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1. Introduction

Valiant [24] introduced the notion of arhily of p-computableolynomials as those multi-
variate polynomials of polynomially-bounded degree and straight-line computation Iadgth.
raised the question of whether p-computable families would be closed under natural mathemati-
cal operations and showed that this is true for taking repeated partatidesiin a sngle vari-
able, whereas by taking repeated partialvdivies in mary variables one can obtain the general
permanent from a polynomial-sized formula.

In [12] we hae introduced straight-line programs as a means of representing polynomials.
Therefore our algorithms require that the p-computable outputs can be computed from the p-
computable inputs in at least random polynomial-tiMé all families satisfying this additional
requiremenuniformly closed. Themain result in [12] can no be gated concisely as thavery
family of p-computable polynomials is uniformly closed under the greatest commimordi
operation. ltis easy to she that \aliant’s dosure properties are also uniform. In this paper we
establish uniform closure of families of p-computable polynomials fombare important oper
ations, factorization and extracting the numerator and denominator of a rational function.

The factorization problem of polynomials in straight-line representation was firsdsolv
for the case in which the factors were to be produced in sparse formainf@jritunately even
sparse polynomials canveafactors with super-polynomially more non-zero terms [7] and there-
fore those algorithms computing the spaesetdrization can takmore than polynomially-man
steps in the input size andgiee. Uniformclosure for this problem, of course, guarantees that
the straight-line representation of thectiors can be found in random polynomial-time in the
input degree and program lengthhe ley idea of our solution, in addition to the contributions in
[7] and [9], is to emplp Hensel lifting lut to replace the p-adic expansion of the coefficients by
the expansions into homogeneous parts of the miaagables. V& thus lift all minor \ariables
simultaneously andvaid the variable by ariable lifting loop that would compound programs of
exponential size.

It is clear that unformity can be only acked for coeficient fields @er which bvariate
polynomial factorization is in polynomial-timeAs the algorithms in [15] and [10] for rational
coeficients might indicate, uniformity is not yanmore an easy matterAnother sophisticated
tool used to establish uniformity are thdéeefive Hlbert irreducibility theorems [6] and [11].
For rational coefficients we can pm ezen binary random polynomial-time for our algorithm
provided the size of the cdefients of the input polynomial is also polynomially bounded. If the
coeficient field is of positie characteristicp and the multiplicity of an irreducible factor is
divisible by p, there is an additional problenWe an, havever, compute a straight-line compu-
tation for the appropriatp*-th power of such a factor.

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391
and by an IBM Faculty Delopment Avard. Part of work on 83 and 84 was done while the authas wisiting the
Tektronix Computer Research Laboratory in B&ton, Oregon.
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Let us for a moment come back to the question of factorizing into sparse polynomials.

The examples causing super-polynomial blow-up for the size of the ansveethbaproperty

that mawy other factors are very sparse. In general, one may wish toveetne sparse factors as
such and leae the dense factors in straight-line form#&tortunately Zippel's wmrnversion algo-

rithm (cf [12],. 86) allows to do just thaMore preciselygiven a lbundt we can nw proba-
bilistically determine in polynomial-time ihfrom the straight-line factorization the sparse for
mat of all irreducible factors with no more thiaterms, this without anrestriction on character

istic and multiplicities. Moreover, the running time is alays polynomial egen if we were
unlucky in our choice of galuation points. We think that this finally settles the question of
sparse factorization in a very satisfactory manner.

We row turn to the computation of numerator and denominator of p-computable rational
functions. V& rnote that our definition of such a family requires that there is a polynomial bound
for the length of the straight-line computations, which also contain divisions, and a polynomial
bound for the dgrees of the reduced numerator and denominator of the rational functions com-
puted. Strassef22] raised the question whether the numerators and therefore also the denomi-
nators were p-computable. Here wewlibat computations of polynomial-length for the numer
ator and denominator can be found in random polynomial-time and as one consequence also set-
tle this open problem of more than a decatlee main idea for our solution comes mostly from
our uniform closure result for GCDs [12] put together with the theoryadf Boproximations.
Another important consequence of the p-computability of the numerator and denominator of
rational functions is that it can be used to parallelize p-computable rational functions in general.
First we note that Hyafil [8] andaliant et al [25]. have shown hawv to evaluate p-computable
polynomials in parallel, that is, in polynomial-size and poly-logarithmic dejb. ow can
apply this parallelization to our straight-line program for the numerator and denominator and
therefore establish thavey p-computable rational function can beleated in parallel in poly-
nomial size and poly-logarithmic depth.

This paper is @anized as follavs. Sectior? contains the result on polynomiadtoriza-
tion. Sectior3 introduces the properties o goproximants used in section 4, which contains
the construction for numerator and denominag&action 5 concludes by raising open questions.

Notation We uwse the same notation as in [12] and [9], but for thev@vance of the
reader we shall repeat it herBy Q we denote the the rational numbers and bygpe finite
field with g elements.F usually denotes a field and chay(its characteristicA polynomial f
OF[Xq1,..., %] is homogeneous of degrekif

f(Xp, oo %)= X Cep e Xg DOOX,

e, +Fe,=d

,,,,, e, U F. The coefficient of the highest powerxfin f O (F[X,,..., X])[x{] is referred to
as the leading coldient of f in xy, Idcf, (f). Two polynomials f; and f, are associated; [
fy, if f; =cf, with 02 c OF. For F = Q the binary size of the monomial coefficientsfols
fractions of integers with a common denominatbe combined coefficient size, is denoted by



cc-sizeff).

A straight-line program wer a domainD is formally a quadrupl® = (X, V, C, S) where
X is the set of inputs/ the set of programariablesC the computation sequence, athe set
of scalars occurring in the computation sequence. The lendgthi®fthe length ofP, len(P).
Each programariablev computes an element . A polynomial f OO F[x4,..., X,], or a ratio-
nal functionf/g O F(X; ,..., %), iS gven by a sraight-line progranP if P = ({x;,..., ,}, V,
C, S) computesf or f/gover F(Xq,..., %) and SO F. The progran® is defined at: { Xy ,...,
Xn} — F if no zero-division occurs whervauating P at ¢(x;) in place ofx;. The element size
of P, d-size(P), denotes the number of bits it takes to represent all elemegits in

By M(d) we denote a function dominating the time for multiplying polynomialB i®] of
maximum dgreed. Notice that for arbitrary fields the best known upper boundvi¢d) is
O(dlog(d) log logd)) [20]. The cardinality of a séR is denoted by caré). We note that for a
non-zero polynomiaf the probability

) deg(f)
Prob(f(ay,...., &) =0|a UR) < card®) '

see [21].

2. Straight-Line Factorization

We row describe the algorithm for finding the straight-liaetbrs of a p-computable poly-
nomial. Thealgorithm is dened from the One-Variable Lifting algorithm in [9], with the homo-
geneous parts of the minoanables replacing the monomials of the single variable with respect
to which is lifted. We will compute those homogeneous parts by straight-line progrdines.
main reason wnthe answer is polynomial in length is that we only need to add on to the inter
mediate programs. This is because subsequent homogeneous parts can be computed-from pre
ous ones and Strasserechnique of obtaining a homogeneous program need not be applied at
each iteration.

Algorithm Factorization

Input: f OF[Xy,..., %] be gven by a graight-line progranP of lengthl, a boundd = deg(f),
and an allowed failure probability<< 1.

Output:Either “failure”, that with probability <, or e =1 and irreducibleh; OF[X; ,..., %], 1
<i<r, given by a sraight-line progran®) of length

len@Q) = O(d?l +d M(d?) logd)

such that with probability > 1 2, f =[]/, h¥. In casep = char(F) divides ay e, that isg, =
p® & with & not divisible byp, we returng, in place ofe, andQ will computehipe‘.
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Step R(Random Points Selection): From a Befl F with
6
cardR) > p max(2*, 4d 29 + d®)

select random elements ,..., a,, b, ,..., h,. If F = GF(g) with g small we can insteadork
ove GF(gP), p a prime integer >d. By Theorem 6.1 in [6] no additional factors occur.

Test whetherP is defined at(x;) = a, 1<i <n. For F = Q we call algorithm Zero-Dision
Test in [12] such that the probability ofditure” even if P were defined apis less tharz/6. If P
turns out to be (probably) undefinedgatve return “dilure”. OtherwiseP is definitely defined
at ¢ and we compute the dense representation of

f2 = f(X1+a1, Xo, b3X1+ag,..., b1X1+an).

This can be done byauation and interpolation similarly to the Sparse @osion algorithm in
[12]. If F = Q, a lound for the cc-sizd() must be added to the input parameters and we must
acpin male the probability that “failure” occurs due to the use of modular arithmetic duahg e
uation less than/6.

Step F(Factorization): Factor
r
fy= ﬂ gﬁz:
i=1

Gi » O F[Xq, X] irreducible and pairwise not associated. Notice that by theorem 2.1 bj&j
f, have with high probability the same factorization pattern, that is irreducible factorsadp
to pairwise non-associated irreducible factord.06f the same total dgees. Br the remainder
of the algorithm we will assume that this is the case.

If char(F) = p > 0 dvides a of thee, say e = p & with & not divisible byp, we replacee,

by & andg; , by g,pz This replacement guarantees that none of the multiplicities \dsgtk by
the characteristic.

Now set

Gio(X1) < Gio(Xq, boxq +a5) OF[xq].

Check whether GCIZ o, gj0) 01 for 1<i < j <r and whether dgg; ,) = ded(di o) for 1<i <
r. If not return “failure”.

Let
f(X1,... Xn) = F(Xg +ag, Xo + DoXq +@,... Xp + by Xg + Q)
! €
= r! hi (Xq,.... %)%,
i=

and assume thét are the irreducibleaictors that correspond &,. Notice that the assumptions



-6-
on the preservation of the total degrees of #ieofs throughout thevauation process also
imply that

dcf, (f) OF. *

Furthermore, leP be a straight-line program computifig We write

_ d d _
F(Xp %) = 2 2 B n(Xaron %) X7
j=0 m=0
such thatfj-,m OF[X5,..., %] is homogeneous of deeej. We remark thad can nav be t to

deg(f) rather than a bound for itWe will need a straight-line program computirigm. If we
replacex; by x, x{*, 2<i < n, in P then f , is the coefficient ok}"™*™. Therefore by ealu-
ating atx; and interpolating as in the Polynomial Cfaménts algorithm [12] we can find a

straight-line progran@, for ﬂlm of length
len(@Qo) = O(d?l + M(d?)logd).

Notice that we need to randomly piak+ 1) points at which we interpolate and we must ak
sure that the straight-line prograis defined at those pointsf that is not the case, or if fd¥

= Q we cannot confirm by the Zero-Division Test algorithm [12] that a point is good, that with
probability <e/(6(d + 1)?), we return “ailure”. For more details we refer to step P in the cited
Polynomial Coefficients algorithm.

Step H(Hensel Lifting Loop): FOK ~ 0,..., d-1 DO dep L.

Step L (Lift by One Dayree): Let

d d
hi(Xg,..0h %) = 2 Z Ci,jm(X2:-es %) X1,

m=0 j=0
d; = dedgh;), wherec; j m(Xz ,..., %) OF[Xz,..., %] is homogeneous of ggeej. At this point
we hae a $raight-line progranQ, over F(x; ,..., X,) that computes; ; ,for 1<i<r,0<j <
k, 0<s m<d;. Notice thatc; o, O F is the coefficient ok' in g; o, and that by (*)c; j 4 = O for
j > 0. We will extendQy to Qy,, that also computes ., m. Itis useful to introduce the folle-
ing polynomials

k d; d;
—_ m A —_ m
Oik=2 2 CijmX1» Gikaa= 2 CikermX1-
j=0 m=0 m=0

Now consider the congruence
[ 3 +
(1(Ghk+ Ge® = T mod G )2 0
1=

Expanding the LHS we get
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_ L R r
9%01 DDngfol 'Zl(el i k+1 |__|1 dj.0)
i= j=
j#i (€3]
_ r
= f - [ i\ mod (..., %)%

I
-

By our loop ivariant for Qy

f-Mg=
i=1
d-1
1= 1;m(Xor..., %) X mod (X, ..., %,)<*2,
m=0
wherer,, O F[X, ,..., %] is homogeneous of dgeek + 1. Noticethat the degree ir; isd -1

by the assumption (*)We reed a progran®@, over F(LIJLIC; jm .-, fjm [0 that computes
. If Q, encodes a tree-kkmultiplication scheme that can be done in
len@Q,) = O(M(d?)logd).

By our assumption that we lift a truactorization, (}) is solvable i ,,; and henceg%l 0
g%;" must divider. Let

d1+[ﬂ§dr—l m T
p= Pm(Xa, .0y %) X7 = —= —
= P gt oot

pm O F[Xa,..., X]. As before, we need a straight-line progr@p over F(LL 7y, [I) that
computes allp,. A simple encoding of polynomial wdsion takes ler@,) = O(M(d)). Now
consider

P _ €101 k+1 aaiE € Or k1 .
910 U0 o d1.0 9o

It is clear thatec; ;41 are the codicients of the unariate partial fraction decomposition of
pl(91 0 OO, o) carried out wer the fieldF (X, ,..., %,). Oneway to compute these coéfients
by a straight-line prograt@kJr1 with Ien(Qk+1) = O(M(d)) is to once and for all fing; o U F[X4]
with

1 10 dr 0 .
= — + [ —, dedg§ o <d,
910 U0Wro 910 90 Lo
and encode the polynomial remaindering
0; o o Mmod g
gi,k+1: gl,Ope gI,O’ 1<i<r.
1

We rrust be able to divide bg and here we need the fact that the multiplicities must not be
divisible by charf). We finally link the program®)y, Q,, Q,, and Q.. properly together to
obtain the program®,.;. Notice that
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len@Qy+1) < len(@y) + C M(d?) logd,
whereC is an absolute constant. From this relation we can infer the length of
Step T (Final Translation): FronQg we obtainQ which computes
hi(Xg —ag, X2 =ba(Xg —a1) —ag,..., % —by(X1 —a1) —an)
by adding in front of)4 instructions for translating the appropriately. O

We row analyze the failure probabilities of the Factorization algorithm. The oaly an
incorrect progran can be produced is that the factorization patternts and f, disagree. By
theorem 2.1 in [9] this happens with probability <

4d 29 + @3
cardR)

<é¢.

“Failure” can occur in six separate circumstandesst, P may be undefined a#, that
with probability < 2**/card(R) < /6 by an agument similar to that used in Lemma 4.3 of [12].
Second, folF = Q we might fail to recognize th& is defined atp, but we male this possibility
happen with probability €/6. Third, for F = Q the computation of, may fail with probability
<¢l6.

Fourth, “failure” can occur if for some# j, GCD(g; 0, 9j,0) [ 1, or dedg; o) < ded§; »)-
Let 71.(B,) = ldcfy, (§i 2(X1, B2X1 + a5) and let

aij(az, B2) =
resultang (Gi (X1, BoX1 + a2), G 2(X1, B2X1 + a2))
ove Flay, By, Xi1]. It is easy to see that® m; o;; O Fla,, B,] and m(by) o j(az, by) # 0
implies that the abe events are impossibleNow, deq(7z) < d; and dg(o; ;) < 2d;d; and there-
fore the probability that the ab® events occur for any # j is less than
2d;d;
ard(R) 1<i<j<r card®)

> car

. (d; + 0+, )? . d? £

cardR) cardR) < 6

Notice that ifP were division-free, thisvent would be the only one where failure could occur.

Fifth, we may not find good interpolation points in order to prodgelf we try at most
(d + 1)* points, the probability that at least £ 1) = d * points are good can be estimateclik
the proof of [12], Theorem 5.1We dhall repeat the argument here. An individual point was not
picked earlier with probabilitg 1 — (d + 1)*/cardR) > 1 - £/12. P is not defined at an indd-
ual point substituted fox, with probability < 2"Y/card(R) < £/12. Hencea wiitable point can be
found in a block ofl * points with probability >
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— *) d* >1 - i * = f
1-(&% 1 R £ 5’
because (E*)9"1 > 291 > d* for ¢ * < 1/2. Now the probability that a good point occurs in
all of thed * blocks of points is >
(1- Z—*)d* >1-g*
and therefore failure happens with probability/.

Sixth and last, folF = Q we may not recognize that weuveagood interpolating points,
that for all @ + 1)? points together with probability /6. We have established the foliging
theorem.

Theorem 2.1 Algorithm Factorization does not fail with probability > 1e- In that case it
reduces the problem in polynomially nyasteps as a function in leR}j and d to factoring bvari-
ate polynomials.lts answer will be correct with probability > 1e&- It requires polynomially
mary randomly selected field elementSor F = Q or F = GF(q) the algorithm has binary poly-
nomial complexity also in log(%}, el-sizeP), and cc-size). O

We row formulate tvo corollaries to this theorem. The first refers to computing the sparse
factorization of f and follows from [12], §6.

Corollary 2.1: If in addition to the input parameters of the Factorization algorithm we age gi
t>0, forF =Q or F = GF(q) we an find in polynomially manbinary steps and random bit
choices in

len(P), d, Iog(%), el-sizeP), cc-sizef), andt

sparse polynomials that with probability > le-constitute all irreducible factors df with no
more thart monomials.O

Notice that the abh@ mnning time is aliays polynomial independently whether the correct
sparse factors were produced or whether otiepfs are dense. This makes this corollary supe-
rior to all previous work on sparsactorization. Thesecond corollary deals with possibly non-
uniform closure.

Corollary 2.2: Let F be a field of characteristic 0. Thenyaiamily of factors of a family of p-
computable polynomialsver F is p-computable.]

Notice that this corollary appliesen to fields in which arithmetic is recuve but over
which polynomial &ctorization is undecidable [4]. It also shows that a polynomial degree bound
is necessarily requiredWe rote thatx? - 1 can be computed wit(d) instructions but it is
known that wer the compl& numbers there existttors that requir€@(2%?/Vd) computation
length [16] and [18]. It would be nice tovgi sich an example where the factors are irreducible
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polynomials oer Q.

3. Padé Approximants

We row review those properties ofd@E goproximants that we need in 8#owever, we
will not prove any @ these properties and instead refer to [1] for an in depth discussion and the
references into the literature. Let

f(X) = C0+C1X+C2X2 + [0 F[[X]], Co * 0, d,eZ O,

be gwven. Goingback to Frobenius 1881 a rational functip(x)/q(x) is called a €, €)-Padg
approximant tof if

deg(p) < d, degq) <e,

f(x)a(x) - p(x) = 0 mod x**¢. (1)

It turns out that for anpair (d, €) there alvays exists a solution to (1) and that furthermore the
ratio p/q is unique. This ratio forms the entry inwad and columne of an infinite matrix
referred to as &k table. AlreadyKronecler 1881 realized that the entries in the e anti-diag-
onal of the BE table are closely related to the Euclidean remainder sequence of

f_1(x) = X" fo(X) = cp + C X + (O BFC s X .
Consider the extended Euclidean scheme

5 (%) f1(x) + 1 (x) fo(x) = fi(x),

fi(x) = fi,(x) mod fi_y(x), i=>1.

Then for the smallest inda with deg(f;) < d we have dedt;) < e and f;/t; is the @, e)-Pade
approximant tof . Furthermore, GCD{;, t;) = x¥ for somek = 0. Thusary agorithm for com-
puting the extended Euclidean scheme results in one fodflepRade gproximant. Notdhat
the assumption, # 0 is unessential by changing the lower bounddor

The classical Euclidean algorithmves a O((d + €)?) method for computing the
(d,e)-Padd gproximant. Theingenious algorithm by Knuth [13] that was imped by
Sclonhage [19] and applied to polynomial GCDs by Moenck [17] allows to compute the triple
(f;, s, t;) with deg(f;) < d, dedq f;_;) > d, inO(M(d + e) log(d + €)) operations ir.

4. Numerators and Denominators of Rational Functions

We row describe the algorithm that transforms a straight-line computation for a rational
function of known dgree to one for its (reduced) numerator and denomindtee ley idea is
that by substituting,,, + by, x4 for x,,,, 2< m< n, we @an male the problem a umariate problem
in X, over the fieldF(x, ,..., %,), as was already done in [12Me then recwer the fraction from
its Taylor series approximation by computing thedd gpproximant inF(x, ,..., %)[[ X4]]-
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Since that approximant is unique it must be the reduced numerator and denominator.
Algorithm Rational Numerator and Denominator

Input: A straight-line progranP over F(xq ,..., %,) of lengthl that computed/qg, f, g O F[x;
..., %] relatvely prime, andd = deg(f), e = deg(@), and a failure allwances < 1. We sall
malke the assumption that, e < 2' since the latter is alys a bound.

Output: Either “failure” (that with probability <€) or a graight-line progranQ over F(x; ,...,
Xn) of lengthO(l M (d + €)) such thaQ computesf andg correctly with probability > 1 .
Step T (Translation): Froma £t R O F with
2(2C3+2)I M (d+e)
cardR) > .

select random elemends ,..., a,, b, ,..., b,. Here the constar@; depends on the polynomial
multiplication algorithm usedIf F is a finite field with too small a cardinalityye an work in

an algebraic extension &f instead. Sincéhe results can be computed by rational operations in
F they remain ivariant with respect to field extensions.

Test whetherP is defined at(x,,) = a,, 1< m<n. For F = Q we call the algorithm Zero-Di-
sion Test in [12], 83, such that the probability of “failure” occurrimgnef P is defined atp is
less thare. Ifin this testP turns out to be (probably) undefinedgate return “failure”.

Now we translate the inputs d® asx; « Y; + a3, Xm <« Ym + bmY1, 2< m<n. Let P be the
straight-line program computinfyg where

ﬁ(yli"" yn) =
h(y1 +as, Y2 + boy1,....yn + bpys) for NOF[Xg, ..., X].

Now P is defined aty(y;) = 0. Also with high probability
Idcfyl(f) OF. ™*

Step S(Power Series Approximation): Compute a straight-line prog@nove F(y, ,..., W)
such that for the coefficients of the power series

= CO(yZl"'! yn)+C1(y2,---, yn)y1+ [0

@ | =

+ Cd+e(y2’ ERRE %)yld-'-e + D:D (T)

c; are computed b, for all 0<i < d+e. This can be done by directly applying the Polyno-
mial Coefficients algorithm of [12], 84. Notice that I€qf < C,;1 M(d + e), whereC, is a con-
stant solely depending on the multiplication algorithm used.
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Step P(Padeé Approximation): Computa draight-line progran@, over F(y, ,..., y,) that with

high probability computes thel(e)-Padé gpproximationp/q, p, 9 O F(y, ,..., WY1l to (T).
From 83 we kne that this can be accomplished by atteaded Euclidean algorithmEssen-
tially, we perform such an algorithm on the coefficient vectorfd<q+c and that ofy; "¢, In
order to test elements (Y, ,..., },) for zero we ealuate the program computing these ele-
ments aty/(y,) = an, 2< m< n. The details of this method for the classical subresultant algo-
rithm can found in [12], 85If we use the asymptotically fast Knuth-$ahage procedure (see
also [3] for a full description of the algorithm) then

len(@;) <CiIM(d+e)+C,M(d+e)logd +e)

<CzIM(d +e), (€3]

whereC, andC; are a@in constants solely depending on the polynomial multiplication proce-
dure used. Notice that the produced straight-line program may be incorrect (that with small
probability) since we may ke incorrectly certified an element to be zero.

Once we hee a sraight-line program for polynomial$; andt; O F(y, ,..., W)[Y4] Iin the
extended Euclidean scheme we must fing 0 such that GCDE;, t;) = y;* over F(y, ,...,
yo)[Y1]- Thiswe can again accomplish probabilistically waleating the coefficients ig; of f;
andt;.

If we male Idcfy (p) = 1, then with high probabilityp is an associate dfin F[y;,..., W]. This
is because of (*) and becausad® gpproximants are unique.

Step T (Back-translate): ThprogramQ is obtained by putting assignments for the back-transla-
tions

Y1 < X3=1, Ym < Xm — bm(Xg—a1), 2smsn,
in front of Q,. O

We dall nov analyze the werall failure probability of the Rational Numerator and
Denominator algorithm:Failure” is only returned iP is not defined or is not recognized to be
defined atp. Howeve, sveaal events must tak pace in order that the correct answer is
returned. Firstldcfyl(f_) O F that justifies the normalization gf in step P By lemma 5.1 in
[12] this happens with probability

1- d >1- ¢ .
cardR) 4
Second, all zero-tests performed wgeating aty(y,,) = a,,, 2< m < n, must gve the correct
answer This is true if the Knuth-S@mhage algorithm performedrer F(y, ,..., V) takes the
same course as the algorithm performeer & on the elements obtained byakiating aty. In
other words, no non-zero element that is tested or by which is divided valsate to 0. Since
the algorithm takes no more than
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C, M(d +e)log(d +€)

steps, the degree of yamnreduced numerator and denominator of these elements is by (f) no
more than

oCs| M(d+e).
A (pessimistic) estimate for the number of elements to be tested and by which is divided, includ-
ing the determination 4, is

C;IM(d+e)+(d+e)<(C3+1)IM(d+e).

Therefore the probability that all tests lead to the same resulaatl that all division are possi-
ble aty is no less than

1- C+DIM(d+e) 20 MO >1-°%
cardR) 2

Hence a correct progra@is output with probability > 1 —/3¢.

In caseF = Q one more additional possibility of returning an incorrect result must be
accounted fqornamely that the Zero Test algorithm in [12], 83, might not recognize a non-zero
evduation aty properly Howeve, the probability of such anvent can be controlled, say we
allow it to happen only with probability no more than

&
4(Cy+1)M(d+¢€)logd+e)

Then all tests succeed with probability > /4 and a correct program is output with probability
>1 -¢. In lummary we havethe following theorem.

Theorem 4.1 Algorithm Rational Numerator and Denominator does not fail and outputs a pro-
gramQ that computed and g with probability > 1 — 2. It requires polynomially manarith-

metic steps as a function of I€)(d, ande. For F = Q this is also true for its binary compley

which also depends on el-siB}( Thealgorithm needs polynomially mamandomly selected
field elements (bits foF = Q). O

We row formulate three corollaries to the theorem. The first corollary deals with distin-
guishing straight-line programs that compute polynomials from those that dii reotlear that
if we have the boundsl ande we only need to probabilistically inspect the degreg after we
have a $raight-line program for it. But what if we do notveaapriori degree bounds? What we
do then is to run our algorithm for

d=e=2% k=1,2, 310

Let f, andg, be the numerator and denominator whose computation is proddoecandomly
choserq, ,..., g, O F we then probabilistically test whether



-14-

f _ f(@... &)
g @ W =G @ a)

If the test is posite, with high probabilityf = f, andg = g,. We havethe following corollary
which also extends the result in [6], Remark 5.6, on probabilistically guessingdiee dé a
polynomial gven by a sraight-line program.

Corollary 4.1: Let f/g be gven by a sraight-line progran®P over F(x; ,..., %,). Thenwe can
in random polynomial-time in le®) and dey(f) + deg(g) determine dg(f) and dey(g) such
that with probability > 1 - no failure occurs and the answer is correct. In particularan
decide whethef/g OF[Xq,..., %]. O

For simplicity we state the next corollariesea infinite fields although this can becided
as mentioned in step D. The next one resolves Strasgerstion on computing the numerator
and denominator of a rational function withoutisiions. By

Lo(ri,.os | S1,--0 &), 14, S; O D,
we denote the non-scalar or total complexity of computifigpm s; over D, see e.g [22]..

Corollary 4.2: LetF be a infinite field. Then

Lepxg,..xg(Fy 91 Xq,.00%n) =

O(M(deg(fg))* Lex,,...x)(F/9 | X0, .. Xn)),

whereM(d) is the corresponding complexity of multiplyirdydegree polynomials. In the non-
scalar casd(d) =0O(d). O

The third corollary concerns the parallelization of a straight-line computation for a rational
function. From[25] we get.

Corollary 4.3: Let P be a straight-line program of lengtlover F(x, ,..., X,), F infinite, that
computesf/g where dg(f), deg(g) < d. Then there xsts a straight-line prograQ of depth
O((log d) (log d + log 1)) and sizel(d)°® that also compute$/g. O

5. Conclusion

The question arises what major unresolved problems in the subject of polyractoal f
ization remain. One theoretical question is to reenthe necessity of random choices frony an
of the problems known to lie within probabilistic polynomial-time, say factorization géneie
polynomials @er large finite fields. Another problem is to irestigate the parallel complexity of
polynomial factorization, say for tiéC model [2]. Kroneckers reduction from algebraic num-
ber coefficients [23] and [14], Berlekarsgactorization algorithm \aer small finite fields [5],
Kaltofen's deterministic Hilbert irreducibility theorem [10], 87, andeWbergers irreducibility
test forQ[x] [26] all lead toNC solutions by simply applying kmen NC methods for linear
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algebra problems. It is open whethactbring inQ[x] or irreducibility testing inF,[x], p large,
or in Q[ x, y] can be accomplished MC.

In connection with the Factorization algorithm presented here, we also mention an open
guestion. Assumthat a straight-line program computes a polynomial whose degrepasen-
tial in the length of the program. Are then at least its factors of polynomially boungextge
computable? Adositve aaswer to this question would shidhat testing a polynomial for zero in
a auitable decision-tree model is polynomial-time related to computing that polynomial. In gen-
eral the theory of straight-line manipulation of polynomials may Xeneable in part to
unbounded input degrees, bwer for the elimination of divisions problem [22] the answer is
not known.

Nonetheless, in this paper we were able to carntiilo \aliant's dgebraic counterpart of
the theory ofP vs. NP in the positve, that is establish a polynomial upper bound for a major
problem in computational algebra. In fact, it comes to us as a small surprise that p-computable
polynomials are closed undexctorization. Andve have, finally, put to rest the problem of com-
puting the sparse factorization of a mudtiate polynomial.

Acknowledgement A corversation with Allan Borodin during this conference last year trig-
gered the construction of the Rational Numerator and Denominator algoriibm.Spencer

very recently pointed out the possible connection between the factorization question and the rela-
tive power of decision vs. computation problems.
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