):
Compute

c(1) ← [ω −i c̃(1)
i ]0≤i<l , c(2) ← [ω −i(s−1)c̃(2)

i ]0≤i<l ,

again by special multiplication with powers ofx.

Step C(Chinese remaindering): Leth1(y), h2(y) ∈ Z[y] be such that

h1(y)(ys−1 − y) + h2(y)Ψs(y) = s.

By lemma 7 such polynomials exist. Let

λ : =




1 if t = 1

2 if t = s − 1
, µ : = 3 − λ ,

This makesRλ = R[x, y]/(xm − y, Ψs(y)) andRµ = R[x, y]/(xm − ys−1, Ψs(y)).
For i ← 0 ,..., l − 1 Do

ci (x) ← sc(λ)
i + (xm − y)h1(y)(c(µ)

i − c(λ)
i ) mod Ψs(y)

(cf. Lemma 8). Notice that we now hav eηs(n) = ηs(m) +  k/2 +1, thusηs(n) = O(log(n)).

Step R(Final return): Compute

h(x) ←
l−1

i=0
Σ ci (x)xmi mod (xn − yt , Ψs(y))

by polynomial additions and proper wrap-around atxn = yt . Return h(x).

Theorem 1: Algorithm Polynomial Multiplication requires O(n log(n) log(logn)) arithmetic
steps in the ringR. Its multiplicative complexity isO(n log(n)). Its parallel complexity is
O(log(n)).

Proof: Let T(n), M(n), and D(n) be the total, multiplicative, and parallel complexity, respec-
tively. From lemma 6 it easily follows that

T(n) ≤ γ1ml log(l ) + 2l T (m), γ1 a constant ,

whose solution isT(n) = O(n log(n) log(logn)) [1], theorem 7.8. The only multiplications occur
in step M, if we carry out the scalar multiplications in step C by additions. Thus

M(n) = 2l M (m), M(s) constant ,

whose solution isM(n) ≤ γ2sk(k − 1), γ2 a constant. Finally, by lemma 1 the depth satisfies
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D(n) ≤ γ3 log(l ) + D(m), γ3 a constant ,

which clearly satisfiesD(n) ≤ γ3 log(n). Herewe refer also to Ẅuthrich’s master’s thesis [17] for
a detailed analysis of the depth of the Schönhage-Strassen method.

We now come to the main theorem, where we remove the factorsηs(n) without introducing
divisions. We also generalize the algorithm to multivariate polynomials.

Theorem 2:Let

f (x1,..., xv) =
0≤i j <n j

j=1,...,v

Σ ai1,...,i v
xi1

1 ⋅ ⋅ ⋅ xi v
v , g(x1,..., xv) =

0≤i j <n j

j=1,...,v

Σ bi1,...,i v
xi1

1 ⋅ ⋅ ⋅ xi v
v ∈ R[x1,...,xv],

R an arbitrary ring, and let N= Πv
j=1(2n j − 1). Then ck1,...,kv

∈ R, 0 ≤ k j < 2n j − 1, with

0≤k j <2n j −1

j=1,...,v

Σ ck1,...,kv
xk1

1 ⋅ ⋅ ⋅ xkv
v = f (x1,..., xv)g(x1,..., xv)

can be computed simultaneously inO(N log(N) log(logN)) additions and subtractions,
O(N log(N)) multiplications, and in O(log(N)) parallel depth.

Proof: The multivariate case is reduced to the univariate one by performing the well-known Kro-
necker substitution

x j ← y(2n1−1)⋅ ⋅ ⋅(2n j−1−1)

(cf [12]).. For the univariate case we apply the Polynomial multiplication algorithm twice forn1

= 3k1 ≥ N, n2 = 4k2 ≥ N. We get

3η3(n1)ck1,...,kv
, 4η4(n2)ck1,...,kv

within the stated complexity. Now there exist integersK andL with

3η3(n1)K + 4η4(n2)L = 1,

so computing the corresponding linear combination of the obtained multiples of the convolutions
we get inO(N) additional additions and multiplications the true coefficients of the product.

The above theorem would already have followed using the 2-fold split-up method by
Sch ̈onhage and Strassen [15] adopted to polynomial multiplication (cf [13]).and the 3-fold split-
up method by Scḧonhage. However, if we hav ea division by s in R our algorithm is superior.
For R ⊃ Z6, for example our method can be carried out withs = 5. Moreover, our method is
based on one generic algorithm.

There is a nice trick due to L. I. Bluestein to reduce the computation of ann-point trans-
form, n arbitrary, to an sk-dimensional convolution problem [10], §4.3.3, Exercise 8.We thus
have the following corollary.
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Corollary: DFT[[ω ]](a), ω ∈ R invertible, a ∈ Rn, R an arbitrary ring, n an arbitrary positive
integer, can be computed in O(n log(n) log(logn)) arithmetic operations in R.
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5. Concluding Remark

Our investigation to generalize the Schönhage method tos-fold split-ups was undertaken
in an attempt to speed the Schönhage-Strassen method itself.Our hope was that in choosing the
s depending onn, say of order log(n), the decrease in the depth of the recursion would lead to an
asymptotic improvement overall. Unfortunately, this appears not to help.

The main open question is, of course, to improve the algorithm by a loglog n factor. But
other questions are interesting as well.Theorem 2 is formulated for polynomials that achieve
maximum individual degrees. Onecould consider inputs of maximum total degree

f (x1,..., xv) =
0≤i j <n

j=1,...,v

i1+⋅ ⋅ ⋅+i v≤n−1

Σ ai1,...,i v
xi1

1 ⋅ ⋅ ⋅ xi v
v , g(x1,..., xv) =

0≤i j <n

j=1,...,v

i1+⋅ ⋅ ⋅+i v≤n−1

Σ bi1,...,i v
xi1

1 ⋅ ⋅ ⋅ xi v
v

and ask for the complexity on terms of the number of monomials in the product,

N: = 


2n − 2 + v

v


. It is not clear how to compute that product inO(N log(N) log(logN)) arith-

metic steps.*

Acknowledgement:Our renewed interest in this subject was stimulated by Professor Arnold
Sch ̈onhage during the complexity theory meeting in Oberwolfach in November 1986.
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