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Abstract

An algorithm is presented that allows to multiplyotunivariate polynomials of dee no
more than n with coefficients from an arbitrary (possibly non-commu®&tiring in
O(nlog(n) log(logn)) additions and subtractions a@¢n log(n)) multiplications. The arithmetic
depth of the algorithm i©(log(n)). Thisalgorithm is a modification of the Satthage-Strassen
procedure to arbitrary radix fast Fourier transforms, amgidn by the radix is circunanted.
By a Kronecker homomorphism the method can be extended twanate polynomials.

* This material is based upon work supported by the National Sciencel&ion under Grant Nos. DCR-85-04391
and CCR-87-0563 and by an IBM FacultyM@epment Avard (second author).



1. Introduction

The subject of this article is a generalization of thed8kbhge-Strassen integer multiplica-
tion algorithm to multiplying polynomials with cdefients from an arbitrarypossibly non-com-
mutatie, ring. Asour main result we construct an algorithm to multiply polynomials gfeste
not higher tham with coefficients from a ring i®(nlog(n) log(logn)) ring additions, subtrac-
tions, and multiplications. The non-scalar multiplicate complexity of our method is
O(nlog(n)), and its parallel compkity as the depth of the corresponding arithmetic circuit is

O(log(n)).

Schonhage [14] first ivestigated the polynomial multiplication problem for arbitrary fields
of characteristic 2, in which the standafdpdint Fourier transform irerts to the zeroector If
we hae a dvision by 2, the Sainhage-Strassen irger multiplication algorithm can be easily
recast as a polynomial multiplication procedure (cf [13Dbsere that it is assumed that the
fields do not automatically contain the primétiroots necessary to performast Fourier trans-
form and therefore such primié roots must be synthetically adjoined. It is that what makes the
total cost increase by a factor of log(lng Sclonhages dharacteristic 2 algorithm works with
3%-point Fourier transforms on polynomial rings modulo cyclotomic polynomials of the same
order With a dvision by 3 he again gets @&{nlog(n) log(logn)) algorithm. For subtle reasons
that approach seems not to generalize fen @n ader of &. Here we offer an alternate method
that will work for orders* for ary s = 3. Theidea in our method is that we useotdifferent
polynomial rings which support asf-point Fourier transform and then obtain the-21 entries
in the cowrolutions by Chinese remaindering.

We dso eliminate the disions bys by computing scalar multiples of the sofutions
with a power ofs for two relatively prime s's and then find a suitable integer linear combination
that cancels those multiplier&inally, we haveremoved the assumption of commutativity for the
coeficient rings. This is more by accident, since thedblage-Strassen approach is already
correct for skw-fields such as the quaternionBhe reason is that only the primugi roots used
in the Fourier transforms need to commute with the ring elements, which happens to be true for
those synthetically generated roots. Our observation mase pseful, havever, snce we nav
have asymptotically st algorithms for multiplying ‘string polynomials’ [10], 84.6.1,€fsise
17-18, or for multiplying matrix polynomials.

If one allows the total operation count to be asymptoticadlyse, aO(nlog(n)) non-scalar
multiplicative mmplexity can be achied differently [8], or awer special rings that complexity is
much smallerfor finite fields refer to [11]. The best known lower bounds fgra@mplexity are
no better than linear in the degree [39]. A practically useful algorithm of worse asymptotic
performance wer finite fields is gren in [4].

Our model of computation is that of a straight-line program for thdiceets of the prod-
uct from the coefficients of the inputs [1] 8§1.5.1, although the asymptotic ceitiggeremain
true an algebraic random access machines as defined in [7]. Non-scalar multiplications are those
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where both factors are dependent on the coefficients of the inputs.



2. Rings with a Fourier Transform

The main feature of our algorithm is that it work&roan abitrary ring R. We write 0 O
R for its additve zro element and @I R for its multiplicatve wnit, 0# 1. Any ring isZ module
by (-1)a:=-aandna:= Z?zl a,aldR,n0OZ,n=0. TheintegersZ are embedded intB by
M(n) := nL, and we writen shortly for the element (L. Noticethat a ‘rng’ R without a unit
can be embedded into the ridgR with unit (1,0) and addition and multiplication defined as

(m,a) +(n,b):=(m+n,a+Db), (m a)n,b):=(mn mb+na+ ab)

(cf [6],. 82.17), so all our results hold for such rngs as witle subring1(Z) is @ther isomor
phic toZ or toZ,,, the integers modulm for somem. We write R" for the leftR-module ofn-
dimensional vectorsver R, and we writea;, 0<i < n—1, for thei-th component o O R".

In the following we introduce the theory for the fast discreterier transform [5], here for
the abstract modulR".

Definition: Let Rbe aringnh 0Z,n>2, w OR. Thenw is aprincipal n-th root of unityn R if
(PR1) " = 1; rote that thero ™t = " L.

n-1
(PR2) PrallifiZ:i¥0modnO Y &' =0.

j=0

(PR3) For allwlR: ww = ww; this condition is needed when computing\edations in non-
commutatve rings.

Example: Let F be a field, and leb be a primitve n-th root of unity that is
n=min{m | o™ =1, mOZ, m= 1}.
Thenw is also a principah-th root of unity Clearly, (PR1) and (PR3) are satisfied. Since
. . n-1
0=a0"-1=(a' - 1)j§0w”
andw' = w' MM £ 1, the second factor of the RHS of the abeguation must be 0o

Definition: Let Rbe a ring,n = 1, w a principal n-th root of unity inR, a, 8 O R". Thenais the
discrete Fourier tansformedof a with respect tav, a = DFT[[w]](Q), respectiely a is thedis-
crete Fourier inversef a with respect tav, a = DFI[[w]](3), if
o ) n-1
foralliwithO<isn-1:4 = ¥ o'a;.

j=0
For the purpose of fast computation, one chosses*. Following is the na-famous algorithm
to compute the forward transform [5].



Algorithm Fast DFT

Input: n = s, w O Rsuch thaw" = 1,a OR".
Output:a = DFT[[w]](a) O R".

If n=1Then Returna « a=[ag].

Step S(Split-up): Since for @i <n/s,r 0Z;we hae

A ot (si+r)j gt (si+r)(j+In/s) gl S\i rin/s+rj O
Asivr = _Zow la; = 'Zo IZow 98 s = Z (w )JDI ow JaJ+In/SD
J: J:
we hae
Wiy o 0 0
[&sirli=o,... vs-1 = DFT[[w®]] D@U” Z ™" SaJ+In/sD U
OO =0 Ui=o,... pis-1

p — " ,p( <—1;a)(0)«—1.

Forr -« 0,...,s-1Do
o p D Dy,
For j « 0,...,nMs=-1Do
G U PGY

sl
u(jr) - o™ Izo(p(r))l Aj+in/s-

Step R(Recursion):

Forr -« 0,...,s—-1Do
Call the algorithm recureély with n' — n/s, &' « w®, andu® O R"S, obtaining 0" =
DFT[[wTI(u®).

Step | (Insertion):
Forr «0,...,s—1Do
Fori « 0,...,nfsDo
Agivr « U(r)
Return a. O

Lemma 1: The Fast DFT algorithmequires snk additions and multiplications with powser
of win R. Its arithmetic circuit depth ©(log(n)). If s=c', where ¢ & aconstant, the compte
ity can be reduced to (@k).

Proof: Step S cost©(sn) arithmetic operations, step BT(n/s), whereT(m) is the operation
count onm-dimensional input. Thu$(n) satisfies the recursion

T(n) < ysn+sT(n/s), y anstant,



which by induction ork leads toT (n) < yskn
For s=c' we obsere thatforj=0,..., s

j d
[u(jr)]r=0,...s—1 = DFT[[pll([aj+mnsli=o....s-1) X RN ey

which thus can be computed by the original algorithi@(iis) operations. Hencthe cost of step
S reduces t@(In)

Using a processor efficient parallel prefix computation one can gef,al <i < n-1, in
O(log(n)) depth using no more th&(nlog(n)) operations.The parallel depth of the remaining
computation of step S (3(log(s)). Thusthe total depth oD(k log(s)), which isO(log(n)). O

As is well known, condition (PR2) allows to compute Fourieeiises by forward trans-
forms. We havethe following lemma.

A

Lemma 2: Let R be a ring andv a principal n-th root of unitya, & 0 R", & = DFT[[]](d).
Thenw" s also a principal n-th root of unity arBFT[[w"*]]() = na.

Proof: We first shav the principality ofw™™. Conditions (PR1) and (PR3) are clefar (PR2)
we write

$ (-Diyi = S, (-1 modnyi — &y
_Zo(w )= _Zo(w Fmeen)t = _Zo(wj) =0.
j= j= j=

Let 4= DFT[[«"Y]](3). By definition

2 _" s S il S o b+
a=>w a4=>w 2waj =3 a2 (w) I =nag,
=0 =0 j=0 j=0 =0

since by (PR2) we must va

n-1 L
S (" VY =0 for j%imodn. O
1=0

Obserne that in general we cannot divide byin R, which will be taken care bby the
trick in theorem 2 bels. Next we define comolutions of vectors.

Definition: Leta, b OR". Thenc O R" is the (vrapped convolutionof aandb, c=a® b, if
forall jwithO< j<n-1l:c;= >  aby.

0<l,m<n
[+m=j modn

Convolutions of vectors can be compute bytferward and one wrerse Fourier transforms.

Lemma 3: Leta, b O R", w a principal n-th root of unityc=a® b. Leta = DFT[[]](a), b=
DFT[[w]](b). Then



Proof: Foral 0 <i <n-1we have

A Un-1 N UUn-1 N U 2n-2 N n-1 .
ab =g oaon2 &'bjo= ¥ @ Y aby,= 3 cjo =6
[1i=0 [Ji=o ] i=0 0<l,m<n j=0
I+m=j

It is here where we need (PR3). The lemma fallows from lemma 2.0

Our following lemma is thedy D relating ann = s*-th order root to as-th order one and
allows us to later synthesize such roots.

Lemma 4: Let p be an s-th order principal root of unity in the ring Rurthermoe, or n = s¥,
k=>1,letw OR be such that w™® = p and ww = wew for all w O R. Thenw is an n-th oder
principal root of unity in R.

Proof: The key condition is (PR2) fow. We proceed by induction ok. Suppose the statement
is true forw®. Assume nw thati £ 0 modn. If i £ 0 mod n/sthen

n-1 i n/s-1 s-1 i(sj+) s-1 i Dn/:s—:L i [
2o =3 0¥ =3% 003 (0)'0=0,
j=0 j=0 1=0 1=0 []1i=0 N

whereas if =0 mod n/stheni = smandm ¥ 0 mod n/s. Hence

n-1 n-1 . n-1 . n/s-1 .
Z o= Z(wS)mj — Z(wS)(] modn/s)m _— s z (wS)]m =0. O
j=0 j=0 j=0 j=0



3. Polynomial Rings

Now let R be ary ring. We will embedR into a ring_ﬁ with a high order principal root of
unity as follavs. Firstwe construcR := R[y]/(W(y)), whereW(y) is the s-th order gclotomic
polynomial whose integral coefficients are projected iRoby 1. The elementy :=

y modW(y) in R is a principals-th root of unity Then we construck := I?[x]/(xSk -V). By
lemma 4, is a principals“**-st root of unity inR.

Several lemmas follav now.

Lemma 5: Let R be a ringR := R[y]/(W<(y)). Then y modW(y) OR, t OZs, the multiplica-
tive units inZ, is a principal s-th root of unity .

Proof: (PR1) is clearly satisfied sin&,(y) dividesys — 1. Similarly,
. . s-1
(y)S-1=(y"-1) Z(y")' =0 mod Wy(y),
j=0

so fori £ 0 mods, W(y) divides Z?;é(yt)” as integer polynomials, which applyifg gives
(PR2). (PR3Yollows from the fact that for gnntegern, n C1 commutes with anring element
in R, so ay dement inM(Z)[y] with ary element inR[y]. O

Lemma 6: Let R be a ringR = R[y]/(W«(Y)), ¥ := y mod W(y), s= 2 a fixed intger, n = s, k =

1, R:= RIX/(x"-y),t OZs,0<k <k, | :=n/sL, @ := x5 OR. Then we can compute the
DFT[[w]](a) andDFT[[«) Y]](a), a Dﬁl, in O(n llog(l)) arithmetic operations in R. In particu-
lar, we @n computesia, a OR, j OZ, in O(n) operations in R.

Proof: We compute DFT[p]](a) by the Fast DFT algorithmBy lemma 1 that costs, sinsds
fixed, O(I log(l)) additions (or subtractions) and multiplications dqy 1<j<I, inR Each
addition inR costsO(n) additions inR, and, sinces is fixed, alsdO(n) additions inR. Multipli-
cation byw|j, j OZ, is done by observing that iR, X" = y' OR. Letj andj" be such thas" |
modsn=j'n+j",0< ' <s 0<j"<n. Thenfora= 3 'S a,x’ OR, a, OR, we have

j N = VI BRI = S ] B J"Dj”_l _t wy S uD
wa=(*) % ax’ 5=() 0Z ax™ = () 0T Vag X+ T ap o
v=0 v=0 0 p=0 = 0

Thus, the multiplication problem @ is essentially multiplying its coefficients by powersyof
and rearranging indices. Each such @ioeit multiplication has constant cost, totali@gn)
arithmetic steps ilR. O

Lemma 7:Let s0Z, s> 3,t 0Zs, t > 2. Then thee exist h(y), ho(y) OZ[y] and e Z, e >
1, sudh that overZ|y],

hi(Y)(Y' = y) + ha(y)Ws(y) = s°.
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Moreoverift = s— 1, a solution is possible with e 1.

Proof: The main part of the proof centers on the resultants
Jsp 1= res (YT =1, Wy(y)) OZ.

First note that since

res(f, f,, g) = res(fy, g)res(f,, @), and y™ -1= [ Wy(y)
dt-1

(cf. van der Waerden [16], 828 and §36) weeha
0st = [ res(W¥q(y), Ws(Y))-

d|t-1

Now by (1.3) and theorem 4 in [2] weVeafors>d =1,

O pAd  jf Sisa powerf aprime p,

resWy, W) =0 d (1)
Nl else.

O

Therefore there exists an ige&r e; = 0 such that resfy, Ws) | s*. Henceds, | s° e :=
> 4jt-1€q- Furthermore, regy, Wy(y)) = (-1)*¥ and therefore

res(y' -y, Ws(y)) =% ;s | s°.
Now there exist polynomialg;(y), g>(y) O Z[y] with
G = Y) + G(Y)Ws(y) =res(y' -y, We(y)).

Hence the polynomials,, h, can be chosen integral multiplegif andg,.

If t = s—1 then the only possibld’s with d | s—2 and s/d being a power of a prime ack= 1
andd = 2. From (t) we then gei;s_; = sfor s= p or 2p, p a pime. Inall other caseds ; is
a proper divisor ofs. O

Lemma 8:Let R be aringsZ, s> 3. Furthermoe, let t [ Z’;, t>2,and letn>1,

Ro = RIX, YII((X" = y)(X" = ¥'), Ws(y)),

Ry = R V(X" =y, We(y), Re = RIX, yII(X" =¥, Wy(y)).
Moreovey let e andh;(y) be as in lemma 7, with its coefficients projected into R. Consider the
projection
P: _RO — _Rl X _Rz
ag - [agmod X" -y, Wy(y)), 3 mod " - y', Wy(y))]

and the Chinese remainder map
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CR xR - R
[a;, @] - SPay + (X" - y)h(y)(az - a).
Then QP(ay)) = s°a, for all ag O R,.
Proof: We provide the proof since the rings are somewhat unusual. First wetBROP is injec-

tive. AssumeP(ay) = P(bg) for ag, by U ﬁo Now ag = by mod (" -y, W(y)) which means
that

ao(X, Y) = bo(X, y) = (X" = y)co(x, y) for someco(x, y) O R[X, Y.

Also 0= ag - by = (X" - y)c, mod x" - y!, which means that" — y' must diide co(X, y). Thus
a, = by mod X" - y)(x" - V'), which means thaty=b, in R,. Next we establish that

P(C([a;, ay])) = [s°a;, S®ay]. Thisis clear for the first component, the second component fol-
lows from lemma 7 as

s*ay + (X" = y)hy(y)(ay — @) mod x" = y' = sa; + (y' = y)hy(y)(az — ay)

= sfq; + s¥(a, — a;) = S%ay,.

Finally, we have P(C(P(ap))) = P(s°ay), which by the injectivity ofP yields C(P(ay)) = s®ay.
O
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4. Polynomial Multiplication

Let us briefly describe the idea of the algorithwde havea ring R and we want to multi-
ply polynomials inR[x]. For a moment let us assume tkas invertible in R. In fact, will mul-
tiply elements in

RIX(X" = ¥%), n=s¥, t; OZs, R:=RIYW(Wy(y)), ¥ := y mod W(y).

For simplicity, let us assume thétis even. Following Sclonhage and Strassen [15] we writeotw
elements irR as

n-

f0="Z &000™, & OREK, deg(a) <an

o) :V_"z;l b,0)0"), by ORI, deg(by) <7n.
Now
yn-1 )
f() g0 mod X"~ 7 =3 G (O
i=0

with

a(x)= X ajby+y"* Y ajb, 0<i<yn

jH=i jHI=yn+
We will compute thec;’s exactly by computing certain ceolutions of theyn-dimensional ec-
tors [a;]o<i<yn OVEr the ringsR, := RIX/(x"=y%), r=1,21, 0Zs, t; #t,. Once we hae

¢ (x) mod x'" -y, r=1,2,

we obtain the true;’s by Chinese remaindering. It is here where weehekparted from png-
ous methods [15][14], [13], which obtain theg;’s correctly by choosing a modulus of degree at
least Z/n. We nust account for the particular wrap-around in ths. Here we follav the

approach in [1], theorem 7.2. First we obsethat inR, X" = ¥4, 0
[X'& (Nosi<gn & [X'Bi (N]osicyn = [X € (D] osiyn:

Thereforec; mod x’" - ¥ can be found by premultiplication by and postmultiplication by
x7. In R, the proper multipliers ared® with t; = t;t; mods. Clearly, (x*)"" = y"
mod x'" - y'2. The algorithm follows.

Algorithm Polynomial Multiplication

Input: n = s, s>3, k=1t 0{1,s-1}, f,g OR[X,Y], deg,(f) < n, deg,(g) < n, deg,(f) <
¢(s), deg,(9) < ().
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Output:(s™™ fg) mod (x" - y*, W,(y)), whereny(n) is a ron-negetive integer depending am

Step I (Initialize): Determinehe block numbel = 2% and the block sizen = s*?Y Notice

thatlm =n. Split f andg into
-1 . -1 .

f(x) = Zo a(x)(x™), g(x) = ZO b (x)(x™)',
a, by OR[X, y], deg,(a) < m, deg,(b;) <m. We will compute

U U

() =50 3 a;, (b, +y ¥ a;,(Xb,(xg 0<i<l.

[Jiatiz=i jatjo=i+ 0

Lett; =t, t, =s—t,
Ry = RIX, yII(x™ =y, W(y), Re = RIX YI(X™ =y, Wy(y)).

Now

is a principalsl-th root of unity in bottR; andR,. We mmpute
c(x) = ¢;(x) mod (x™ -y, Wy(y)), 0<i<I, 7 0{0,1},
as follows.
Step P(Premultiplication): Compute
a® « [aw']oga, BT « [Biwlosa,
over R; and
a®  [a(0" ' ogia, b? < [bi(0”™) s,

over R, by special multiplication with powers af Notice that avays (s— 1)t, =t; mods.
Step F(Forward Transform): For = 1 and r = 2 compute

8 . DFT[[w(a™), B — DFT[[&T)(b®)
over the ringsR,. Notice thatw® is a principal-th root of unity.
Step M (Componentwise Multiplication): Far= 1 andr = 2 compute

¢ [¢ S(m)é-i(T)Bi(r)]Osid

over _I?, by recursie gplication of the procedure.
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Step F! (Inverse Transformation)
Forr =1 andr =2 compute

&™) « DFT[[(«®)™M](&™) = IDFI[[ (&)

Step P! (Componentwise postmultiplication):
Compute

e [0 &M ocia, €@ [0 EDED g,
again by special multiplication with powersxf
Step C(Chinese remaindering): Lai(y), ho(y) OZ[y] be such that
hi()(YTh = y) + ha(y)Ws(y) = s.

By lemma 7 such polynomialgist. Let

H1ift=1

=0, , Hi=3-4,
n2ift=s-1

This makesR, = R[x, yl/(x™ -y, Wg(y)) andR, = Rx, yJ/(x™ =y, Wy(y)).
Fori « 0,...,1-1Do
Gi(x) « sq” + (x™ = y)hy(y)(c? - ) mod W(y)
(cf. Lemma 8). Notice that we nohaveng(n) = ns(m) + [k/200+1, thusns(n) = O(log(n)).

Step R(Final return): Compute

h(X) 3 ¢ (0X™ mod &" -y, We(y))

i=0

by polynomial additions and proper wrap-arouna'at y'. Return h(x). O

Theorem 1: Algorithm Polynomial Multiplication equires nlog(n)log(logn)) arithmetic
steps in the ringR. Its multiplicative complexity i©(nlog(n)). Its parallel complexity is

O(log(n)).

Proof: Let T(n), M(n), and D(n) be the total, multiplicatte, and parallel compbety, respec-
tively. From lemma 6 it easily follows that

T(n) < yymllog(l) + 21 T(m), )4, a constant,

whose solution i§ (n) = O(nlog(n) log(logn)) [1], theorem 7.8. The only multiplications occur
in step M, if we carry out the scalar multiplications in step C by additions. Thus

M(n) =2l M(m), M(s) constant,

whose solution i (n) < y,s*(k — 1), y» a ®nstant. Finallyby lemma 1 the depth satisfies
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D(n) < y3log(l) + D(m), y3 a onstant,

which clearly satisfie®(n) < y3log(n). Herewe refer also to \ithrich’s masters thesis [17] for
a cetailed analysis of the depth of the 8thage-Strassen method:

We row come to the main theorem, where we remie factors’s" without introducing
divisions. W dso generalize the algorithm to muéiriate polynomials.

Theorem 2: Let

f(Xe,..o, %)= 2 &, X 00Ky, g(Xq,.-., %) = > bi, X OOOXy OR[Xg, ... %],
0S|j<nj OS|j<nj
j=1 ..... Y, j:]_ _____ Vv

.....

Z Ckl ,,,,, kvxll(.l DDD(\Ijv = f(Xli"'! XI)g(Xl!"'! XI)
O<kj<2n;-1

j=1,...v
can be computed simultaneously @(N log(N)log(logN)) additions and sub#ctions,
O(N log(N)) multiplications, and in @og(N)) parallel depth.

Proof: The multvariate case is reduced to thevaniate one by performing the well-known Kro-
necker substitution

XJ - y(znl_l)mnj—l_l)

(cf[12]).. For the unvariate case we apply the Polynomial multiplication algorithm twicenfor
=3%>N,n,=4%>N. We et

within the stated complexityNow there exist integer§ andL with
(MK 4 474N | =1,

so computing the corresponding linear combination of the obtained multiples of todutons
we get inO(N) additional additions and multiplications the true coefficients of the product.

The abee theorem would already ta followed using the 2-fold split-up method by
Schonhage and Strassen [15] adopted to polynomial multiplication (cf [&8}).the 3-fold split-
up method by Sd@nhage. Hwever, if we havea dvision by s in R our algorithm is superior
For R [0 Zg, for example our method can be carried out with 5. Moreover, our method is
based on one generic algorithm.

There is a nice trick due to L. I. Bluestein to reduce the computation mfpaimt trans-
form, n arbitrary to an s‘-dimensional covolution problem [10], §4.3.3, Exercise 8Ve thus
have the following corollary.
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Corollary: DFT[[w]](a), @ O R invertible,a O R", R an arbitrary ring, n an abitrary positive
integer, can be computed in @ log(n) log(logn)) arithmetic operations in RO
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5. Concluding Remark

Our investigation to generalize the Sathage method ts-fold split-ups was undertak
in an attempt to speed the $ohage-Strassen method itse®ur hope was that in choosing the
sdepending om, say of order log(), the decrease in the depth of the recursion would lead to an
asymptotic impreement aerall. Unfortunatelythis appears not to help.

The main open question is, of course, to imprtne algorithm by a lotpg n factor. But
other questions are interesting as wélheorem 2 is formulated for polynomials that achie
maximum individual dgrees. Oneould consider inputs of maximum total degree

f(le"’XI): Z ail ..... i\,Xi]_lDDD(i\)/’ g(xlv--’XI): Z bil,...j\,xillljDD(i/V

OSij<n OSij<n
=LV i=L...v
i+ <n-1 i+ <n-1

and ask for the comptedy on terms of the number of monomials in the product,
_[Pn-2+v[Q
o0 v O
metic steps.*

N: It is not clear hav to compute that product i®(N log(N) log(logN)) arith-

AcknowledgementOur renewed interest in this subject was stimulated by Professor Arnold
Sclhonhage during the complexity theory meeting in Oberwolfach wefdber 1986.
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