
Uniform Closure Properties of P-Computable Functions*

Erich Kaltofen

Rensselaer Polytechnic Institute, Dept. of Computer Science
Troy, New York 12181

and

Mathematical Sciences Research Institute
Berkeley, California 94720

Preliminary Report

-2-

1. Introduction

Valiant [24] introduced the notion of a family of p-computablepolynomials as those multi-
variate polynomials of polynomially-bounded degree and straight-line computation length.He
raised the question of whether p-computable families would be closed under natural mathemati-
cal operations and showed that this is true for taking repeated partial derivatives in a single vari-
able, whereas by taking repeated partial derivatives in many variables one can obtain the general
permanent from a polynomial-sized formula.

In [12] we have introduced straight-line programs as a means of representing polynomials.
Therefore our algorithms require that the p-computable outputs can be computed from the p-
computable inputs in at least random polynomial-time.We call families satisfying this additional
requirementuniformlyclosed. Themain result in [12] can now be stated concisely as that every
family of p-computable polynomials is uniformly closed under the greatest common divisor
operation. Itis easy to show that Valiant’s closure properties are also uniform. In this paper we
establish uniform closure of families of p-computable polynomials for two more important oper-
ations, factorization and extracting the numerator and denominator of a rational function.

The factorization problem of polynomials in straight-line representation was first solved
for the case in which the factors were to be produced in sparse format [9].Unfortunately, even
sparse polynomials can have factors with super-polynomially more non-zero terms [7] and there-
fore those algorithms computing the sparse factorization can take more than polynomially-many
steps in the input size and degree. Uniformclosure for this problem, of course, guarantees that
the straight-line representation of the factors can be found in random polynomial-time in the
input degree and program length.The key idea of our solution, in addition to the contributions in
[7] and [9], is to employ Hensel lifting but to replace the p-adic expansion of the coefficients by
the expansions into homogeneous parts of the minor variables. We thus lift all minor variables
simultaneously and avoid the variable by variable lifting loop that would compound programs of
exponential size.

It is clear that unformity can be only achieved for coefficient fields over which bivariate
polynomial factorization is in polynomial-time.As the algorithms in [15] and [10] for rational
coefficients might indicate, uniformity is not any more an easy matter. Another sophisticated
tool used to establish uniformity are the effective Hilbert irreducibility theorems [6] and [11].
For rational coefficients we can prove even binary random polynomial-time for our algorithm
provided the size of the coefficients of the input polynomial is also polynomially bounded. If the
coefficient field is of positive characteristicp and the multiplicity of an irreducible factor is
divisible by p, there is an additional problem.We can, however, compute a straight-line compu-
tation for the appropriatepk-th power of such a factor.

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391
and by an IBM Faculty Development Award. Part of work on §3 and §4 was done while the author was visiting the
Tektronix Computer Research Laboratory in Beaverton, Oregon.

-3-

Let us for a moment come back to the question of factorizing into sparse polynomials.
The examples causing super-polynomial blow-up for the size of the answer have the property
that many other factors are very sparse. In general, one may wish to retrieve the sparse factors as
such and leave the dense factors in straight-line format.Fortunately, Zippel’s conversion algo-
rithm (cf [12],. §6) allows to do just that.More precisely, giv en a bound t we can now proba-
bilistically determine in polynomial-time int from the straight-line factorization the sparse for-
mat of all irreducible factors with no more thant terms, this without any restriction on character-
istic and multiplicities. Moreover, the running time is always polynomial even if we were
unlucky in our choice of evaluation points. We think that this finally settles the question of
sparse factorization in a very satisfactory manner.

We now turn to the computation of numerator and denominator of p-computable rational
functions. We note that our definition of such a family requires that there is a polynomial bound
for the length of the straight-line computations, which also contain divisions, and a polynomial
bound for the degrees of the reduced numerator and denominator of the rational functions com-
puted. Strassen[22] raised the question whether the numerators and therefore also the denomi-
nators were p-computable. Here we show that computations of polynomial-length for the numer-
ator and denominator can be found in random polynomial-time and as one consequence also set-
tle this open problem of more than a decade.The main idea for our solution comes mostly from
our uniform closure result for GCDs [12] put together with the theory of Pad ́e approximations.
Another important consequence of the p-computability of the numerator and denominator of
rational functions is that it can be used to parallelize p-computable rational functions in general.
First we note that Hyafil [8] and Valiant et al [25]. have shown how to evaluate p-computable
polynomials in parallel, that is, in polynomial-size and poly-logarithmic depth.We now can
apply this parallelization to our straight-line program for the numerator and denominator and
therefore establish that every p-computable rational function can be evaluated in parallel in poly-
nomial size and poly-logarithmic depth.

This paper is organized as follows. Section2 contains the result on polynomial factoriza-
tion. Section3 introduces the properties of Pad ́e approximants used in section 4, which contains
the construction for numerator and denominator. Section 5 concludes by raising open questions.

Notation: We use the same notation as in [12] and [9], but for the convenience of the
reader we shall repeat it here.By Q we denote the the rational numbers and by GF(q) the finite
field with q elements.F usually denotes a field and char(F) its characteristic.A polynomial f
∈ F [x1 ,..., xn] is homogeneous of degreed if

f (x1,..., xn) =
e1+⋅ ⋅ ⋅+en=d

Σ ce1,...,en
xe1

1 ⋅ ⋅ ⋅ xen
n ,

ce1,...,en
∈ F . The coefficient of the highest power ofx1 in f ∈ (F [x2 ,..., xn])[x1] is referred to

as the leading coefficient of f in x1, ldcfx1
(f). Two polynomials f1 and f2 are associates,f1 ∼

f2, if f1 = cf2 with 0 ≠ c ∈ F . For F = Q the binary size of the monomial coefficients off as
fractions of integers with a common denominator, the combined coefficient size, is denoted by

-4-

cc-size(f).

A straight-line program over a domainD is formally a quadrupleP = (X, V, C, S) where
X is the set of inputs,V the set of program variables,C the computation sequence, andS the set
of scalars occurring in the computation sequence. The length ofC is the length ofP, len(P).
Each program variablev computes an element inD. A polynomial f ∈ F [x1 ,..., xn], or a ratio-
nal function f /g ∈ F(x1 ,..., xn), is given by a straight-line programP if P = ({ x1 ,..., xn}, V,
C, S) computesf or f /g over F(x1 ,..., xn) and S ⊂ F . The programP is defined atφ : { x1 ,...,
xn} → F if no zero-division occurs when evaluating P at φ (xi) in place ofxi . The element size
of P, el-size(P), denotes the number of bits it takes to represent all elements inS.

By M(d) we denote a function dominating the time for multiplying polynomials inF [x] of
maximum degree d. Notice that for arbitrary fields the best known upper bound forM(d) is
O(d log(d) log log(d)) [20]. The cardinality of a setR is denoted by card(R). We note that for a
non-zero polynomialf the probability

Prob(f (a1,..., an) = 0 | ai ∈ R) ≤
deg(f)

card(R)
,

see [21].

2. Straight-Line Factorization

We now describe the algorithm for finding the straight-line factors of a p-computable poly-
nomial. Thealgorithm is derived from the One-Variable Lifting algorithm in [9], with the homo-
geneous parts of the minor variables replacing the monomials of the single variable with respect
to which is lifted. We will compute those homogeneous parts by straight-line programs.The
main reason why the answer is polynomial in length is that we only need to add on to the inter-
mediate programs. This is because subsequent homogeneous parts can be computed from previ-
ous ones and Strassen’s technique of obtaining a homogeneous program need not be applied at
each iteration.

Algorithm Factorization

Input: f ∈ F [x1 ,..., xn] be giv en by a straight-line programP of lengthl , a boundd ≥ deg(f),
and an allowed failure probabilityε << 1.

Output:Either “failure”, that with probability <ε , or ei ≥ 1 and irreduciblehi ∈ F [x1 ,..., xn], 1
≤ i ≤ r , giv en by a straight-line programQ of length

len(Q) = O(d2l + d M(d2) logd)

such that with probability > 1 −ε , f = Πr
i=1 hei

i . In casep = char(F) divides any ei , that isei =

pêi ei with ei not divisible byp, we returnei in place ofei andQ will computehpêi

i .

-5-

Step R(Random Points Selection): From a setR ⊂ F with

card(R) >
6

ε
max(2l+1, 4d 2d + d3)

select random elementsa1 ,..., an, b2 ,..., bn. If F = GF(q) with q small we can instead work
over GF(qp), p a prime integer >d. By Theorem 6.1 in [6] no additional factors occur.

Test whetherP is defined atφ (xi) = ai , 1 ≤ i ≤ n. For F = Q we call algorithm Zero-Division
Test in [12] such that the probability of “failure” even if P were defined atφ is less thanε /6. If P
turns out to be (probably) undefined atφ we return “failure”. Otherwise,P is definitely defined
atφ and we compute the dense representation of

f2 = f (x1 + a1, x2, b3x1 + a3,..., bnx1 + an).

This can be done by evaluation and interpolation similarly to the Sparse Conversion algorithm in
[12]. If F = Q, a bound for the cc-size(f) must be added to the input parameters and we must
again make the probability that “failure” occurs due to the use of modular arithmetic during eval-
uation less thanε /6.

Step F(Factorization): Factor

f2 =
r

i=1
Π g̃ei

i ,2,

g̃i ,2 ∈ F [x1, x2] i rreducible and pairwise not associated. Notice that by theorem 2.1 of [9]f and
f2 have with high probability the same factorization pattern, that is irreducible factors off map
to pairwise non-associated irreducible factors off2 of the same total degrees. For the remainder
of the algorithm we will assume that this is the case.

If char(F) = p > 0 divides any of the ei , say ei = pêi ei with ei not divisible byp, we replaceei

by ei andg̃i ,2 by g̃pêi

i ,2 . This replacement guarantees that none of the multiplicities are divisible by
the characteristic.

Now set

gi ,0(x1) ← g̃i ,2(x1, b2x1 + a2) ∈ F [x1].

Check whether GCD(gi ,0, g j ,0) ∼ 1 for 1 ≤ i < j ≤ r and whether deg(g̃i ,2) = deg(gi ,0) for 1 ≤ i ≤
r . If not return “failure”.

Let

f (x1,...,xn) = f (x1 + a1, x2 + b2x1 + a2,...,xn + bnx1 + an)

=
r

i=1
Π hi (x1,...,xn)ei ,

and assume thathi are the irreducible factors that correspond tõgi ,2. Notice that the assumptions

-6-

on the preservation of the total degrees of the factors throughout the evaluation process also
imply that

ldcfx1
(f) ∈ F . (*)

Furthermore, letP be a straight-line program computingf . We write

f (x1,..., xn) =
d

j=0
Σ

d

m=0
Σ f j ,m(x2,..., xn) xm

1 ,

such thatf j ,m ∈ F [x2 ,..., xn] is homogeneous of degree j . We remark thatd can now be set to
deg(f) rather than a bound for it.We will need a straight-line program computingf j ,m. If we

replacexi by xi x
d+1
1 , 2 ≤ i ≤ n, in P then f j ,m is the coefficient ofx j (d+1)+m

1 . Therefore by evalu-
ating at x1 and interpolating as in the Polynomial Coefficients algorithm [12] we can find a
straight-line programQ0 for f j ,m of length

len(Q0) = O(d2l + M(d2) logd).

Notice that we need to randomly pick (d + 1)2 points at which we interpolate and we must make
sure that the straight-line programP is defined at those points.If that is not the case, or if forF
= Q we cannot confirm by the Zero-Division Test algorithm [12] that a point is good, that with
probability <ε /(6(d + 1)2), we return “failure”. For more details we refer to step P in the cited
Polynomial Coefficients algorithm.

Step H (Hensel Lifting Loop): FORk ← 0 ,..., d− 1 DO step L.

Step L (Lift by One Degree): Let

hi (x1,..., xn) =
di

m=0
Σ

di

j=0
Σ ci , j ,m(x2,..., xn) xm

1 ,

di = deg(hi), whereci , j ,m(x2 ,..., xn) ∈ F [x2 ,..., xn] is homogeneous of degree j . At this point
we have a straight-line programQk over F(x2 ,..., xn) that computesci , j ,m for 1 ≤ i ≤ r , 0 ≤ j ≤
k, 0 ≤ m ≤ di . Notice thatci ,0,m ∈ F is the coefficient ofxm

1 in gi ,0, and that by (*)ci , j ,di
= 0 for

j > 0. We will extendQk to Qk+1 that also computesci ,k+1,m. It is useful to introduce the follow-
ing polynomials

gi ,k =
k

j=0
Σ

di

m=0
Σ ci , j ,mxm

1 , ĝi ,k+1 =
di

m=0
Σ ci ,k+1,mxm

1 .

Now consider the congruence

r

i=1
Π(gi ,k + ĝi ,k+1)ei ≡ f mod (x2,..., xn)k+2. (†)

Expanding the LHS we get

-7-

ge1−1
1,0 ⋅ ⋅ ⋅ ger −1

r ,0

r

i=1
Σ(ei ĝi ,k+1

r

j=1

j≠i

Π g j ,0)

≡ f −
r

i=1
Π gei

i ,k mod (x2,..., xn)k+2.

(‡)

By our loop invariant forQk

f −
r

i=1
Π gei

i ,k ≡

τ =
d−1

m=0
Σ τ m(x2,..., xn) xm

1 mod (x2,..., xn)k+2,

whereτ m ∈ F [x2 ,..., xn] is homogeneous of degreek + 1. Noticethat the degree inx1 is d − 1
by the assumption (*).We need a programQτ over F(⋅ ⋅ ⋅, ci , j ,m ,..., f j ,m, ⋅ ⋅ ⋅) that computes
τ m. If Qτ encodes a tree-like multiplication scheme that can be done in

len(Qτ) = O(M(d2) logd).

By our assumption that we lift a true factorization, (‡) is solvable in̂gi ,k+1 and hencege1−1
1,0 ⋅ ⋅ ⋅

ger −1
r ,0 must divideτ . Let

ρ =
d1+⋅ ⋅ ⋅+dr −1

m=0
Σ ρ m(x2,..., xn) xm

1 =
τ

ge1−1
1,0 ⋅ ⋅ ⋅ ger −1

r ,0

,

ρ m ∈ F [x2,..., xn]. As before, we need a straight-line programQρ over F(⋅ ⋅ ⋅, τ m, ⋅ ⋅ ⋅) that
computes allρ m. A simple encoding of polynomial division takes len(Qρ) = O(M(d)). Now
consider

ρ
g1,0 ⋅ ⋅ ⋅ gr ,0

=
e1ĝ1,k+1

g1,0
+ ⋅ ⋅ ⋅ +

er ĝr ,k+1

gr ,0
.

It is clear thatei ci , j ,k+1 are the coefficients of the univariate partial fraction decomposition of
ρ /(g1,0 ⋅ ⋅ ⋅ gr ,0) carried out over the fieldF(x2 ,..., xn). Oneway to compute these coefficients
by a straight-line program̂Qk+1 with len(Q̂k+1) = O(M(d)) is to once and for all find̂gi ,0 ∈ F [x1]
with

1

g1,0 ⋅ ⋅ ⋅ gr ,0
=

ĝ1,0

g1,0
+ ⋅ ⋅ ⋅ +

ĝr ,0

gr ,0
, deg(ĝi ,0) < di ,

and encode the polynomial remaindering

ĝi ,k+1 =
ĝi ,0 ρ mod gi ,0

ei
, 1 ≤ i ≤ r .

We must be able to divide byei and here we need the fact that the multiplicities must not be
divisible by char(F). We finally link the programsQk, Qτ , Qρ , and Q̂k+1 properly together to
obtain the programQk+1. Notice that

-8-

len(Qk+1) ≤ len(Qk) + C M(d2) logd,

whereC is an absolute constant. From this relation we can infer the length ofQ.

Step T (Final Translation): FromQd we obtainQ which computes

hi (x1 − a1, x2 − b2(x1 − a1) − a2,..., xn − bn(x1 − a1) − an)

by adding in front ofQd instructions for translating thexi appropriately.

We now analyze the failure probabilities of the Factorization algorithm. The only way an
incorrect programQ can be produced is that the factorization patterns off and f2 disagree. By
theorem 2.1 in [9] this happens with probability <

4d 2d + d3

card(R)
< ε .

“Failure” can occur in six separate circumstances.First, P may be undefined atφ , that
with probability < 2l+1/card(R) < ε /6 by an argument similar to that used in Lemma 4.3 of [12].
Second, forF = Q we might fail to recognize thatP is defined atφ , but we make this possibility
happen with probability <ε /6. Third, for F = Q the computation off2 may fail with probability
< ε /6.

Fourth, “failure” can occur if for somei ≠ j , GCD(gi ,0, g j ,0) ∼| 1, or deg(gi ,0) < deg(g̃i ,2).
Let π i (β2) = ldcfx1

(g̃i ,2(x1, β2x1 + α2) and let

σ i , j (α2, β2) =
resultantx1

(g̃i ,2(x1, β2x1 + α2), g̃ j ,2(x1, β2x1 + α2))

over F [α2, β2, x1]. It is easy to see that 0≠ π i σ i , j ∈ F [α2, β2] and π i (b2) σ i , j (a2, b2) ≠ 0
implies that the above events are impossible.Now, deg(π i) ≤ di and deg(σ i , j) ≤ 2di d j and there-
fore the probability that the above events occur for anyi ≠ j is less than

r

i=1
Σ di

card(R)
+

1≤i< j≤r
Σ

2di d j

card(R)

<
(d1 + ⋅ ⋅ ⋅ +dr)

2

card(R)
<

d2

card(R)
<

ε
6

.

Notice that ifP were division-free, this event would be the only one where failure could occur.

Fifth, we may not find good interpolation points in order to produceQ0. If we try at most
(d + 1)4 points, the probability that at least (d + 1)2 = d * points are good can be estimated like in
the proof of [12], Theorem 5.1.We shall repeat the argument here. An individual point was not
picked earlier with probability≥ 1 − (d + 1)4/card(R) > 1 − ε /12. P is not defined at an individ-
ual point substituted forx1 with probability < 2l+1/card(R) < ε /12. Hencea suitable point can be
found in a block ofd * points with probability >

-9-

1 − (ε *) d* > 1 −
ε *

d *
, ε * =

ε
6

,

because (1/ε *) d*−1 > 2d*−1 ≥ d * f or ε * < 1/2. Now the probability that a good point occurs in
all of thed * blocks of points is >

(1 −
ε *

d *
)d* > 1 − ε *

and therefore failure happens with probability <ε /6.

Sixth and last, forF = Q we may not recognize that we have good interpolating points,
that for all (d + 1)2 points together with probability <ε /6. We hav eestablished the following
theorem.

Theorem 2.1: Algorithm Factorization does not fail with probability > 1 −ε . In that case it
reduces the problem in polynomially many steps as a function in len(P) and d to factoring bivari-
ate polynomials.Its answer will be correct with probability > 1 −ε . It requires polynomially
many randomly selected field elements.For F = Q or F = GF(q) the algorithm has binary poly-
nomial complexity also in log(1/ε), el-size(P), and cc-size(f).

We now formulate two corollaries to this theorem. The first refers to computing the sparse
factorization of f and follows from [12], §6.

Corollary 2.1: If in addition to the input parameters of the Factorization algorithm we are given
t > 0, for F = Q or F = GF(q) we can find in polynomially many binary steps and random bit
choices in

len(P), d, log(
1

ε
), el-size(P), cc-size(f), andt

sparse polynomials that with probability > 1 −ε constitute all irreducible factors off with no
more thant monomials.

Notice that the above running time is always polynomial independently whether the correct
sparse factors were produced or whether other factors are dense. This makes this corollary supe-
rior to all previous work on sparse factorization. Thesecond corollary deals with possibly non-
uniform closure.

Corollary 2.2: Let F be a field of characteristic 0. Then any family of factors of a family of p-
computable polynomials over F is p-computable.

Notice that this corollary applies even to fields in which arithmetic is recursive but over
which polynomial factorization is undecidable [4]. It also shows that a polynomial degree bound

is necessarily required.We note thatx2d

− 1 can be computed withO(d) instructions but it is

known that over the complex numbers there exist factors that requireΩ(2d/2/√ d) computation
length [16] and [18]. It would be nice to give such an example where the factors are irreducible

-10-

polynomials over Q.

3. Pad ́e Approximants

We now review those properties of Pad ́e approximants that we need in §4.However, we
will not prove any of these properties and instead refer to [1] for an in depth discussion and the
references into the literature. Let

f (x) = c0 + c1x + c2x2 + ⋅ ⋅ ⋅ ∈ F [[x]], c0 ≠ 0, d, e ≥ 0,

be given. Goingback to Frobenius 1881 a rational functionp(x)/q(x) is called a (d, e)-Pad ́e
approximant tof if

deg(p) ≤ d, deg(q) ≤ e,

f (x) q(x) − p(x) ≡ 0 mod xd+e.
(†)

It turns out that for any pair (d, e) there always exists a solution to (†) and that furthermore the
ratio p/q is unique. This ratio forms the entry in row d and columne of an infinite matrix
referred to as Pad ́e table. AlreadyKronecker 1881 realized that the entries in thed + e anti-diag-
onal of the Pad ́e table are closely related to the Euclidean remainder sequence of

f−1(x) = xd+e+1, f0(x) = c0 + c1x + ⋅ ⋅ ⋅ +cd+exd+e.

Consider the extended Euclidean scheme

si (x) f−1(x) + ti (x) f0(x) = fi (x),

fi (x) = fi−2(x) mod fi−1(x), i ≥ 1.

Then for the smallest index i with deg(fi) ≤ d we have deg(ti) ≤ e and fi /ti is the (d, e)-Pad ́e
approximant tof . Furthermore, GCD(fi , ti) = xk for somek ≥ 0. Thusany algorithm for com-
puting the extended Euclidean scheme results in one for the (d, e)-Pad ́e approximant. Notethat
the assumptionc0 ≠ 0 is unessential by changing the lower bound ford.

The classical Euclidean algorithm gives a O((d + e)2) method for computing the
(d, e)-Pad ́e approximant. Theingenious algorithm by Knuth [13] that was improved by
Sch ̈onhage [19] and applied to polynomial GCDs by Moenck [17] allows to compute the triple
(fi , si , ti) with deg(fi) ≤ d, deg(fi−1) > d, in O(M(d + e) log(d + e)) operations inF .

4. Numerators and Denominators of Rational Functions

We now describe the algorithm that transforms a straight-line computation for a rational
function of known degree to one for its (reduced) numerator and denominator. The key idea is
that by substitutingxm + bmx1 for xm, 2 ≤ m ≤ n, we can make the problem a univariate problem
in x1 over the fieldF(x2 ,..., xn), as was already done in [12].We then recover the fraction from
its Taylor series approximation by computing the Pad ́e approximant in F(x2 ,..., xn)[[x1]].

-11-

Since that approximant is unique it must be the reduced numerator and denominator.

Algorithm Rational Numerator and Denominator

Input: A straight-line programP over F(x1 ,..., xn) of lengthl that computesf /g, f , g ∈ F [x1

,..., xn] relatively prime, andd ≥ deg(f), e ≥ deg(g), and a failure allowanceε << 1. We shall
make the assumption thatd, e ≤ 2l since the latter is always a bound.

Output:Either “failure” (that with probability <ε) or a straight-line programQ over F(x1 ,...,
xn) of lengthO(l M (d + e)) such thatQ computesf andg correctly with probability > 1 −ε .

Step T (Translation): Froma set R ⊂ F with

card(R) >
2(2C3+2) l M (d+e)

ε

select random elementsa1 ,..., an, b2 ,..., bn. Here the constantC3 depends on the polynomial
multiplication algorithm used.If F is a finite field with too small a cardinality, we can work in
an algebraic extension ofF instead. Sincethe results can be computed by rational operations in
F they remain invariant with respect to field extensions.

Test whetherP is defined atφ (xm) = am, 1 ≤ m ≤ n. For F = Q we call the algorithm Zero-Divi-
sion Test in [12], §3, such that the probability of “failure” occurring even if P is defined atφ is
less thanε . If in this testP turns out to be (probably) undefined atφ we return “failure”.

Now we translate the inputs ofP as x1 ← y1 + a1, xm ← ym + bmy1, 2 ≤ m ≤ n. Let P be the
straight-line program computingf /g where

h(y1,..., yn) =
h(y1 + a1, y2 + b2y1,...,yn + bny1) for h∈F [x1,..., xn].

Now P is defined atφ (y1) = 0. Also with high probability

ldcfy1
(f) ∈ F . (*)

Step S(Power Series Approximation): Compute a straight-line programQ1 over F(y2 ,..., yn)
such that for the coefficients of the power series

f

g
= c0(y2,..., yn) + c1(y2,..., yn)y1 + ⋅ ⋅ ⋅

+ cd+e(y2,..., yn)y1
d+e + ⋅ ⋅ ⋅, (†)

ci are computed byQ1 for all 0 ≤ i ≤ d + e. This can be done by directly applying the Polyno-
mial Coefficients algorithm of [12], §4. Notice that len(Q1) ≤ C1 l M (d + e), whereC1 is a con-
stant solely depending on the multiplication algorithm used.

-12-

Step P(Pad ́e Approximation): Computea straight-line programQ2 over F(y2 ,..., yn) that with
high probability computes the (d, e)-Pad ́e approximationp/q, p, q ∈ F(y2 ,..., yn)[y1] to (†).
From §3 we know that this can be accomplished by an extended Euclidean algorithm.Essen-
tially, we perform such an algorithm on the coefficient vectors (ci)0≤i≤d+e and that ofy1

d+e+1. In
order to test elements inF(y2 ,..., yn) for zero we evaluate the program computing these ele-
ments atψ (ym) = am, 2 ≤ m ≤ n. The details of this method for the classical subresultant algo-
rithm can found in [12], §5.If we use the asymptotically fast Knuth-Schönhage procedure (see
also [3] for a full description of the algorithm) then

len(Q2) ≤ C1 l M (d + e) + C2 M(d + e) log(d + e)

≤ C3 l M (d + e), (‡)

whereC2 andC3 are again constants solely depending on the polynomial multiplication proce-
dure used. Notice that the produced straight-line program may be incorrect (that with small
probability) since we may have incorrectly certified an element to be zero.

Once we have a straight-line program for polynomialsfi and ti ∈ F(y2 ,..., yn)[y1] in the
extended Euclidean scheme we must findk ≥ 0 such that GCD(fi , ti) = y1

k over F(y2 ,...,
yn)[y1]. This we can again accomplish probabilistically by evaluating the coefficients iny1 of fi

andti .

If we make ldcfy1
(p) = 1, then with high probabilityp is an associate off in F [y1 ,..., yn]. This

is because of (*) and because Pad ́e approximants are unique.

Step T (Back-translate): TheprogramQ is obtained by putting assignments for the back-transla-
tions

y1 ← x1 − a1, ym ← xm − bm(x1 − a1), 2≤ m≤ n,

in front ofQ2.

We shall now analyze the overall failure probability of the Rational Numerator and
Denominator algorithm.“Failure” is only returned ifP is not defined or is not recognized to be
defined atφ . Howev er, sev eral events must take place in order that the correct answer is
returned. First,ldcfy1

(f) ∈ F that justifies the normalization ofp in step P. By lemma 5.1 in
[12] this happens with probability≥

1 −
d

card(R)
> 1 −

ε
4

.

Second, all zero-tests performed by evaluating atψ (ym) = am, 2 ≤ m ≤ n, must give the correct
answer. This is true if the Knuth-Scḧonhage algorithm performed over F(y2 ,..., yn) takes the
same course as the algorithm performed over F on the elements obtained by evaluating atψ . In
other words, no non-zero element that is tested or by which is divided must evaluate to 0.Since
the algorithm takes no more than

-13-

C2 M(d + e) log(d + e)

steps, the degree of any unreduced numerator and denominator of these elements is by (‡) no
more than

2C3 l M (d+e).

A (pessimistic) estimate for the number of elements to be tested and by which is divided, includ-
ing the determination ofk, is

C3 l M (d + e) + (d + e) < (C3 + 1) l M (d + e).

Therefore the probability that all tests lead to the same result atψ and that all division are possi-
ble atψ is no less than

1 −
(C3 + 1) l M (d + e) 2C3 l M (d+e)

card(R)
> 1 −

ε
2

.

Hence a correct programQ is output with probability > 1 − 3/4ε .

In caseF = Q one more additional possibility of returning an incorrect result must be
accounted for, namely that the Zero Test algorithm in [12], §3, might not recognize a non-zero
evaluation atψ properly. Howev er, the probability of such an event can be controlled, say we
allow it to happen only with probability no more than

ε
4 (C2 + 1) M(d + e) log(d + e)

.

Then all tests succeed with probability > 1 −ε /4 and a correct program is output with probability
> 1 − ε . In summary, we hav ethe following theorem.

Theorem 4.1: Algorithm Rational Numerator and Denominator does not fail and outputs a pro-
gramQ that computesf andg with probability > 1 − 2ε . It requires polynomially many arith-
metic steps as a function of len(P), d, and e. For F = Q this is also true for its binary complexity
which also depends on el-size(P). Thealgorithm needs polynomially many randomly selected
field elements (bits forF = Q).

We now formulate three corollaries to the theorem. The first corollary deals with distin-
guishing straight-line programs that compute polynomials from those that do not.It is clear that
if we have the boundsd ande we only need to probabilistically inspect the degree ofg after we
have a straight-line program for it. But what if we do not have a-priori degree bounds? What we
do then is to run our algorithm for

d = e = 2k, k = 1, 2, 3,⋅ ⋅ ⋅.

Let fk andgk be the numerator and denominator whose computation is produced.For randomly
chosena1 ,..., an ∈ F we then probabilistically test whether

-14-

f

g
(a1,..., an) =

fk(a1,..., an)

gk(a1,..., an)
.

If the test is positive, with high probability f = fk andg = gk. We hav ethe following corollary,
which also extends the result in [6], Remark 5.6, on probabilistically guessing the degree of a
polynomial given by a straight-line program.

Corollary 4.1: Let f /g be given by a straight-line programP over F(x1 ,..., xn). Thenwe can
in random polynomial-time in len(P) and deg(f) + deg(g) determine deg(f) and deg(g) such
that with probability > 1 −ε no failure occurs and the answer is correct. In particular, we can
decide whetherf /g ∈ F [x1 ,..., xn].

For simplicity we state the next corollaries over infinite fields although this can be avoided
as mentioned in step D. The next one resolves Strassen’s question on computing the numerator
and denominator of a rational function without divisions. By

LD(r1,..., rm | s1,..., sn), r i , sj ∈ D,

we denote the non-scalar or total complexity of computingr i from sj over D, see e.g [22]..

Corollary 4.2: Let F be a infinite field. Then

LF [x1,...,xn](f , g | x1,...,xn) =

O(M(deg(fg))2 LF(x1,...,xn)(f /g | x1,...,xn)),

whereM(d) is the corresponding complexity of multiplyingd-degree polynomials. In the non-
scalar caseM(d) = O(d).

The third corollary concerns the parallelization of a straight-line computation for a rational
function. From[25] we get.

Corollary 4.3: Let P be a straight-line program of lengthl over F(x1 ,..., xn), F infinite, that
computesf /g where deg(f), deg(g) ≤ d. Then there exists a straight-line programQ of depth
O((log d) (log d + log l)) and size (l d)O(1) that also computesf /g.

5. Conclusion

The question arises what major unresolved problems in the subject of polynomial factor-
ization remain. One theoretical question is to remove the necessity of random choices from any
of the problems known to lie within probabilistic polynomial-time, say factorization of univariate
polynomials over large finite fields.Another problem is to investigate the parallel complexity of
polynomial factorization, say for theNC model [2]. Kronecker’s reduction from algebraic num-
ber coefficients [23] and [14], Berlekamp’s factorization algorithm over small finite fields [5],
Kaltofen’s deterministic Hilbert irreducibility theorem [10], §7, and Weinberger’s irreducibility
test forQ[x] [26] all lead toNC solutions by simply applying known NC methods for linear

-15-

algebra problems. It is open whether factoring inQ[x] or irreducibility testing inFp[x], p large,
or in Q[x, y] can be accomplished inNC.

In connection with the Factorization algorithm presented here, we also mention an open
question. Assumethat a straight-line program computes a polynomial whose degree is exponen-
tial in the length of the program. Are then at least its factors of polynomially bounded degree p-
computable? Apositive answer to this question would show that testing a polynomial for zero in
a suitable decision-tree model is polynomial-time related to computing that polynomial. In gen-
eral the theory of straight-line manipulation of polynomials may be extendable in part to
unbounded input degrees, but even for the elimination of divisions problem [22] the answer is
not known.

Nonetheless, in this paper we were able to contribute to Valiant’s algebraic counterpart of
the theory ofP vs. NP in the positive, that is establish a polynomial upper bound for a major
problem in computational algebra. In fact, it comes to us as a small surprise that p-computable
polynomials are closed under factorization. Andwe have, finally, put to rest the problem of com-
puting the sparse factorization of a multivariate polynomial.

Acknowledgement: A conversation with Allan Borodin during this conference last year trig-
gered the construction of the Rational Numerator and Denominator algorithm.Tom Spencer
very recently pointed out the possible connection between the factorization question and the rela-
tive power of decision vs. computation problems.

References

1. Brent,R. P., Gustavson, F. G., and Yun, D. Y. Y., “Fast solution of Toeplitz systems of equations and compu-
tation of Pad ́e approximants,”J. Algorithms1, pp. 259-295 (1980).

2. Cook,S. A., “A taxonomy of problems with fast parallel algorithms,”Inf. Control 64, pp. 2-22 (1985).

3. Czapor, S. R. and Geddes, K. O., “A comparison of algorithms for the symbolic computation of Pad ́e approx-
imants,”Proc. EUROSAM ’84, Springer Lec. Notes Comp. Sci.174, pp. 248-259 (1984).

4. Fr̈ohlich, A. and Shepherdson, J. C., “Effective procedures in field theory,” Phil. Trans. Roy. Soc., Ser. A 248,
pp. 407-432 (1955/56).

5. Gathen,J. von zur, “Parallel algorithms for algebraic problems,”SIAM J. Comp.13, pp. 802-824 (1984).

6. Gathen,J. von zur, “Irreducibility of multivariate polynomials,”J. Comp. System Sci.31, pp. 225-264 (1985).

7. Gathen,J. von zur and Kaltofen, E., “Factoring sparse multivariate polynomials,” J. Comp. System Sci.31,
pp. 265-287 (1985).

8. Hyafil,L., “On the parallel evaluation of multivariate polynomials,”SIAM J. Comp.8, pp. 120-123 (1979).

9. Kaltofen,E., “Computing with polynomials given by straight-line programs II; Sparse factorization,”Proc.
26th IEEE Symp. Foundations Comp. Sci.,pp. 451-458 (1985).

10. Kaltofen,E., “Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factor-
ization,” SIAM J. Comp.14, pp. 469-489 (1985).

-16-

11. Kaltofen,E., “Effective Hilbert irreducibility,” Information and Control66, pp. 123-137 (1985).

12. Kaltofen,E., “Greatest common divisors of polynomials given by straight-line programs,” J. ACM 35(1), pp.
231-264 (1988).

13. Knuth, D. E., “The analysis of algorithms,” Actes du congr`es international des Mathématiciens3, pp.
269-274, Nice, France (1970).

14. Landau,S., “Factoring polynomials over algebraic number fields,”SIAM J. Comp.14, pp. 184-195 (1985).

15. Lenstra,A. K., Jr., H. W. Lenstra, and Lovász, L., “Factoring polynomials with rational coefficients,” Math.
Ann.261, pp. 515-534 (1982).

16. Lipton, R. and Stockmeyer, L., “Evaluations of polynomials with superpreconditioning,” Proc. 8th ACM
Symp. Theory Comp.,pp. 174-180 (1976).

17. Moenck,R. T., “Fast computation of GCDs,”Proc. 5th ACM Symp. Theory Comp.,pp. 142-151 (1973).

18. Schnorr, C. P., “Improved lower bounds on the number of multiplications/divisions which are necessary to
evaluate polynomials,”Theoretical Comp. Sci.7, pp. 251-261 (1978).

19. Scḧonhage, A., “Schnelle Kettenbruchentwicklungen,”Acta Inf.1, pp. 139-144 (1971). (In German).

20. Scḧonhage, A., “Schnelle Multiplikation von Polynomenüber Körpern der Charakteristik 2,” Acta Inf. 7, pp.
395-398 (1977). (In German).

21. Schwartz, J. T., “Fast probabilistic algorithms for verification of polynomial identities,” J. ACM 27, pp.
701-717 (1980).

22. Strassen,V., “Vermeidung von Divisionen,”J. reine u. angew. Math.264, pp. 182-202 (1973). (In German).

23. Trager, B. M., “Algebraic factoring and rational function integration,”Proc. 1976 ACM Symp. Symbolic Alge-
braic Comp.,pp. 219-228 (1976).

24. Valiant, L., “Reducibility by algebraic projections,”L’Enseignement mathématique28, pp. 253-268 (1982).

25. Valiant, L., Skyum, S., Berkowitz, S., and Rackoff, C., “Fast parallel computation of polynomials using few
processors,”SIAM J. Comp.12, pp. 641-644 (1983).

26. Weinberger, P. J., “Finding the number of factors of a polynomial,”J. Algorithms5, pp. 180-186 (1984).

