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POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND
UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION*

ERICH KALTOFENf

Abstract. Consider a polynomial f with an arbitrary but fixed number of variables and with integral
coefficients. We present an algorithm which reduces the problem of finding the irreducible factors of f in
polynomial-time in the total degree of f and the coefficient lengths of f to factoring a univariate integi’al
polynomial. Together with A. Lenstra’s,.H. Lenstra’s and L. Lovfisz’ polynomial-time factorization algorithm
for univariate integral polynomials [Math. Ann., 261 (1982), pp. 515-534] this algorithm implies the following
theorem. Factoring an integral polynomial with a fixed number of variables into irreducibles, except for the
constant factors, can be accomplished in deterministic polynomial-time in the total degree and the size of
its coefficients. Our algorithm can be generalized to factoring multivariate polynomials with coefficients in
algebraic number fields and finite fields in polynomial-time. We also present a different algorithm, based
on an effective version ofa Hilbert Irreducibility Thebrem, which polynomial-time reduces testing multivariate
polynomials for irreducibility to testing bivariate integral polynomials for irreduciblity.

Key words, polynomial factorization, polynomial-time complexity, algorithm analysis, Hensel lemma,
Hilbert irreducibility theorem

1. Introduction. Both the classical Kronecker algorithm [17, p. 10] (see also van
der Waerden [28, pp. 136-137]) and the modern multivariate Hensel algorithm (cf.
Musser [26], Wang [29], Zippel [35]) solve the problem of factoring multivariate
polynomials with integral coefficients by reduction to factoring univariate integral
polynomials and reconstructing the multivariate factors from the univariate ones.
However, as we will see in 3, the running time of both methods suffers from the fact
that, in rare cases, a number of factor candidates obtained from the univariate factoriz-
ation which is exponential in the input degree may have to be tried to determine the
true multivariate factors. In this paper we will present a new algorithm which does
not require exponential-time in its worst case. But before we can state our result
precisely, we need to clarify what we mean by input size. We will assume that our
input polynomials are densely encoded, that is all coefficients including zeros are listed.
Hence, the size of a polynomial with v variables, given that the absolutely largest
coefficient has digits and the highest degree of any variable is n, is of order O(I( n + )).

Let v, the number of variables, be a fixed integer. We will show that the problem
of determining all irreducible factors of v-variate polynomials is polynomial-time
(Turing-, Cook-) reducible to completely factoring univariate polynomials. Recently,
A. Lenstra, H. Lenstra, and L. Lovfisz [22] have shown that factoring univariate rational
polynomials is achievable in polynomial-time. Therefore, our result implies the follow-
ing theorem. Factoring an integral polynomial with a fixed number of variables into
irreducibles, except for the constant factors, can be accomplished in deterministic
polynomial time in the total degree and the size of its coefficients. Our algorithm is a
multivariate version of an algorithm due to H. Zassenhaus [34], which, instead of
leading to an integer linear programming problem, as is the case for Zassenhaus’
algorithm, leads to a system of linear equations for the coefficients of an irreducible
multivariate factor.
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In Kaltofen [12] we have already established a polynomial-time reduction from
multivariate to bivariate polynomial factorization. However, our new algorithm is less
complex. On the other hand, the results in Kaltofen [12] imply a polynomial-time (m-,
Karp-) reduction for irreducibility testing, which our new algorithm does not provide.
This older algorithm (cf. 7) is based on an effective version of a Hilbert Irreducibility
Theorem [11] (see also Franz [5]), an idea which since has been used successfully in
von zur Gathen [7] to construct a probabilistic algorithm for factoring sparse multivari-
ate polynomials with a growing number of variables, and in Chistov and Grigoryev
[3] to provide another polynomial-time reduction from bivariate to univariate integral
polynomial factorization.

If one does not fix the number of variables, our definition of input size may not
be appropriate since the input size then grows exponentially with the number of
variables. Although our algorithm remains polynomial in the expression l(n + 1)v, our
size measure only applies to dense inputs and for sparse polynomials our algorithm
is of exponential complexity in the number of variables. Unfortunately, in the.sparse
case little is known about even the space complexity of the answer under these
conditions. In 8 open problem corresponds to this question.

The question arises whether our algorithm is of practical importance. Unlike in
the univariate case, in the multivariate Hensel algorithm the factors of the reduced
univariate polynomial are almost always the true images of the multivariate factors,
in which case no exponential running time occurs. This empirical observation can be
explained by a distributive version of the Hilbert Irreducibility Theorem (cf. 3) but
there seems to be no known guarantee that one can always avoid bad reductions in
polynomial-time. However, we like to point out that so far we know of no class of
polynomials for which our polynomial-time algorithm could perform better than the
standard multivariate Hensel algorithm. In this connection we state open problem 2
in8.

In this paper we only consider the problem of multivariate polynomial factorization
with integral coefficients. However, the presented algorithms can be generalized to
coefficient domains such as algebraic extensions of the rationals as well as finite fields.
Besides outlining the necessary ideas in 8 we refer to the papers by Chistov and
Grigoryev [3], Landau [19], von zur Gathen and Kaltofen [8], and Lenstra [20] and [21].

We shall briefly outline the organization of this paper. Section 2 establishes our
notation and some well-known facts about polynomials. Exponentially bad cases for
both the Kronecker and the multivariate Hensel algorithm are then constructed in 3.
In 4 we introduce some well-known preliminary transformations on our input poly-
nomials and also establish that these transformations are polynomial-time reductions.
The main algorithm is presented in 5 including the necessary arguments for its
correctness. Its complexity is analyzed in 6. In particular we show that the size of
all intermediately computed integers stays within polynomial bounds. An effective
version of the Hilbert Irreducibility Theorem and its applications to the factorization
problem are discussed in 7. We conclude in 8 by raising 3 open problems.

2. Notation. By Z we denote the set of the integers, by Q the set of the rational
numbers and by C the set of the complex numbers. Zp denotes the set of the residues
modulo a prime number p. If D is an integral domain, D[x,..., x,] denotes the set
of polynomials in x,..., x over D, D(x,..., x,) its field of quotients; degx, (f)
denotes the highest degree of x in f D[x,..., x,], deg,l. (f) the highest total

Our algorithm remains even polynomial in some slightly sharper input size measures such as l(d +
1) (do + 1) where di is the degree of the ith variable.
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degree of monomials in x and x2 in f, and deg (f)= degx,,...,xo (f) the total degree of
f. Thus, deg (f) is the maximum of all exponent sums of monomials in Xl, , xv with
nonzero coefficients in f The coefficient of the highest power of xv in f is referred to
as the leading coefficient of f in x and will be denoted by ldcfxo (f). Notice that
ldcf (f) D[x1, Xv_l]. We call f monic in x if ldcf (f) is the unity of D. As is
well known, D[x,..., x,] is a unique factorization domain (UFD) provided that D
is a UFD. In this case the content off D[x,. , xv] in x, conto (f), is the greatest
common divisor (GCD) of all coefficients of f(x,) as elements in D[Xl,’’’, X_l].
Notice again that contxo (f) D[Xl,’’’, x,_]. The primitive part off in xv is defined
as

ppxo (f) fcont (f)"
and we call f primitive in x if f= PPxo (f). We also note that the total degree of a
factor of f is less than or equal to the total degree of f The infinity norm of
f C[Xl,’’’, x], the maximum of the absolute values of the complex coefficients of
f, will be denoted by [j. The square root of the sum of squares of the absolute values
of the coefficients of f the square norm of f will be denoted by [f[2.

l-1Let f(x)-alx+al_Xv +...+ao and g(x)=bmx+...+bo with ai, bj
D[Xl,. , x_]. By Sylxv (f, g) we denote the Sylvester matrix of f and g,

al al- ill ao
al at_ a2 a ao

al al_

b b-i b bo
b,, b_

a ao

bo

bm bm-1 bo_

where the empty entries are assumed to be 0 (there are m rows with coefficients of f
and rows with coefficientsof g and the matrix has l+ m columns). Its determinant
is the resultant of f and g with respect to x and will be denoted by

res,o (f, g) det (Syl, (, g)).

In order to be able to manipulate with monomials in a short way we adopt the
following vector notation: .k-- (k,. ., kv), .0-- (0,. ., 0), y.k__ yk,.., yko, .k +./--
(k, + ll," ", ko + l,), .k <= .l if, for all i, ki --< li and finally I.kl-- kl’+" + k, if .k ->_ .0, and
-oo otherwise. By () we denote the binomial coefficient n!/(rn!(n-rn)!).

3. Exponential cases for the Kronecker and Hensel algorithms. We only consider
bivariate polynomials though the constructions easily generalize. First, we discuss some
exponential cases for the Kronecker algorithm. This algorithm transforms the bivariate
polynomial f(z, x) into f(y)=f(yd, y), d =max (deg (f), deg (f))+ 1. Since the
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degree in z or x of any factor g(z, x) of f(z, x) is less than d, g(y)- g(ya, y), which
is a factor of f(y), can be used to retrieve g(z, x) in a quick and unambiguous way.
Kronecker’s algorithm proceeds in transforming all univariate factors of f(y) back to
bivariate factor candidates for f and then tests whether any candidate is a true factor.
However, it clearly requires time exponential in the degree off in the case where f is
irreducible, but f splits into linear factors. It is easy to construct such f’s, as we do
below, by working backward from f(y).

Example 1.

f(y) (y-4)(y-3)(y-2)(y- 1)(y+ 1)(y+ 2)(y+ 3)(y + 4)

y8 30y6 + 273y4_ 820y2 + 576.

Set d =3" f(z, x)= zgx2-30z2+273xz-820x2+576 which is irreducible.
Kronecker’s algorithm has to refute 127 factor candidates to determine irreducibility
off.

Set d 5" f2(z, x)= x3z-3Oxz + 273x4-820x-I 576 which is irreducible because
degz (f)= 1. This condition can always be enforced by choosing d large enough and
yields exponential cases of arbitrarily high degree.

Example 2. Let n (I] k_- Pi) --2 with pi the ith prime number. Letf3(z, x) x" z2,
which is irreducible since n is odd. We obtain f3(y)=y"(1-y"+2) where 1-y"+

factors into 2k- cyclotomic polynomials (cf. van der Waerden [28, p. 113]). Since n
is of order O(eklgk) (cf. Hardy and Wright [10, 22.2]) the number of possille factor
candidates cannot be polynomial in n.

The abundance of univariate factors usually disappears as soon as we choose a
slightly different evaluation. For example,

and

f(3X3, X) 9x8- 270X6 + 819X4- 820X2 + 576

f2(2x5, x) 2x -60x6 + 273x4- 820x + 576

are both irreducible. In Kaltofen 12] we have used a similar evaluation for polynomials
with three variables which resulted in a deterministic reduction to bivariate factoriz-
ation. There we also conjectured that it is highly probable that substituting 2xd or 3xd

for z in f(z, x) already preserves the irreducibility of f However, to prove that a
multiplier of polynomial length definitely works seems difficult, and we have only
succeeded in showing this for the multivariate to bivariate reduction (cf. 7, Theorem
3).

In order to give exponentially bad inputs for the multivariate Hensel algorithm
we need an irreducible polynomial f(y,..., y, x) such that f(0,..., 0, x) has all
linear factors. Such a polynomial is quite easy to obtain and the following example
demonstrates the construction of a polynomial which has all linear factors for various
evaluation points.

Example 3.3. Let f(y, x) have degy (f)_-< 3 and

f(- 1, x) (x 2)(x 1)(x + 1)(x + 2) x4 5X2 "" 4,
f(O, x) (x 1)x(x + )(x + 2) x4+ 2X X

2 2x,

f(1, x) (x 2)(x 1)x(x + 1) x4- 2X X2 + 2x,
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and f(2, x) x4+ 2. By interpolation f(y, x) Q[y, x] is determined uniquely, namely

f(y, x) x4 + (2y3- 3y2- 3y + 2)x + (_y3 2y2+y 1)x2

+(-9.y+3y+3y-2)x-y+2y-y.
We can also remove the rational denominators, namely

X
4 + (12y 18y2- 18y + 12)x + (30y 72y2 + 42y 36)x2

+ (-432y + 648y2 + 648y 432)x 432y + 2592y2 2160y.

Since f(2, x) is irreducible, so is f(y, x), but

f(-1, x) (x- 12)(x- 6)(x +6)(x + 12),

f(O, x) (x-6)x(x +6)(x + 12),

f(1, x) (x- 12)(x-6)x(x +6).

The above construction obviously generalizes for arbitrarily high degrees but the
number of unlucky evaluation points (i.e. those integers b for which f(b, x) splits into
linear factors) seems bounded by the degree in y. The classical Hilbert irreducibility
theorem states that for any irreducible polynomial f(y, x)e Z[y, x] there exists an
integer b such that f(b, x) remains irreducible. It can be shown that the ratio of unlucky
points to the size of the interval, from which the points are taken, tends to zero as the
size of the interval goes to infinity (cf. D6rge [4]). The reader is referred to Kaltofen
[14, Appendix B] for a short bibliography on the Hilbert Irreducibility Theorem.
Unfortunately, we do not understand the distribution of unlucky evaluation points of
small size. Open problem 2 in 8 refers to this question.

4. Initial transformations. In this section we present an algorithm which transforms
the problem of factoring the polynomial f(zl,’", z,,, x) to factoring a polynomial
f(Yl," ",Y,,, x) such that f is monic in x, f(0,. , 0, x) is squarefree, i.e. each of its
irreducible polynomial factors occurs with multiplicity 1, and both deg (f) and log (]J])
are polynomially bounded in deg (f) and log (Ill)- For simplicity we only consider
finding a single irreducible factor of f. In Lemma 2 we will state a uniform coefficient
bound for all possible factors of f which is of polynomial size in deg (f) and log
Therefore, in order to obtain the complete factorization of f in.to irreducible factors
in polynomial-time we can apply our algorithm recursively to the co-factor of the
irreducible factor.

We wish to emphasize that this version of our algorithm can be improved sig-
nificantly, e.g. by resolving the recursion mentioned above. However, here we are most
interested in the theoretical result, namely that the algorithm works in polynomial-time.
For this reason we also allow ourselves to present rather crude upper bounds in our
complexity analysis. We also do not consider the influence which the underlying data
structure used to represent multivariate polynomials could have on our algorithm
performance. Furthermore, we will formulate the asymptotic complexity as a function
in the total degree rather than the maximum degree of individual variables. Since the
number of variables is fixed, both notions for the degree are codominant.

The following algorithm computes a squarefree factor of the primitive part of the
input polynomial. It then applies two classical transformations to this squarefree factor
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to make the polynomial monic and squarefree also when evaluated at 0 for the minor
variables.

ALGORITHM
[Given f(z,..., zv, x) Z[z,..., zv, x], this algorithm constructs an irreducible
factor (z,..., z, x) Z[Zl,’.., z, x] of f by preconditioning f and calling
Algorithm 2.]
(1) [Test for univariate case’]

IF cont (f) or pp(f) is univariate THEN factor it by a univariate factoriz-
ation algorithm and return one irreducible factor, ELSE perform steps (S)
through (E2).

(S) Determine a primitive squarefree factor g(z, , z, x) offby a squarefree
decomposition algorithm such as Yun’s algorithm [32] or Wang and Trager’s
algorithm [30].

(M) [Transform g into a polynomial s monic in x:] n <-degx (g);

C(Zl, ", ZV) <-" ldcf,(g)

S(Zl,’’" Zv, X)<-" C(ZI,’’" Zv)n-l Zl,’’’ Zv,
C(Zl,’’’, Zv

[Notice that s is monic in x, an irreducible factor of which can be back-
transformed to an irreducible factor of g (see step (E2)).]

(T) [Find good integral evaluation points Wl," , w such that s(w,. , wo, x)
is squarefree.]
FOR ALL integers W with {Wi] [(2n- 1)/2 degz, (s)], _-< i_-< v, DO

Test whether S(Wl,..., w, x) is squarefree. If so, exit loop.

f(y, ., y, x) s(y + w, ., yv + w, x).

(R) Call Algorithm 2 given below to find an irreducible factor g(y,. ., y, x)
off(y,’’’ yo, x).

(E). [Recover a possibly nonmonic factor (z, ., zo, x) of f(z,. ., zv, x).]

(El) g(z,. ., z, x)g(z- w,. ., zo- w, x).

(E2) (Zl," ", z, x)-pp,(g(zl,. ", z, c(z, ., zv)x)). [q

We shall first prove the correctness of the above algorithm. Obviously, if
g(y, , y, x) divides f then g(z, , z, x) divides s(z,. , z, x). The proof for
the correctness of the transformations in the steps (M) and (E2) is quite easy and can
be found in Knuth [16, p. 438, Exercise 18]. We first must show that step (T) will yield
good evaluation points.

LEMMA 1. Let s(z,..., z, x)6 Z[z,..., zv, x] be monic of degree n in x and
squarefree. Then there exist integers w with Iw, l<= [(2n- 1)/2 degz, (s)], <= i<= v, such
that s(w,. ., Wy, x) is squarefree in Z[x].

Proof Let d deg (s) for <=i -< v. Since s is squarefree, its discriminant

A(z, , z) rest, s, 0

(cf. van der Waerden [28, p. 86]). Since A is the given resultant, it follows that
degz, (A)--<(2n-1)d for l<=i<=v. If we write A(z,...,z) as a polynomial in the
variables z2," ", z with coefficients in Z[z], not all these coefficients can be zero. Let
u(z) be one particular nonvanishing coefficient. Since deg (u)<_-(2n- 1)d there exists



POLYNOMIAL FACTORIZATION 475

an integer Wl with Iw,l [(2n- 1)/2d] and U(Wl) 0, Therefore A(Wl,Z2,""" gv)0
and the lemma now follows by induction on the number of variables.

We now briefly discuss that the above algorithm is of polynomial complexity in
deg (f) and log (Ifl) provided that this is also true for Algorithm 2. To obtain a
squarefree factor g off, we can use any of squarefree decomposition algorithms referred
to in step (S), all of which employ polynomial GCD computations. Furthermore, any
of the available GCD algorithms such as the primitive remainder, subresultant or the
modular algorithm (cf. Brown [1]), or the EZGCD algorithm by Moses and Yun [25],
takes for a fixed number of variables polynomially many steps in the maximum degree
of the input polynomial and the size of its coefficients. That this time bound extends
to the squarefree factorization process is shown, e.g., in Yun [33]. Of course, deg (g)
deg (f) in step (S), and a bound for Ig[ can be determined by the following lemma.

LEMMA 2. Let g,. ., g,,, C[x,..., xo], let f= gt g and let n deg (f),
n == n. en

= = 2

with c<g2.44949 (cf. Gel’fand [9, pp. 135-139]).
Therefore lel That the steps (M) and (T) take polynomial-time is

quite easily established. As a matter of fact, some of the GCD algorithms used for the
squarefree decomposition of f in step (S) already provide the points w,. ., w of
step (T) as a by-product. Step (M) produces a substantially, yet polynomially, larger
output compared to its input g. (For example

deg(s)-<_ndeg(g) and ]sl=<(deg(g)+

cf. Lemma 7.) Step (T) again may produce a larger result, but ]fl is clearly polynomial
in the size of s. (For example

IJ vdeg(s) deg (s) deg (s)2deg()ls[
see also Lemma and Lemma 4.)

We wish to remark that step (M) could be entirely avoided by modifying Algorithm
2. However, these modifications would complicate the complexity analysis and for the
reasons discussed above we shall retain the monicity condition on f during Algorithm
2. The matter becomes more manageable if the coefficients are in a finite field. Some
details to this case can be found in von zur Gathen and Kaltofen [8].

Step (El) is the counterpart of the transformation of step (T). Step (E2) is similar
to step (M), but also involves a content computation. Both steps can obviously be
performed in time polynomial in deg (g) and log (Ig[).

5. The main algorithm. In this section, we shall discuss an algorithm which
computes an irreducible factor of a polynomial f(y,..., Yv, x), monic in x with
f(0,..., 0, x) squarefree, in polynomial-time in deg (f) and log (If[). We will also
prove the proposed algorithm correct. The analysis of its complexity is deferred to the
next section. The algorithm first computes a multivariate Taylor series approximation
of a root of f for x. It then finds the minimal polynomial for this root by solving a
linear system in the coefficients of this polynomial.

ALGORITHM 2.
[Input: f(y," , y,, x) Z[y, , y, x] monic in x such that f(0,. , 0, x) is
squarefree. Z can be an arbitrary UFD and Q its field of quotients. Output: An
irreducible factor g(y, , yo, x) e Z[y, , y, x] of f]
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(F) [Factor f(0,. ., 0, x):] n - degx (f).
Compute an irreducible factor t(x) of f(0,. ., 0, x); m - deg (t).

[Let/3 be a root of t. In the following, we will perform computations in Q(/3),
whose elements are represented as polynomials in Q[/3] modulo t.]
(N) [Newton iteration. For purposes of later analysis and reference, we emulate

the Newton iteration by a Hensel lifting algorithm. Let J be the ideal in
Q(/3)[yl,’’’, yo] generated by {Yl,""", Yo}. The goal is to construct

a(y,,." ",yv) , , ak.(fl)y, t’, where a.k()eQ(/),
i=0 I.kl=i

for j 1, 2, such that

f(Y,, ", Yo, aj(y, y)) =- 0 mod fi+l,

i.e. no monomials in Yl,"" ", Y with total degree less than j / occur on
the left-hand side of the given equation.]
Rewrite f(Yl," ", Y, x) Y..k>=gf.k(X)y. "k, where f.k(X) Z[x]. [Notice that
fg(x) =f(0, ., 0, x) and, since f is monic and degx (f) n, deg (f.k) < n
for I.k[-> 1.]
[Set order for approximation:] d degy,.....y (f); K d(2n- 1).
[Initialize for Hensel lifting:]

agfl; gg.(x)x-fl; hg(x)fg.(x)/gg(x)6Q(fl)[x].

FOR ALL .k with l<ll < K DO steps (N1) and (N2). [The .k must be
generated in an order such that I. 1 is nondecreasing. We will compute
polynomials g.(x) and hv(x)e Q(/3)[x], .k>-.0, satisfying

(2)

(3)

(NI) b.k(X) f.k(X) . g.(x)h.k_.(x).

(N2) [Step (N 1) and (1) lead to

gg.(x)h.(x) + hg(x)g#(x b#(x)
with g#(x), h#(x)Q(#)[x], deg(g.)=<deg(gg)-l=0, deg(h.)<=
deg (hg)-1 n-2. In the Hensel lifting algorithm, (2) is accom-
plished by the extended Euclidean algorithm (cf. Knuth [16, p. 417,
Exercise 3], but since deg (g.)=0 we can use direct formulas:]

b.k(), h.k(X)_b.k(X)--hf(x)g.k(X)a.kg.k(X)f,(fl), g(x)

[Assign approximate root:] c o<-i.1; a.%Y" for 0-<j=< K.
(L) [Find minimal polynomial for c :]

[Compute powers of a :]
mod J+.FORi0,...,n-1 DO ac

FORIm,...,n-1 DO
Ld(I+n-1).
With a=- c mod J+l try to solve the equation

I--1

+ y. u,(y,, yo).=- o moa
i=0



POLYNOMIAL FACTORIZATION 477

(4)

for polynomials ui(yl," ", y,) Q[Yl, ", Yo] such that degy,...,y (ui) -<- d.
Let ui(yl,’’’, y,,)= o__<ll__<d U...y" and let

i) f.j y..
0llL

Then (3) leads to the linear system

1--1

a X X
i=o ol,ld

for0 I1 L,j 0,. ., m in the variables u,., 0,. ., I 1, 0 I1
d. [There are I(d) unknowns in m() linear equations. (Cf. Lemma 4.)]
IF (4) has a solution (which, as we will prove below, is then integral and
unique) THEN

I--1

g(Yl, Yo, x) x’ + E u,(yl, y)x’
i=0

and EXIT. [We will also show that then g is an irreducible factor of
[At this point, the above FOR loop has not produced a solution to (3). In
this case, f is irreducible.] g

Notice that L, the order of the approximation needed, grows with I, the possible
degree ofthe minimal polynomial. Hence we could improve our algorithm by increasing
the order of the approximation within the loop on I in step L instead of computing
the best approximation eventually needed a priori in step (N). Also, a complete
factorization of f9 may exclude certain degrees for g. For example, if f9 factors into
irreducibles of even degree, then g cannot be of odd degree. (Cf. Knuth [16, p. 434
and 4.6.2, Exercise 26].)

We shall now prove the correctness of the above algorithm. We first show that
step (N) computes a root ar(yl,’’’, Yv) off(yl,""", yv, x) modulo jr+l. The poly-
nomials g.k(X) and h.k(X)Q(fl)[x], .k>-O., must satisfy (1) and thus (2). We now note
that g(/3) 0 and h(/3) f(/3). The second equation follows from the fact that if
fl, flE,’.",fl, are the roots of f(x) then h(x)=l-I,=E(X-fl,) and hence h(fl)=
[I=2 (fl-fl)=f’(fl). Therefore the unique solution of (2) with deg (g.k) 0 is a.k
b.k(fl)/f(fl). If we now solve (3) for h.k(X), we get

h.k(X) b’k(x) hg(x)g’k(’X)
gg(x)

which is a polynomial in x since b.k(/3)--hg.(fl)a.k =0, and is of degree at most n-2.
As we will see in 6, the solution for (3) with deg (g.k) < deg (g) and deg (h.k) < deg (h)
is uniquely determined by a linear system in n unknowns, whose coefficient matrix is
the Sylvester matrix of g(x) and ho.(X), the determinant of which in our case happens
to be equal to f6(/3).

We now conclude that

because

f(Yl, yo, atc(yl, yo))=-O mod jK+l

(X--., a.ky’k)(., h.k(X)y’k)=--f(yl,’’’,yo, x) modJtc+l.
0<=l.kl<=n 0=<l.kl__<K
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The polynomial g(Yl,’", Yv, x) is constructed in step (L) such that

g(Yl," ", Yv, CL(Yl, ", Yv)) -= 0 mod jr+.

We will now prove that g must divide f Our argument will show that if g does not
divide f, then (3) has a solution for ! < deg (g). One main condition for this to be true
is that our approximation is at least of order L. First, we must prove a simple lemma.

LEMMA 3. Let g(y, , y, x) divide f(y, , y, x) in Z[y, , y, x] and
assume that g(O, ., O, fl 0 in Q(fl). Then

g(y,’",yv, a(yl,’",y))--0 mod

for all j >- with a(y,. ., y) as computed in step (N).
Proof The reason is simply that since x- a(y, , y) divides

f(Yl, ",Y, x) mod fi+l and/3 is a root of single multiplicity, x- a(y, , yv) must

also divide g(y, , y, x) mod J;+. This argument can be made formal but we shall
provide a more indirect proof. Let p be the first index such that

g(y, y, ap(Yl, y)) O modJp+l.

Because p is the first index

g(Yl,’", Y, Ol,p(Yl,’’’, Yv))-= Y Y.k.Y
"k mod jp+l

with at least one Y.k 0. Let h be the cofactor of g, i.e. f gh. Since/3 is a single root,
r h (0, , 0,/3) 0. Therefore

g(y,’",y,ap(yl,’",y))h(y,"’,y,ap(y,’",y))-- y.kr.y"k0 modJP+

in contradiction to ap(yl,... Yv) being the pth approximation of a root of f
THEOREM 1. The first solution of (3) in step (L), as I increases, determines a proper

factor g off in Z[y, , y, x]. This factor is also irreducible.
Proof We show that g must divide f provided its coefficients satisfy (4). The

irreducibility of g then follows immediately from the fact that the minimal polynomial
for the root off(y, , y, x) corresponding to ar also provides a solution to (3) and
hence (4). Let

D(yl, ", y, x) GCD (f(Yl, ", Y, x), g(Yl, ", Yv, x))

and let I degx (g), j degx (D). We shall prove that the condition j < I is impossible.
Assume that this condition is satisfied, i.e. 0-<j < L Let f x" + t,_x-1 +. + to and
g x + ui_ +" + Uo with tl, u,, Z[yl, , y]. Using the extended Euclidean
algorithm (cf. Knuth 16, p. 417, Exercise 3]) we establish the existence of polynomials
gj, Vj Q(Yl, ", y)[x], degx (U) < I-j and degx (V) < n -j, such that

(A) Uf+ V;g D.

It is easy to show that under the given degree constraints these polynomials are uniquely
determined. Therefore we must have a nonsingular coefficient matrix for the linear
system derived from (A) for the coefficients of x, xI+"-- with the unknowns
being the coefficients of U;, V of x. By s we denote the determinant of this coefficient
matrix namely

tn- t2j-+
t._ t(B) s det

uf_ Uj+ U2j_n+

UI_ Uj
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(In fact, sj is the leading coefficient of the jth sub-resultant off and g as polynomials
in x; cf. Brown and Traub [2].) Cramer’s rule implies that sjU, s)V Z[y,..., Yo, x].
Moreover,

and hence

f(Y,’",Yv, aL)-- g(yl,’",Yv, aL)--0 mod

st(y,," ", y)D(yl, ", y, c) =- 0 mod J+’.
However, from Lemma 3 and the fact that g is the polynomial of smallest degree
solving (3) we conclude that D(0,... ,0, fl)#0, which implies with the previous
congruence that

(C) st(yl,...,y)=-O modJ+l.

On the other hand, using (B) we can bound the degree of s by

degyl,...,y (st)<=(I+ n-2j- 1)d =(I+ n- 1)d L

which together with (C) implies that s -0, in contradiction to (B). [3

This concludes the correctness proof for Algorithm 2. In the case that v the
bound K of step (N) and L of step (L) can be improved to [d(2n- 1)/m] (cf. Kaltofen
[13, Thm. 4.1]). However, this improvement seems not to carry over for v_->2, since
Q[yl,""", y] is not a Euclidean domain.

6. Complexity analysis of the reduction algorithm. The goal of this section is to
prove that Algorithm 2 takes, for a fixed number of variables v, polynomially many
steps in deg (f)log (IfI), provided that we can factor f.o in time polynomial in
deg (f.o) log (If.ol).

Step (F). As A. Lenstra, H. Lenstra and L. Lovisz have shown, t(x) can be
computed in at most O(deg (f.o)12+deg (f.o)9 (log If.ol=)) steps [22]. This complexity
bound can be slightly improved using the results of Kaltofen [15].

Step (N). We first count the number of additions, subtractions and multiplications
over Q(fl) (which we shall call ASMops) needed for this step. Then we bound the
absolute value of all elements of Q(/3) which appear as intermediate results. Finally,
we bound the size of all computed rational numerators and denominators, and then
we count the number of rational operations. The most difficult task will be to compute
size bounds.

We can ignore the time it takes to retrieve the polynomials f.k(X) as well as the
execution time for the initializations of step (N). In order to count the number of
times steps (N1) and (N2) are performed, we need the following lemma.

LEMMA 4. There exist

(v+j-1)<=(j+l)v-lv-1
distinct v-dimensional integral vectors .k with I.k[ =j. The number of vectors with I.k[ <=j is

(V+vJ) _-<(j+l).
Therefore, steps (N1) and (N2) are executed at most (K + 1) times. Step (N1)

requires at most O(Kn) ASMops in Q(/3). Clearly this bound also dominates the
complexity of step (N2). Hence a: can be calculated in O(K2n) ASMops.
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We now proceed to compute an upper bound BI for all absolute values of the
coefficients of aK in Q(/3).

LEMMA 5. Letf(x) Z[x] be monic, squarefree, ofdegree n and let g(x), h(x) C[x]
be monic such that f(x g(x) h (x)

a) Then both Ig[, Ihl <= 2"lfl2 <-’x/n + 12"lJ] and if fl is any root off Il < 21fl.
b) IfM is any n- 1) by n- 1) submatrix of the Sylvester matrix ofg and h, then

Idet (M)I < T(f)

c) The resultant of g and h is bounded by 1/S(f)<lres (g, h)l<2T(f) with

S(T) (41fl) (n-l)(n-2)/2.

Proof a) The bound for [g[ and Ihl is the Landau-Mignotte bound translated to
maximum norms [24]. Assume f(x) a,x" +. + ao and let/3 e C with I/3]_-> 21J]. Then

tl-I <1/31" --< a,131"

because IJ -> 1. therefore f(/3) 0. Notice that for this part the monicity of f is not
required.

b) By part a), we know that each entry in the Sylvester matrix of g and h is
bounded by x/n,+ 12"If[. Hadamard’s determinant inequality (cf. Knuth [16, 4.6.1,
Exercise 15]) then gives the bound.

c) Let g(x) (x- /31) (X--ilk) and h(x) (x [3+) (x- 13.). Then

res (g, h) l-I
i=l,...,k’,j=k+l,...,n

and the discriminant off A=HiCj (fl-fl), is an integer not equal 0 (cf. van der
Waerden [28, pp. 87-89]). From a) we conclude that fl-fl] <4]j] for l<-i<j <- n.
Therefore

li<j--k k+li<jn

< Ires (g, h)l(4ls’])
because k(k + n k)( n k <_- (n )( n 2) for <_- k <- n 1. The upper bound
follows from b) and the fact that g and h are monic.

The following lemma estimates the size of a general version ofthe Catalan numbers.
LEMA 6. Let d.k for all v-dimensional vectors k with Ik] and let

d.k Y, d.d,k_.s forl.kl>--2.

Yhs/1

< (4V)l.kld.k kl]’’" kv!

Proof Let G(y,..., yv)= l,kl_>_ d.k,y "k be the generating function for d.k. Then
G(y,, yv)2= G(y,, y)-(yl +. .+ y)

and thus

G(yI, ,yv)__(l__4’l__4(yl__. ....yv)) 1 (2i-2,= i-1](Y’+" "+Y)’
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which yields our formula. Since I.kl!/(kll... ko!) is a multinominal coefficient, it is
less than vI-kl. Similarly the given binomial coefficient is less than 221-kl. li

We are now in the position to formulate and prove the main theorem on the
coefficient growth for the Hensel lifting algorithm. This theorem also resolves the
growth problem left open by Kung and Traub 18] who considered the Newton iteration
for the case that v 1. We actually use a slightly more general approach which we
will also use in 7.

THEOREM 2. Let f(Yl, ",Yv, x) Z[yl, , yv, x] be monic of degree n in x, such
thatfo.(X) f(O, ., O, x) is squarefree. Let fl be an algebraic integer generating a subfield
of the splitting field for fo-. By Z[/3] we denote the ring generated by Z and {} whose
elements are polynomials in fl with integral coefficients of degree [Q(/3):Q]-1. Let
go-(x)ho-(x) =fo-(x) be a nontrivial factorization offo- in (Z[/3])[x] with go. and h-o both
monic in x. Then there exist unique polynomials g.k(X), h.k(X) e Q(/3)[x] with I.kl>_- and
deg (g.k) < deg (g-o), deg (h.) < deg (h-o) such that

Furthermore, let

f(y,...,y,x)=(, g.k(X)y’k)( hk(x)y’k).

_l__r(fl)
res (go-, ho-) R

with R Z, r(/3) Z[/3 ],

and let S(f-o) and T(f-o) be as defined in Lemma 5. Finally, let N(f)=max (n2,nlfl),
and let d.k be as defined in Lemma 6. Then for all .k with I.kl >--

REl’kl-i g.k(X), R21"kl-I h.k(X) (Z[fl])[x]

and, independently of which root off-o we choose,

Ig.l, Ih.l d.k(N(f)S(f-o) T(f-o)) 2l’kl-.

Proof. The existence and uniqueness of g.k and h.k follows from the fact that (2)
has a unique solution with the given degree constraints, b.k being computed as in step
(N1). Now let C.k max (Ig.l, Ih.l, Ifl) and let D.-Ib.l. Since deg (g.)< deg (go-) and
deg (h.k_.)< deg (h-o), we conclude that

Ig.h.k-.l n 1)lg.l Ih.-.l n 1)C.C.k_..

By definition C. => IJq and thus we obtain from (N1)

(A) D.k <= n . C. C.k_..
.o_-<.s_<-, =< I.sl_-< I.kl-

Let /3 denote the coefficient vector (p,,,.. ",Po) of the polynomial p(x)=
P,,x" +’’" +Po. Now if we solve (2) by undetermined coefficients for g.k and h.k we
encounter the Sylvester matrix of g-o and h.o, Syl (g-o, h-o), as the coefficient matrix, namely

(B) (/., ff.) Syl (go-, h.o)=/.,
where (/.k, if.k) denotes the vector obtained by concatenation of the vectors/-o and ff.k.
Using Cramer’s rule for (B) and the fact that

Idet (Syl (g.o, h))l Ires (g-o, h)l
< s(fo)
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(by Lemma 5c), we get the estimate

(C) C.k _--<max (I/I, nO.S(fo.)T(fo.))
(also using Lemma 5b). We now prove our claims by induction on

Case I.kl 1. Since b.k =f.k Z[X], Cramer’s rule applied to (B) yields Rg.k, Rh.k
(Z[fl])[x]. (Notice that/3 is an algebraic integer.) Also D.k----<lj and hence by (C)

C.k --<-- max ([fl, n[flS(fg) T(fo.)) <-- d.kN(f)S(f-o) T(f-o).
Case I.kl> 1. By hypothesis and from (N1) we obtain R21-kl-Zb.ke(Z[])[X].

Cramer’s rule applied to (B) then yields R21"i-ig.k, R21"-h_k (Z[fl])[x]. From (A) and
the hypothesis we also get

D.k <-- n C. C.k_.

<- n(N(f)S(f-o) T(f-o)) 2’-k’-2 ( d.d.k_.)
n(S(f)S(f-o) T(f-o))Zl’kl-2d.k.

By (C) we finally obtain

C. <-max (Ifl, nO.S(fo.)T(fo.))
/,/2

<---- d.k S(f) (S(f)S(f) T(f"))’21"kl-1

<= d.(S(f)S(f-o) T(f.o)) 21-kl-

Since the polynomials g.k and h.k are unique, we can conclude from Theorem 2 that

la.k]<--d.k(N(f)S(f-o)T(fo.)) 21-kl-I for

From Lemmas 5 and 6 we obtain

(5)
<-- B,(f) (4v) s: (nZ[fl(4[fl)"/22"(nlf])")2-’

< (4v)K (2nlj]) 2K"2

assuming that n >-4. Obviously, log (Bl(f)) is polynomial in deg (f) and log (IJ]).
We now demonstrate for the polynomials g.o x-/3 and h.o as computed in step

(N), that

R
Z[fl], with R =res (t(x),f’-o(x)),

res (g.o, h.o)
where is the minimal polynomial of ft. Let f12,""",/3, be the roots of h.o. Then

res (g.o, h-o) IYl (/3 [3i) =f.o(/3).
i=2

There exist polynomials A(x) and B(x) Z[x] such that At + Bf’ R. Thus R/f’-o(
B(B)eZ[/3], which we wanted to show. Now let m=deg(t). By Lemma 5a)Itl-<
x/n+ 12"lf.ol, and using Hadamard’s determinant inequality for the resultant res (t,f’)
we obtain

IRI_-< (x/(m + 1)(n+ 1)2"lfl)"-l(x/nlfl)
(6)

< ((n/ 1)2"If.o[) "+" < (2nlfl) "/2,
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for n_->4. Again, we note that log ([RI) is bounded by a polynomial in deg (f) and
log (Ifl)- From Theorem 2 we can also conclude that

(7) R21-kl-’ a.k Z[/3] for

We now extend our estimates to the powers of aK mod j/+l as well as count the
ASM ops needed to compute the powers of at.

LEMMA 7. Let a Y.o=l.kl=r a)Y"k for 2 <= <= n 1, then

laT l <= (K + 1) (’-l)B,(/) and R21-1-1a’) Z[/3],

with R as defined above. All a(), 2<= i<= n-l, can be computed in O(K2n) ASMops.
Proof It is easy to show that

0 l.kl<_-K, i>_-l,
0_-<.s_-<.k

where there are, by Lemma 4, at most (I.k[ + 1) <= (K + 1) terms under the right-hand
sum. The lemma now follows by induction on i. V!

Therefore we get from (5) for all O<-i<=n-1 and for n_>-4

(8) la)l<-B2(f)=((K + 1)B,(f)) "-’ <23"K(2nlf[) 2K("3-"2).

Lemma 7 also establishes that the common denominator of any rational coefficient
computed throughout step (N) is R2/-. We are now in the position of estimating the
size of any numerator of the rational coefficients of a), -<_ <- n 1. To do this, we
shall state a useful lemma.

LEMMA 8. Let fl be any root of t(x) Z[x], monic, squarefree of degree m. Let A
be a real upper boundfor the absolute value ofany conjugate fl, <-j <- m, of ft. Assume
that for all <-_j <- m

ciflj <-- C with ci 6 Z.
i=0

Furthermore, let D be the absolute value of the discriminant of t. Then

Cm!Am(m-1)/2
[ci[ <- 0 < i<m

cf Weinberger and Rothschild [31, Lemma 8.3]).
In our case, we can choose A 2If.o[, by Lemma 5a), C B(f)R2=- and D >

Therefore, if we bring all rationals computed in step (N) to the common denominator
RK- we have shown that the absolute values of the numerators are bounded by

(9) B(f, m)= RK-B(f)m!(21fo_[) ""-)/ < 2"(2n])", (9)

using (6), (8) and n _->4. Though this bound is quite large, it is of length polynomial
in deg (f) and log (]j). This bound also implies, that all ASM ops are computable in
time polynomial in deg (f) and log (Ifl). Addition and subtraction in Q(fl) means
adding or subtracting the numerators of polynomials in Q[fl] of degree rn-1, after
eventually multiplying them with a power of R to produce a common denominator.
Muitiplication in Q(/3) is multiplication of rn degree polynomials in Q[fl] followed-
by a remainder computation w.r.t, t(/3). Again a common denominator can be extracted
a priori. Any ASM op takes at most O(m2) integral operations.

Step (L). By Lemma 4, it follows that (4) consists of

<m(K+l)p m
K
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equations in

q I
d

<(n-1)(d+l)V-

unknowns. Applying Gaussian elimination to (4) takes O(pq2) rational operations. It
is easy to show that this is the dominant operation count, which, expressed in input
terms, is

(10) O(mnV+ad3v).
()From the previous analysis, we know that all a.a can be brought to the common

denominator R2r- and their numerators, num (-’.ka, then satisfy Inum(aJ)l <
B3(f, m). As can be shown with little effort, all intermediate rationals computed during
the Gaussian elimination process are fractions of subdeterminants of the coefficient
matrix for (4) extended by the vector of constants (cf. Gantmacher [6, Chap. 2]). It is
not necessary to calculate the GCD of the numerator and denominator of a newly
obtained rational since, as can also be shown, the denominator of the row used for
the elimination in subsequent rows divides the numerators and denominators in these
rows after the elimination step. Thus Hadamard’s determinant inequality produces a
bound for the size of any intermediately computed integer which is polynomial in
deg (f) log (Ifl). E.g., one such bound is

B4(f, m)= (x/B3(f, m))q

whose logarithm is by (8) of order

(ll) log (B4(f, m))= O(dV+lvn
Hence, step (L) also takes at most polynomial-time in deg (f) and log (If[). Notice
that (10) and (ll) give a very crude bound for the complexity of the steps (N) and
(L). Since we know that any solution of (4) must be integral of quite a small size, due
to Lemma 2, a Chinese remaindering algorithm could be used to solve (4) (cf. McClellan
[23]) and we believe that this approach will be much more efficient, in practice.

7. Multivariate irreduciblity testing. As we have seen in 5, in order to establish
the irreducibility of the polynomial f by Algorithm 2 we need to factor f.0. Reducibility
of f.0 does, of course, not imply reducibility of f. The following theorem partially fills
this gap by constructing from a polynomial f(yl,... ,yv, x), monic in x with
f(0,..., 0, x) squarefree, a polynomial g(yl, x) in time polynomial in deg (f) and
log (Ill), such that g is irreducible if and only if f is irreducible. Unfortunately, our
approach does not allow us to eliminate Yl. We could include this as an open problem,
but in view of the polynomial-time algorithm for bivariate factorization a solution
appears not to be so significant.

LEMMA 9. Let t(y,...,y)Z[y,...,yo] be a nonzero polynomial. Then
t(yl, cyl, Y3,""", Yo) 0 for an integer c with Icl >-2It I.

Proof. Let ayes.., yeo be a monomial in with a 0. Then t(y, cy,...,y)
contains the monomial b(c)ye+e2y yo where b(c) is an integral polynomial in c
with degree at most el + e2. Since b(c) + ace2 +... it cannot, as a polynomial, be
identical to 0. From Lemma 5a and the fact that Ibl <-Itl we conclude that b(c) 0 for
any integer of the stated size.

THEOREM 3. Let f(y, , yv, x) Z[y, , Yv, x] be monic of degree n in x such
that fo.=f(O, O, x) is squarefree. Let T(fo.) be as in Lemma 5b, and let N(f) be as
in Theorem 2. Furthermore, assume that f(yt,..., yv, x) is irreducible. Finally let
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d degyl,...,y, (f). Then for any integer c with

Icl >- Bs(f) 2(4v)2d (2N(f) T(fo.)2) 4d-

f(y, cy, Y3, Y, x) is irreducible in Z[y, Y3, Y, x].
Proof Let Q[[y, , y]] denote the domain of formal power series in Yl," ",Y

over Q, and let

gc(Yl, Y3, x)=f(y,, cyl, Y3, x).

Then each factor of gc(y, Y3,’’’, X)E Q[[y, Y3,""", y]][x] corresponds to a factor
of f(y, Y2, ", x) Q[[y, y2," ",y]][x] with y2 replaced by cyl. For, if a factor of
g were not obtainable from a factor off, we could present two different factorizations
of g which, when evaluated at y Y3 Yv- 0, would result in one and the same
factorization of g(0,..., 0, x)e Q[x]. But this is impossible due to the uniqueness of
the Hensel lifting procedure as proven in Theorem 2.2 We will show that for an integer
c of the stated size no factor derived fromf in such a way can be an integral polynomial
dividing g. Our plan is the following: We first show that any candidate factor
h(yl, Y2," ", x) off(y, Y2," X) G Q[[Yl, ", yv]][x] contains at least one monomial
bp ,yP-x" with bp 0 and d lPl <- 2d. From it we get a polynomial coefficient of
in h whose total degree in y,..., y equals I.Pl. By choosing c sufficiently large (cf.
Lemma 9) we will be able to preserve this coefficient throughout hc h(y, cy, , x).
Hence such an h contains a monomial in y, Y3, Y oftotal degree IPl > d. Therefore
h cannot be a polynomial dividing g for otherwise its total degree in y, Y3,"" ", Y
could not be larger than d. Let

h(y, ., y, x) Y. b.k,,y.’kx
i=0 .k-->9

be a factor of f(Yl, Y2,’", x) in Q[[Yl,""", y]][x] and let

n-I

6 kxih(y,, Yv, X) 2 .k,,Y."
i=o .k->-9

be its cofactor, i.e. f-hh. We first can assume that

h(0,’", 0, x)= Z bo..,x’e Z[x].
i=0

Otherwise h(yl, cy, Y3,’", X) could not be an integral polynomial for any choice of
C.

Now there must exist at least on b.k,i or b.k,i with

d<[kl-<2d and (b.k,,0orb.k,,#0).
To see this, assume the contrary. Then

b .k, y "kx
i___00_<l.kl____d

6 kxi).k, iY." f(Yl, Yo, X)

since no monomial ay-kx , a a nonzero rational, with d <l.k[-<_2d in the left product
could be canceled by higher terms in the product of the complete expansion of h and
h. Notice that f does not contain a monomial in y of degree larger than d. But this
contradicts the fact that f is irreducible. Without loss of generality we now can assume

owe this argument to Prof. Hendrik W. Lenstra, Jr.
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the existence of a vector p and an integer m such that

b.p,,, 0 with d < I.Pl <- 2d and 0 <_- m <_- I.

Let us consider the coefficient of x in h whose total degree in Yl," ", Yo is I.Pl. Set

btp,m(y, Yv)=

which is a polynomial in Q[Yl,""", Yv] not identical to 0.
We now apply Theorem 2 with/3 1, go(x)= h(O,..., O, x) Z[x] and ho.(X)=

h(0,. , 0, x) Z[x]. First notice that, since f.o is squarefree, 0 R res (go, h.o) Z
and hence 1/IRI--< meaning that we can set S(fo)= 1. Secondly,

bj,,,I <-Ig[ -< (4v)121(N(T)T(fo))21l-1 <_ (4V)2d(N(f)T(fo))4d-1

because of Lemma 6 and Idl I.pl <=2d. Finally,

R2tJ-t-lbj,,Z and R21I-<=R4a- <(2T(fo)) 4d-l,
the last inequality by Lemma 5c. In summary,

0 R4d-l tp,,(y,,..., y) Z[yl, , y]

and

]R4d-1 tp,,l < (4v)TM (2N(f) r(fo)2)4d-1 1/2Bs(f).
From Lemma 9 we now conclude that for any integer c >= Bs(f)

tp,m(y, cy, Y3, Y) # 0.

Therefore h(y, cy, Y3, x) contains a nonzero monomial in Yl, Y3, Yv of total
degree larger than d and cannot be a polynomial factor of f(y, cyl, Y3,"" ", X), as
argued above. Our given bound then obviously works for any factor candidate h.

Our irreducibility test can now be constructed easily by induction. We compute
the integers c,. ., C_l such that for the sequence of polynomials f =f,

f(Y,, Y3,""", x)=fl(Y,, ClYl, Y3,""", X),

f3(Y,, Y4,""", X)=f2(Y,, c2y,, y2, X),

f(y,, X)=fv-,(Y,, Cv_,y,, X),

we have ci->_ Bs(f) for all <_- <= v- 1. Since v is assumed to be fixed and since Bs(f)
is of size polynomial in deg (f) and log (If, I), g can be constructed in time polynomial
in deg (f) and log (130). By Theorem 3, g is irreducible iff is irreducible. On the other
hand, if f h h2 then

g(y,, x)= h,(y,, c,y,, c,_,y,, x)h(y,, c,y,, Cv_lYl, X).

One can prove Theorem 3 for the more general substitution Y2--cy, s being an
arbitrary positive integer. Since the bound Bs(f) grows monotonically in Ifl we can,
in the case that f is reducible, find a bound for c using Lemma 2 such that the given
subsitution maps all irreducible factors of f into irreducible polynomials in one less
variable. Together with a Kronecker like algorithm this then leads to a different
polynomial-time reduction from multivariate to bivariate polynomial factorization. In
the case of v 2 the complete proof is given in Kaltofen [12], which, following the
lines of the proof for Theorem 3, is readily extended to any fixed v. Instead of using
Kronecker’s algorithm one can also apply the multivariate Hensel lifting algorithm by
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Musser [26] with the coefficients in Q(Yl). Since our evaluation guarantees that no
extraneous factors can occur, all computed coefficients must actually lie in Z[y]. A
version of Theorem 3 can also be formulated if the coefficients are from a finite field
(cf. Chistov and Grigoryev [3, Thm. 4]).

The type of substitution Y2 cy is derived from a version of the Hilbert irreducibil-
ity theorem by Franz [5] and Theorem 3 can be regarded as its effective counterpart.
For the classical Hilbert irreducibility theorem, no such an effective formulation seems
to be known. (See open problem 2 in 8.)

$. Conclusion. We have shown how to overcome the extraneous factor problem
during the multivariate Hensel algorithm by approximating a root and then determining
its minimal polynomial, which leads to solving a system of linear equations. Our main
algorithm was formulated for coefficients from a unique factorization domain and
hence can also be applied to polynomials over Galois fields or algebraic extensions
of the rationals. It can be shown that in both cases the algorithm works in polynomial-
time.

In the case of algebraic coefficients we need a polynomial-time algorithm for
univariate factorization. That this is possible is a consequence of the polynomial-time.
algorithm for factoring univariate polynomials over the integers (cf. Landau 19]). One
usually describes an algebraic extension of the rationals by the minimal polynomial
of an algebraic integer generating the field and then reduces the problem to factoring
polynomials with coefficients which are algebraic integers. The ring of algebraic integers
is in general not a unique factorization domain. Therefore we cannot guarantee that
a solution of (4) consists of algebraic integers but one can prove that the numbers are
algebraic integers within an integral quotient (cf. Weinberger and Rothschild [31,
Lemma 7.1 ]).

In the case that the coefficients are elements from a finite field one may not be
able to carry out all transformations of 4. It may happen that good translation points
w do not exist within the coefficient field. Then the coefficient domain has to be
extended to a larger field and thus the factors returned by Algorithm 2 may have
coefficients which are not in the original coefficient field. A simple trick by taking the
norm (cf. Trager [27]) can then be used to determine the irreducible factors in the
smaller field. This approach together with the Berlekamp algorithm (cf. Knuth [16,
4.6.2]) gives an algorithm which works in time polynomial in the total degree of the

input polynomial and the cardinality of the coefficient field, as shown in von zur
Gathen and Kaltofen [8].

We conclude this paper with a list of open problems.
Problem 1. Do there exist a polynomial p(d, v) and an infinite sequence of

polynomials f(x1, Xv) E Z[X1, Xv] with the following property: Any f in the
sequence contains less than p(d(f), v) monomials with nonzero coefficients where

d (f) max {degx, (f)};
i--l,-",v

moreover, there does not exist a polynomial q(d, v) such that any factor off contains
less than q(d(f), v) monomials with nonzero coefficients? In simple words, are there
sparse polynomials with dense factors? See von zur Gathen [7] for a partial positive
answer.

Problem 2. Given any polynomial p(n), does there exist an infinite sequence of
irreducible polynomials f(y, x) Z[y, x], n deg (f), such that for all integers < p(n)
all polynomials f(i, x) are reducible? This problem asks whether there is a strongly
effective version of the Hilbert irreducibility theorem.
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Problem 3. Given a polynomial f(xl,’’’, Xv) Zp[x,..., xv], p prime, can one
determine irreducibility of f in deterministic time polynomial in log (p) deg (f)?

Acknowledgments. The problem of polynomial-time reductions for multivariate
polynomial factorization was brought to my attention by Prof. George Collins. I also
wish to thank Prof. Bobby Caviness and Prof. B. David Saunders for all their support.
The final presentation has also benefitted from the careful remarks of one referee. This
paper could not have been typeset without the help of my wife Hoang.

The examples in 3 were computed on the MACSYMA system.

Note added in proof. A. K. Lenstra has presented another polynomial-time
algorithm for factoring multivariate integral polynomials at the 10th International
Colloquium on Automata, Languages and Programming. Cf. Lecture Notes in Com-
puter Science 154, Springer, Berlin 1983, pp. 458-465.
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