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Abstract

We present a fast parallel deterministic algorithm for testing multivariate integral polyno-
mials for absolute irreducibility, that is irreducibility over the complex numbers. More precisely,
we establish that the set of absolutely irreducible integral polynomials belongs to the complexity
class NC of Boolean circuits of polynomial size and logarithmic depth. Therefore it also belongs
to the class of sequentially polynomial-time problems. Our algorithm can be extended to com-
pute in parallel one irreducible complex factor of a multivariate integral polynomial. However,
the coefficients of the computed factor are only represented modulo a not necessarily irreducible
polynomial specifying a splitting field. A consequence of our algorithm is that multivariate poly-
nomials over finite fields can be tested for absolute irreducibility in deterministic sequential poly-
nomial time in the size of the input. We also obtain a sharp bound for the last prime p for which,
when taking an absolutely irreducible integral polynomial modulo p, the polynomial’s irre-
ducibility in the algebraic closure of the finite field of order p is not preserved.
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1. Introduction

The determination of the irreducibility of a polynomial with coefficients in a unique factor-
ization domain is an old problem. Recently, sev eral new algorithms for univariate and multivari-
ate factorization over various coefficient domains have been proposed within the framework of
sequential polynomial-time complexity. For the coefficients being rational numbers, the first
solutions are due to Lenstra et al. (1982) in the univariate and to Kaltofen (1982, 1983) in the
dense multivariate case. It seems natural to ask whether any of these algorithms can be con-
verted to a parallel one. Unfortunately, for rationals as coefficients, all algorithms developed so
far utilize the construction of a short vector in an integral lattice, a process which seems to resist
a parallel approach. (Cf. von zur Gathen (1983a) where the problem is related to integer GCD
computation.)

In this paper we primarily consider irreducibility over the complex numbers. An integer
polynomial is said to be absolutely irreducible if it remains irreducible when one allows the coef-
ficients of factors to be complex. For example, x2 + y3 is absolutely irreducible whereas x2 + y2

= (x + iy) (x − iy) is not. We first observe that all previously known sequential algorithms such as
Noether’s criterion (1922), the multivariate Hensel algorithm (cf. Davenport, Trager (1981)) and
the elimination algorithm by Heintz, Sieveking (1981) are exponential in the degrees of the input
polynomials. For this problem, however, we shall do much better than just giving an algorithm
polynomial in the input degree. Our algorithm is a parallel one which runs in polynomial-time in
the logarithm of the degree of the input polynomial and the logarithm of the coefficient length. It
needs polynomially many processors thus showing that ABSOLUTE IRREDUCIBILITY ∈ NC
⊂ P. (Cf. Cook (1981) for a definition of the class NC and its relation to the class of sequential
polynomial-time algorithms P.) We wish to remark that this seems to be the first parallel and
deterministic irreducibility test for polynomials over any of the usual coefficient domains. If the
coefficients lie in a finite field, parallel factorization procedures are known for small characteris-
tic but the algorithms are probabilistic except the irreducibility test (cf. von zur Gathen (1983a)).

Our parallel computation model is uniform Boolean circuits which means that we also
account for the length of intermediately computed integers. We make extensive use of recently
developed parallel algorithms for integer and polynomial arithmetic (cf. Reif (1983)), computing
matrix determinants, solving singular linear systems over the rational numbers, computing poly-
nomial greatest common divisors (cf. Borodin et al. (1982)) and computing squarefree polyno-
mial factors (cf. von zur Gathen (1983a)).

We can extend our algorithm to find in parallel an irreducible complex factor of a given
multivariate integral polynomial. It is not quite clear what the correct representation of such
complex coefficients should be. We only can represent them as polynomials modulo a not-neces-
sarily irreducible integral polynomial whose splitting field defines an algebraic extension over
which the input polynomial factors. If we could isolate a root of an integral polynomial to high
precision in parallel† then we could also obtain an arbitrarily high approximation of the
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coefficients of our factor.

A further application of our methods is a new proof with a sharpened bound of a theorem
by Ostrowski (1919) stating the following: An absolutely irreducible integral polynomial
remains absolutely irreducible modulo all but finitely many prime numbers. Known upper
bounds for the largest prime making the modular polynomial reducible seem to have been
exceedingly large, e.g. a triple exponential bound in the degree of the polynomial is given in
Schmidt (1976). We derive a bound which is of polynomial length in the degree.

It is a consequence of Noether’s (1922) theorem on the existence of reducibility-forms that
one can test a polynomial over an arbitrary field for absolute irreducibility by field arithmetic
alone, that is addition, subtraction, multiplication and division as well as testing elements to be
equal to zero. We remark that our algorithm for absolute irreducibility also needs only the field
operations and thus is not only restricted to the rational coefficient case. One interesting conse-
quence is that we can give a sequential deterministic algorithm which tests a multivariate polyno-
mial over a finite field for absolute irreducibility in polynomial-time of the total degree and the
logarithm of the order of the field. The corresponding parallel algorithm is unfortunately a prob-
abilistic one. But we view the sequential result a step towards solving the open question of how
to deterministically test multivariate polynomials over finite fields for irreducibility.

In this paper we restrict ourselves to bivariate polynomials though we will mention in the
conclusion how to generalize our results to more than two variables. Section 2 contains some
prerequisite algorithms and a theorem, section 3 the irreducibility test and section 4 the extension
to finding a factor. Section 5 presents a new proof and an effective bound for Ostrowski’s theo-
rem.

Notation: By Z we denote the integers, by Q the rationals and by C the complex numbers. F
denotes the algebraic closure of a field F . D[y, x] denotes the polynomials in y and x over D,
D[[y]] the domain of formal power series in y over D; degx( f ) denotes the highest degree of x
in f ∈ D[y, x] and deg( f ) the total degree of f . The coefficient of the highest power of x in f ,
a polynomial in y, is referred to as the leading coefficient of f in x and will be denoted by
ldcfx( f ). We call f monic in x if ldcfx( f ) is a unit of D. As is well-known, D[y, x] is a unique
factorization domain (UFD) provided that D is a UFD. In this case the content of f ∈ D[y, x] in
x, contx( f ), is the greatest common divisor (GCD) of all coefficients of f (x) as elements in
D[y].

The infinity norm of f ∈ C[y, x], the maximum of the absolute values of the coefficients
of f , will be denoted by | f |. The squareroot of the sum of squares of the coefficients of f , the
square norm of f , will be denoted by | f |2.

Let f (y, x) and g(y, x) ∈ D[y, x]. By resx( f , g) we denote the resultant of f and g with
respect to the indeterminate x. As is well-known, resx( f , g) ≠ 0 if and only if GCD( f , g) ∈

† To my knowledge it has not been rigorously established that one can quickly approximate a complex root of a
polynomial in parallel.
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D[y]. Furthermore, there exist polynomials s(y, x), t(y, x) ∈ D[y, x], degx(s) < degx(g), degx(t)
< degx( f ) such that

s(y, x) f (y, x) + t(y, x) g(y, x) = resx( f , g).
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2. Preliminary Results

The overall structure of our algorithm will be quite similar to the reduction in Kaltofen
(1983). We first transform f such that f (0, x) is squarefree and f is monic in x. For this we can
adopt algorithm 1 in Kaltofen (1983) which works briefly as follows:

1. Check that contx( f ) = 1. This is a GCD computation of all coefficients of x in f which
are polynomials in y. If contx( f ) ≠ 1 then f is reducible.

2. Check that f (y, x) is squarefree, i.e. GCD( f , ∂ f /∂x) = 1. We can also, as we will need in
section 4, determine a squarefree factor of f quickly in parallel.

3. Make f monic in x by replacing f by the monic polynomial

f̂ (y, x) = ldcfx( f )degx( f )−1 f 


y,
x

ldcfx( f )


.

Notice that f is absolutely irreducible if and only if f̂ is. In fact, if ĝ(y, x) is a factor of
f̂ (y, x) then ĝ(y, ldcfx( f ) x) divided by its content is one for f .

4. Find an integer w with |w| ≤ degx( f̂ )degy( f̂ ) such that f̂ (w, x) remains squarefree, and

replace f̂ by f (y, x) = f̂ (w + y, x). Such an integer w must exist and we find it by testing
in parallel for all integers in the given range whether GCD( f (w, x), ∂ f /∂x(w, x) = 1.

We now outline the irreducibility test for f , first over an arbitrary field F in which f (0, x)
has a root (cf. Kaltofen (1983), Algorithm 2):

Algorithm 1:
[Given f (y, x) ∈ F[y, x] monic in x, f (0, x) squarefree, F an arbitrary field, and given a0 ∈ F
such that f (0, a0) = 0, this algorithm determines an irreducible factor of f over F :]

(N) [Compute approximation of root in F[[y]]:]
n ← degx( f ); d ← degy( f ); K ← (2n − 1)d .
By Newton iteration, calculate a1 , . . . ,  aK ∈ F such that f (y, a0 + a1 y + ⋅  ⋅  ⋅ + aK yK ) ≡ 0
mod yK+1. α ← a0 + ⋅  ⋅  ⋅ + aK yK .

(L) [Find minimal polynomial of α in F[y, x]:]

[Compute powers of α :]
FOR i ← 0, . . . ,n − 1 DO α (i) ← α i mod yK+1.

FOR i ← 1, . . . ,n − 1 DO
Try to solve the equation

α (i) +
i−1

j=0
Σ u j(y)α ( j) ≡ 0 mod yK+1
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for polynomials u j ∈ F[y] with deg(u j) ≤ d . This equation leads to a linear system
over F in K + 1 equations and i(d + 1) unknown coefficients of u j . If there exists a

solution then xi + Σi−1
j=0 u j(y)x j divides f (y, x). (Cf. Kaltofen (1983), Theorem 3;

the solution is also unique.) In this case RETURN (“reducible”).

[At this point, the FOR loop has not found a factor:] RETURN (“irreducible”).

This algorithm supplies us with a theorem which will be of crucial importance for our irre-
ducibility test.

Theorem 1: Let f (y, x) ∈ Z[y, x] be monic in x such that f (0, x) is squarefree. Furthermore,
let F be a subfield of C in which f (0, x) possesses a root. Then f is absolutely irreducible if and
only if f is irreducible in F[y, x].

Proof: Obviously irreducibility over F is necessary for that over C. Assume f were reducible in
C. Then algorithm 1 will find a factor of f in C[y, x] provided we replace F by C throughout
the algorithm. However, we may choose a0 ∈ F ⊆ C which automatically forces the ai (see
algorithm 2, step (N)), and later the (unique!) solution for the linear system to remain in F . Thus
the factor found over C is in fact an element of F[y, x].

We will use an algorithm very similar to the previous algorithm for the absolute irre-
ducibility test. First of all, we observe that if we had an irreducible factor t(x) of f (0, x) we
could choose F = Q[z]/(t(z)) in algorithm 1. Using the sequential polynomial-time factorization
procedure this immediately shows that absolute irreducibility can be decided in polynomial-time.
However, we want to construct a parallel solution and, at the current moment, there seems to be
no fast parallel algorithm for finding t.
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3. Testing Polynomials in Z[y, x] for Absolute Irreducibility

In this section we present an algorithm which when given a polynomial f (y, x) ∈ Z[y, x]
monic in x such that f (0, x) is squarefree determines in (log deg( f ) + log log | f |)O(1) steps
whether f is absolutely irreducible using (deg( f ) log | f |)O(1) processors thus showing that
ABSOLUTE IRREDUCIBILITY ∈ NC.

We use the idea of algorithm 1 but work in a ring R with zerodivisors in which f (0, x) has
a root. The choice is R = Q[z]/( f (0, z)) and we construct our algorithm such that we never need
to invert a zerodivisor in R. The detailed description follows now:

Algorithm 2:
[Given f (y, x) ∈ Z[y, x] monic in x, f (0, x) squarefree, this algorithm determines whether f is
absolutely irreducible.]

(I) [Initialize:] n ← degx( f ); d ← degy( f );
By determinant formulas compute polynomials s(z), t(z) ∈ Z[z] such that

s(z) f (0, z) + t(z)
∂ f

∂x
(0, z) = ρ = resz( f (0, z),

∂ f

∂x
(0, z))

and deg(t) < deg( f ). [Since f (0, x) is squarefree, ρ is an integer not equal to zero.]

α 0 ← z mod f (0, z) ∈ R = Q[z]/( f (0, z)); β 0 ←
1

ρ
t(z) ∈ R.

[Notice that f (0, α 0) = 0 and
1

f ′(0, α 0)
= β 0 in R, where f ′ denotes

∂ f

∂x
.]

FOR j in {0 , . . . ,  n} DO α 0
( j) ← α 0

j ∈ R.

(N) [Approximate a root of f (y, x) in R[[y]]:]

[Order of approximation:] K ← (2n − 1)d .

FOR i ← 0 , . . . ,  log2(K ) DO

α i+1 ← (α i − β i f (y, α i)) mod y2i+1
.

[At this point α i+1 is an approximation of a root of f to order y2i+1
. Notice that

f (y, α i) mod y2i+1
is a multiple of y2i

and moreover can be quickly computed using
α i

( j).]

FOR j in {2 , . . . ,  n} DO α i+1
( j) ← α i+1

j mod y2i+2
.

[Notice that α i+1
( j) is, as the j-th power of a root of f , only correct to order

y2i+1−1. We need twice as many terms the next time we substitute into f . One
can compute these powers in parallel by binary exponentiation though this is
not the fastest way possible (cf. Reif (1983)).]
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β i+1 ← (2β i − f ′(y, α i+1)β 2
i ) mod y2i+1

.

[At this point, β i+1 f ′(y, α i+1) ≡ 1 mod y2i+1
. Again f ′(y, α i+1) can be quickly com-

puted using α i+1
( j) mod y2i+1

.]

FOR j in {0 , . . . ,  n−1} DO α ( j) ← α i+1
( j) mod yK+1.

[The index i =  log2 K , hence α ( j) is the correct K -th order approximation of the j-th
power of a root of f . Notice that α i+1

(1) = α i+1.]

(L) [Find a polynomial in R[y, x] for which α (1) is a root:]
Examine whether the equation

α (n−1) +
n−2

i=0
Σ ui(y)α (i) ≡ 0 mod yK+1 (1)

is solvable for polynomials ui(y) ∈ R[y] such that deg(ui) ≤ d . Let ui(y) = Σd
s=0 uis ys and

let

α (i) =
K

k=0
Σ a(i)

k yk , a(i)
k ∈ R.

Then (1) leads to the linear system

a(n−1)
k +

n−2

i=0
Σ

d

s=0
Σ a(i)

k−suis = 0 (2)

for k = 0 , . . . ,  K in the variables uis ∈ R, i = 0 , . . . ,  n − 2, s = 0 , . . . ,  d . We solve (2) by fur-

ther refining the unknowns to polynomials in Q[z]/( f (0, z)).† Let uis = Σn−1
j=0 uisj z

j , a(i)
k =

Σn−1
j=0 a(i)

kj z j and let zλ ≡ Σn−1
j=0 cλ j z

j mod f (0, z) with λ = n ,.. . , 2n − 2, cλ j ∈ Z. Then the

coefficient of zl , 0 ≤ l ≤ n − 1, for each equation in (2) is, setting a(i)
kj and uisj to 0 for j ≥ n,

a(n−1)
kl +

i,s
Σ 


l

j=0
Σ a(i)

k−s,l− juisj +
2n−2

λ=n
Σ

λ

j=0
Σ cλ l a

(i)
k−s,λ− juisj




(3)

which is a linear expression in uisj and which must vanish on a solution of (2). This leads
to a linear system over Q in p = n(K + 1) equations and q = n(n − 1)(d + 1) unknowns. If
this system has a solution, we return “ f is reducible in C”, otherwise, we return “ f is
absolutely irreducible”.

The reader can find a proof that step (N) computes a K -th order approximation of a root of
f in Lipson (1982), Sec.3.3. The correctness of algorithm 2 now hinges on the following theo-
rem.

Theorem 2: The linear system (2) (resp. (3)) has a solution in R (resp. Q) if and only if f (y, x)
factors over C.

† Thanks go to Joachim von zur Gathen for pointing out this approach.
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Proof: If: Let t1 ⋅ ⋅  ⋅ tr be the factorization of f (0, x) into irreducibles. By p j we denote the pro-

jection from R onto F j = Q[z]/(t j(z)), 1 ≤ j ≤ r. Then for α ≡ α (1), p j(α ) = ΣK
k=0 p j(a

(1)
k )yk is

the K -th order approximation for a root of f (y, x) in F j[[y]][x]. Now assume that f (y, x) splits
over C. Since f (0, x) has a root in F j , by theorem 1 f (y, x) splits in F j[y, x]. Therefore, the
minimal polynomial g j(y, x) ∈ F j[y, x] for p j(α ) has degree n j < n. Let g(y, x) ∈ R[y, x] be
the unique polynomial (by the Chinese Remainder Theorem) such that

p j(g(y, x)) = xn−1−n j g j(y, x) for 1 ≤ j ≤ r.

Since p j(g(y, α )) ≡ 0 mod yK+1 in F j[[y]] for all 1 ≤ j ≤ r, g(y, α ) ≡ 0 mod yK+1 in R[[y]] and
hence its coefficients solve (2).

Only if: Assume (2) admits a solution, i.e. there exists a polynomial g(y, x) ∈ R[y, x] of degree
n − 1 such that g(y, α ) ≡ 0 mod yK+1. Let g1(y, x) = p1(g(y, x)) and let ρ(y) = resx( f , g1) over
F1. There exist polynomials s(y, x) and t(y, x) ∈ F1[y, x] such that

ρ(y) = s(y, x) f (y, x) + t(y, x) g1(y, x).

Therefore

ρ(y) = s(y, p1(α )) f (y, p1(α )) + t(y, p1(α ))g1(y, p1(α )) ≡ 0 mod yK+1.

But degy( f ), degy(g1) ≤ d and hence deg(ρ(y)) ≤ (2n − 1)d . Thus ρ(y) = 0 and the GCD( f , g1)
in F1[y, x] is non-trivial. This GCD is, of course, a factor of f (y, x) in C[y, x].

We finally furnish a count for the number of arithmetic operations in Q as well as bounds
for the intermediately computed numerators and denominators. The inversion of f ′(0, α 0) is a
determinant computation and can be performed in parallel in O(log2(n)) steps. Each ring opera-
tion in R costs no more than the normalization, that is the final remainder step modulo f (0, z),
which can be done in parallel in O(log2(n)) operations in Q, though this again could be

improved. As said before, we compute α j
i+1 mod y2i+2

by binary exponentiation. However, we

perform the normalization only after the exponentiation. Since degz(α
j
i+1) ≤ n2 and the degree in

y can be kept below 2i+2 = O(K ) throughout the exponentiation process, computing the powers of

α i+1 mod y2i+2
can be accomplished in parallel in O(log2(n) log(K )) operations in Q. Therefore,

step (N) takes O(log2(n) log2(K )) parallel arithmetic steps.

The bounds for the occurring rationals in step (N) follow from the elaborate analysis in
Kaltofen (1983), Sec. 6. There we prove† that in (3) for n ≥ 4

ρ2K−1 a(i)
kj ∈ Z [Lemma 7],

|ρ2K−1 a(i)
kj | ≤ (2n| f |)4 K n3

[(8)]
0 ≤ i, j ≤ n − 1, 0 ≤ k ≤ K

and

† Actually, the given proof is modulo an irreducible factor of f (0, x) but this fact is never used. The bounds work
for any factor and we use this also in section 4.
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|ρ | = |res( f (0, z),
∂ f

∂x
(0, z))| ≤ (2n| f |)n3

[(6)].

In fact, all intermediate numerators and denominators of rational coefficients are bounded that
way. It is easy to find a bound for |cλ j |, e.g. |cλ j | ≤ | f |n2 ≤ (n| f |)n. The approach is to investigate
the linear system arising from the identity xλ = q(x) f (0, x) + r(x), deg(r) < n, where the coeffi-
cients of q and r are the unknowns and apply Cramer’s rule and Hadamard’s determinant
inequality. Thus the integer arithmetic of step (N) consumes O((log deg( f ) + log log | f |)2) steps
which is again not the best upper bound and thus binary complexity of step (N) is crudely
bounded by

O(log6(deg f ) + log4(deg f ) log2(log | f |)). (4)

Step (L) is deciding the solvability of a linear, non-square system in q = n(n − 1)(d + 1)
unknowns and about twice as many equations whose coefficients are integers with
O(deg4( f ) log(| f |)) digits. The parallel complexity given in (4) dominates this step as can be
inferred from Borodin et al. (1984), Corollary 4.4, and Ibarra et al. (1980).

It should be clear that our methods are not restricted to polynomials over the integers, but
work for any perfect coefficient field. (Perfectness of the field is required because of preprocess-
ing step 2.) The most interesting case is then when the coefficients lie in a finite field GF(q).
There are two peculiarities in this case. First, an element w such that f̂ (w, x) remains squarefree
may not exist in GF(q), as was necessary in the 4. preprocessing step. But it can be shown (cf.
von zur Gathen, Kaltofen (1983), Sec. 4.2) that a small algebraic extension GF(qm) can be con-
structed deterministically such that a w ∈ GF(qm) with the required property can be located.
Since our input polynomial is to be tested for absolute irreducibility we do not lose generality by
working over GF(qm). Secondly, singular linear systems over finite fields can only be solved
probabilistically in parallel (cf. Borodin et al. (1982)). That means, that the algorithm might fail
to produce any decision, but that with diminishing probability. Howev er, we can return to the
sequential technique and thus get the following interesting result. Testing f (y, x) ∈ GF(q)[y, x]
for irreducibility in the algebraic closure of GF(q) can be performed deterministically in
(deg( f ) log(q))O(1) binary steps. We mention this result, because testing f for irreducibility over
GF(q) itself is not known to be in deterministic polynomial-time.
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4. The Computation of an Irreducible Factor

In this section we show how to compute g(y, x) ∈ C[y, x] irreducible such that g divides
f (y, x) ∈ Z[y, x]. It should be clear from the preprocessing procedure as explained in section 2,
that we only have to concern ourselves with f monic in x and f (0, x) squarefree. We will repre-
sent g ∈ R[y, x] where R = Q[z]/(φ (z)) with φ (z) some factor of f (0, z). Moreover, g will be
monic in x and division of f by g, thus always possible, will leave a zero remainder in R[y, x].
Therefore, if we evaluate the coefficients of g at any root of φ we get a factor of f in C[y, x].
We also guarantee that for one root of φ the image of g under this evaluation is irreducible. We
realize that one cannot speak properly of irreducibility over R since this domain is not necessar-
ily a field.

We wish to observe that we know no fast parallel construction for the full factorization of
f (y, x) over C. Even to determine how many factors f has over C yet escapes our attempts.

Algorithm 3:
[Given f (y, x) ∈ Z[y, x] monic in x, f (0, x) squarefree, this algorithm determines φ (z) ∈ Z[z]
and g(y, x) ∈ R[y, x], R = Q[z] / (φ (z)), such that g is a monic and irreducible factor of f .]

(I) − (N) as in algorithm 2.

(LF)
[Find a minimal polynomial for α (1) in R[y, x]. It may become necessary in this step to
restart the whole computation with R being replaced by a homomorphic image. Therefore,
we initially set φ (z) = f (0, z).]

FOR I in {1 , . . . ,  n − 1} DO

Examine whether the equation

α (I ) +
I−1

i=0
Σ ui(y)α (i) ≡ 0 mod yK+1 (5)

is solvable for polynomials ui(y) ∈ R[y] such that deg(ui) ≤ d . As in step (L) of
algorithm 2 this amounts to solving a linear system in deg(φ ) K equations and
deg(φ ) (I − 1) (d + 1) unknowns over Q.

Pick the smallest I for which (5) was solvable and denote it by I0.

Compute one solution to (5) with I = I0 and set g(y, x) ← x I0 + ΣI0−1
i=0 ui(y)xi.

Take the remainder h(y, x) ∈ R[y, x] of f (y, x) divided by g(y, x) w.r.t. x. [Since g is
monic in x, h(y, x) is uniquely determined. The standard division algorithm shows that
degy(h) ≤ (n − I0 + 1)d . Howev er, R is not a field and we deem it necessary to explain a
parallel procedure for performing this division.]
Compute the coefficients of q(y, x) and h(y, x) ∈ R[y, x] such that
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f (y, x) = q(y, x)g(y, x) + h(y, x), degx(q) = n − I0,

degx(h) < I0.

Since q is monic in x and degy(q) ≤ (n − I0)d this leads to a linear system in

µ = ((n − I0 + 1)d + 1) I0 + ((n − I0)d + 1) (n − I0)

unknowns and ν ≤ ((n − I0 + 1)d + 1) n equations over R. This system can be rewritten as
a linear system in deg(φ ) µ unknowns and deg(φ ) ν equations over Q in exactly the same
way as it was done in step (L).

IF h = 0 THEN RETURN(g(y, x) ∈ Q[z]/(φ )[y, x]).
ELSE DO the following: For any coefficient vi0s0

∈ R of ys0 xi0 in h(y, x) with vi0s0
≠ 0

compute γ (z) ← GCD(φ (z), vi0s0
(z)) ∈ Z[z]. [We show below that γ (z) ≠ 0. Then γ is a

non-trivial factor of φ since also deg(vi0s0
) < deg(φ ).]

Replace φ by γ if deg(γ ) ≤ deg(φ )/2 and by φ /γ if deg(γ ) > deg(φ )/2. [The new φ has
degree at most half of the old one.]
Project the coefficients of α (i), 1 ≤ i ≤ n − 1, into the new R = Q[z]/(φ ) by taking them
modulo the just obtained new φ . Then go back to step (LF).

It should be clear that this algorithm runs in poly-logarithmic depth. Since the degree of φ
is at least halved every time we restart at step (LF), this can happen at most  log2(n) times. We
now prove its correctness. Let φ = t1 ⋅ ⋅  ⋅ tr be the factorization of φ into irreducible polynomi-
als. As in the proof of theorem 2, F j = Q[z]/(t j) are fields obtainable by projection from R via
p j . Now the minimal polynomial g j ∈ F j[y, x] corresponding to p j(α

(1)) must divide p j(g).
For we can conclude, as in the proof of theorem 2, that GCD( f (y, x), p j(g)) ≠ 1. Therefore, by
the same argument as in the proof of theorem 2,

I0 = max { deg(g j) | 1 ≤ j ≤ r}.

Let j0 be such that deg(g j0
) = I0. Then g is irreducible for p j0

(g) is irreducible over F j0
. How-

ev er, as pointed out in algorithm 1, g j0
divides f , which means that p j0

(h) = 0, or that t j0
divides

vi0s0
which finally proves that γ is non-trivial.

We wish to add the following observation. From g and φ one might, under fortunate cir-
cumstances, be able to obtain a factor in Z[y, x] of f . For were φ irreducible, then the Norm of
g with respect to φ , that is the product of all conjugates σ g of g, σ an automorphism of the split-
ting field of φ , must be the power of an irreducible polynomial in Z[y, x]. The Norm can be
computed by determining the resultant resz(g, φ (z)). Even if φ is not irreducible, this resultant
might turn out not to be a perfect power of f , in which case a factor can be extracted by divisions
and GCD computations. That this phenomenon can really occur is easy to see. E.g. if deg( f )
does not divide deg(φ ) deg(g) the Norm of g cannot be a perfect power of f .
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5. The Ostrowski-Noether Theorem

It is known at least since Noether (1922) that one can test a polynomial f (x, y) ∈ F[x, y],
F a field, for irreducibility over F by arithmetic operations in F alone. In fact, for any degree δ
there exist polynomials

φ k(A00, . . . ,  Aij , . . . ,  Aδ 0) ∈ Z[A00, . . . ,  Aδ 0], 0 ≤ k ≤ t,

such that f (x, y) = Σi+ j≤δ aij x
i y j , aij ∈ F , is reducible over F or deg( f ) < δ if and only if for all

k = 0 , . . . ,  t, φ k(a00 , . . . ,  aδ 0) = 0, taking the coefficients of φ modulo the characteristic of F if
that is positive. Noether calls the polynomial

Φδ (U , A00, . . . ,  Aδ 0) =
t

k=0
Σ φ k(A00, . . . ,  Aδ 0)U k

a Reduzibilitaetsform (reducibility-form) for δ . The existence of such a reducibility-form imme-
diately implies the following theorem of Ostrowski (1919).

Theorem 3: Let K be a number field, OK its ring of integers. Assume that f (x, y) ∈ OK [x, y] is
absolutely irreducible. Then f (x, y) modulo P remains absolutely irreducible over OK /P for all
but finitely many prime ideals P of OK .

In particular, if K = Q an absolute irreducible polynomial f (x, y) remains absolutely irre-
ducible modulo all but finitely many rational primes p. It is, however, not so easy to give a good
lower bound B f such that absolute irreducibility is preserved for all primes p ≥ B f . One such

bound is calculated in Schmidt (1976), Corollary 2B, namely B f = (4| f |)(δ +1)2δ +1

, δ = deg( f ). The
following theorem establishes a much better bound whose proof is based on algorithm 2.

Theorem 4: Let f (x, y) ∈ Z[y, x] be monic in x, absolutely irreducible, with δ = deg( f ). Then
f modulo p is absolutely irreducible over GF(p) for all primes p with

p ≥ B f = (2 δ | f |)10 δ 8
.

Proof: We, in fact, construct an integer B f such that the above condition is true for all primes p
which do not divide B f . We execute algorithm 2 on input f but take all rationals modulo p.
This is possible for all primes p |/ ρ since all intermediate denominators divide ρ2K−1 (see section
3). Since f is absolutely irreducible, the linear system (3) has no solution, that is the rank r of its
augmented coefficient matrix must be larger than the rank of its coefficient matrix. Let ∆ be an
r × r submatrix with det(∆) ≠ 0. Assume that p does not divide the numerator of det(∆). Then f
modulo p must be absolutely irreducible since the modulo p image of the linear system (3) is
also unsolvable. It remains to estimate the numerator of det(∆). First we multiply each equation
in (3) by its common denominator ρ2K−1. Then the coefficient of the unknown uisj is bounded
by†

† Notice that though some intermediate bounds in Kaltofen (1983), Sec. 6, are worked out only for n ≥ 4, further
inspection shows that the bounds used are valid for all n ≥ 1.
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|ρ |2K−1




a(i)
k−s,l− j +

2n−2

λ=n
Σ cλ l a

(i)
k−s,λ− j





≤ (2n| f |)5 K n3
,

which clearly bounds the constants in the system as well. Since r ≤ δ 3, Hadamard’s determinant
inequality gives with K ≤ 2δ 2 − δ

| det(∆)| ≤ 

δ 3/2(2n| f |)5 K n3



δ 3

≤ (2δ | f |)10δ 8 − 3δ 7
.

Therefore, B f = |ρ det(∆)| is bounded by (2δ | f |)10δ 8
.

In theorem 4 we have assumed that f is monic in x. One can prove that for primes p > B f

the preprocessing steps of section 2 remain valid when performed on f modulo p. A more
important note is that modulo any prime p not dividing a certain integer ≤ B f absolute irre-
ducibility will be preserved. This means that the first such prime is of order O(log B f ) and that
actually small primes are quite likely to preserve absolute irreducibility.
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6. Concluding Remarks

We hav e only presented our algorithm for two variables. There are several ways to extend
it to many variables. The fastest among them is to use an effective version of the Hilbert Irre-
ducibility Theorem, which was the approach by Heintz, Sieveking (1981). Other effective ver-
sions of this theorem can be found in von zur Gathen (1983b) and Kaltofen (1984). The result is
a random parallel algorithm which runs in (log µ + log deg( f ) + log v + log log | f |)O(1) steps
where µ is the number of monomials of the input polynomial f and v the number of variables. If
one wants a deterministic algorithm one can follow Kaltofen (1983), Algorithm 2, though the
parallel version will only be polynomial in v rather than log v. Howev er, this measure is still log-
arithmic in the input size provided we consider dense inputs.

In the meantime, Dicrescenzo, Duval (1984) have dev eloped another absolute irreducibil-
ity test which may be a candidate for a polynomial-time solution. However, the most important
conclusion of our work is that absolute irreducibility seems, in fact, an easier problem than irre-
ducibility itself. The problem of how to concisely represent a full factorization of a polynomial
over the algebraic closure of the coefficient domain remains to be addressed. In general, the pro-
posed representations, e.g. by Loos (1982), of algebraic numbers in fields of large algebraic
degree seem to consume too much space.

Future work on this subject is planned in two directions. D. Izraelevitz at Massachusetts
Institute of Technology has already implemented a version of algorithm 1 using complex floating
point arithmetic. Early experiments indicate that the linear systems computed in step (L) tend to
be numerically ill-conditioned. How to overcome this numerical problem is an important ques-
tion which we will investigate. Secondly, we will attempt to obtain good degree bounds for
reducibility-forms following the approach laid out in theorem 4. Polynomial bounds would have
important implications for effective Hilbert Irreducibility Theorems.
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