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Abstract

In this paper we prove by entirely elementary means a very effective version of the Hilbert Irreducibility
Theorem. We then apply our theorem to construct a probabilistic irreducibility test for sparse multivariate poly-
nomials over arbitrary perfect fields. For the usual coefficient fields the test runs in polynomial time in the input
size.
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1. Introduction

The question whether a polynomial with coefficients in a unique factorization domain is
irreducible poses an old problem. Recently, several new algorithms for univariate and mul-
tivariate factorization over various coefficient domains have been proposed within the frame-
work of polynomial time complexity, see e.g. Berlekamp (1970), Lenstra et al. (1982), Kalto-
fen (1985a), Chistov and Grigoryev (1982), Landau (1985). All algorithms in the references
just given are polynomial in I (n+1)V, where | is the number of bits needed to represent the
coefficients of the polynomial to be factored, n is its total degree, and v is the number of its
variables. The algorithms for finite fields are probabilistic (Las Vegas — always correct and
probably fast.) If v is not fixed, | (n+1)" may not represent the input size since the input poly-
nomia may only consist of a few monomials. In this sparse case, J. von zur Gathen (1985a)
has developed a probabilistic irreducibility test and factorization algorithm, the former of the
Monte Carlo kind and polynomia in the degree and the number of non-zero monomials of the
polynomial to be tested for irreducibility. His algorithm is based on the Hilbert Irreducibility
Theorem, as was our older multivariate to bivariate reduction (cf. Kaltofen (1985a), §7), and a
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generalized version of the sparse Hensdl lifting scheme of Zippel (1981).

In 83 we shall prove a new very effective Hilbert Irreducibility theorem, which, applied
to the rational coefficient case, states roughly the following: If a polynomial f (xq ,..., X,) iS
irreducible then the probability that f (x;+wq, CoXq+W5 ..., C,_1X1tW,_1, X») becomes reduci-
ble for randomly chosen integers ¢, ,..., C,—1, W1 ,..., W,_q Of O(degf + logl/e) digits is
less than €. In von zur Gathen (1985a), Lemma 4.3, the integers have O (deg?f + log1/g)
digits and the substitutions are somewhat more complicated (¢;X; + UjX, + w; for x;.) We
also use elementary methods to prove our result whereas von zur Gathen follows the algebraic
geometric approach of Heintz and Sieveking (1981) which is based on Bertini’ s theorem.

In 84 we then use our effective Hilbert Irreducibility Theorem to establish Monte-Carlo
irreducibility tests for sparse multivariate polynomials. The tests are similar to probabilistic
primality testing except that they definitely establish irreducibility but compositeness only with
a small failure probability. For rationa coefficients the test runs in time polynomial in the
number of non-zero monomials of the input polynomial, its total degree, and its coefficient
length. Our theorem also applies to coefficients from a field of positive characteristic p pro-
vided the p-th root of any element can be taken within this field. Therefore our theorem
includes the important case in which the coefficients lie in a finite field. We propose a
different irreducibility test in this case, which, unlike the algorithms by Chistov and Grigoryev
(1982) and von zur Gathen (1985a), does not require one to work in an algebraic extension of
the coefficient domain. All irreducibility tests rely on polynomial-time irreducibility tests for
polynomials in two or three variables.

Notation: By Z we denote the integers, by Q the rationals and by C the complex numbers.
Z,, denotes the field of residues modulo the prime p. D shal denote an integral domain,
QF(D) its field of quotients, char(D) its characteristic. D[X; ,..., X,] denotes the polynomi-
asinxy ,..., x, over D, D(xq ,..., X,) the corresponding field of quotients; deg, (f) denotes
the highest degree of x; in f U D[y ,..., X,], degy, ,(f ) the highest total degree of f in the
variables x; and x,, and deg(f ) = deg,, .  (f) the tota degree of f. The coefficient of the
highest power of x, in f is referred to as the leading coefficient of f in x, and will be
denoted by Idcf, (f). We cdl f monic in x, if Idcf, (f) isaunit of D. Asis well-known,
D[Xq,..., X,/] is a unique factorization domain (UFD) provided that D is a UFD. In this case
the content of f 0 D[Xy ,..., x,] in x,, cont, (f), is the greatest common divisor (GCD) of
al coefficients of f (x,) as elements in D[Xq ,..., X,—1]. The primitive part of f in X, is
defined as
1

ppy, (f) = _c_o_n_tx_v_(f__)

and we call f primitivein x, if f =pp, (f). We also note that the total degree of a factor of

f with respect to any variable set is less than or equal to the total degree of f in that variable
set. The infinity norm of f O Q[x; ,..., X,], the maximum of the absolute values of the
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rational coefficients of f, will be denoted by | f |. The squareroot of the sum of sguares of
the coefficients of f , the square norm of f , will be denoted by | f | ,.

Let f(x,) = ax, +a_x " ++agand g(x,) = byX" ++ bg with g, b; 0 D[x,
veonn Xy—1ls @by # 0. By res (f,g) we denote the resultant of f and g with respect to x,.
As is well-known, res, (f ,g) # 0 if and only if GCD(f ,g) over D (X ,..., X,_1)[%,] is a con-
Stant.

The probability of an event E will be denoted by P (E), the cardinality of a set S by
card(S). The vertical stroke! stands for the divisibility relation.

2. Preliminary Results

First we prove a lemma stating that the set of zeros of a multivariate polynomial over
an integral domain D is of small measure. (Measure O if card(D) = .)

Lemma 1 (cf. Schwartz (1980)): Assume that t(y,,...,y,) O D[y1,..., ¥, ] is @non-zero poly-
nomial of total degreed and let S [0 D. Then the probability

d

P(t(cy,....c,)=01 ¢ OS, 1<i<v) < cardS)”

Proof: Inductiononv. Forv =1, t(y;) has a most d rootsin D, hence the probability

d

P(t(c)=01 ¢c,0S8) < card(S)

Assume, the statement is true for v-1. Let I(yy,....yy-1) = Idcfy (t), n = degy (t). Then
deg(l) < d—-n and by induction hypothesis

. d-n
P((cq,....c,-1)=01 ¢ OS, 1<i <sv-1) < card(s)
Incasel(cy,...,C,—1) # O there are a most n roots for t(cy ,..., C,_1, Yy ). Therefore,

P(t(Cy,....c,)=0) =Pt =01 1=0)P(=0)+P(t=01|12£0)P(l £0)

<P(l(cq..-,Cy-1)=0) + P(t(cy,...,.c,)=0 | I(Cy,...,C,—1) 20)
< d-n 4 n _ d O
cad(S) cad(S) cad(S)

Secondly, we prove that squarefreeness of an irreducible multivariate polynomial is
likely to be preserved by evaluation.

Lemma 2: Let f(yq,....¥y,X) O Flyyq,....¥y.X] beirreducible in F(yq ,..., ¥, )[X], F afield,
and assume further that of /ox # 0. Let n =deg,(f), d =deg,, ., (f)anda,(y;,.... W)=
[dcf, (f ). We now select wyq ,..., w,, randomly from a subset S [0 F. Then the probability
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(2n+1)d

P(a,(wq,....w,) =0 or f (wy,...,w,,X) not squarefree) < card(S)

Proof: Since f isirreducible and of /ox # 0, GCD(f , df /ox) = 1. Therefore the resultant

of
AT (2T y\,):resx{f,&] # 0.

Notice that deg(As) < (2n-1)d. Now let af /ox = k g, xK™t +-+ a; withka, #0, 1<k <
n, where g, O Fly, ,..., y,] are the coefficients of x'inf, deg(g) <d,1<i <n. If we
select wy ..., W, such that (a,a,A¢)(Wq ,..., W,) # O, then f(x) = f(wy ,..., W, X) is
squarefree. For were it not, then GCD(f, df /dx) # 1 implying that A = res(f, df /dx) = 0.
But Ar = A (Wy ..., W) # 0, a contradiction.

Since deg(a, a2 ) < (2n+1)d, by lemma 1 we conclude that randomly chosen w ,..., w, do
not nullify a,a A¢ with probability at least 1 — (2n+1)d/card(S). [

Notice that if char(F) = O, then the condition df /ox # O in the previous lemma is
automatically satisfied. However, in the case that char(F) = p > 0, this condition cannot be
omitted. E.g. if F is afinite field with p elements, then xP + vy is irreducible but for every w
OF, xP +w = (x+w)P is not squarefree. Lemma 4 in section 3 proves, to some extent,
that this is the only kind of counter-example possible.

Thirdly, we establish that evaluations rarely allow a GCD of higher degree to occur.
For more clarity in the later proof of theorem 2 we shall defer the application of lemma 1 and
not formulate this lemma in terms of probabilities.

Lemma 3: Let f;,..., f, O F[Xq,..., X, ], F afield, with deg(f;) < dfor 1 <i <k and
GCD(f 1 ,..., fx) = 1. Furthermore, assume that f 1(0 ,..., 0) # 0. Then there exists a poly-
nomial A(Y, ..., ¥,) O F[y, ..., ¥, ] with deg(A) < 252 such that for any elements ¢, ,..., ¢,
O F with A(c, ,..., ¢,) # 0the GCD4 . < (fi(Xq, CoXq ..., GyXq)) = 1.

Proof: As can be seen easily from the fact that x; | fqi(Xy, YoX1 4eer YyX9),
GCD <<k (fi(Xq, YoXq vy WXq9)) = 1in F[X4, Y5 ,..., Yy ]. Therefore we can find (not
necessarily unique) polynomiassy ,..., ¢ O F (Y2 ..., Y )[X1] with deg, (s) < d such that

k

1=2 sz Wy X0) Fi (XpY X1, Yy X9).-
i=1

This identity leads to a linear system over F(y, ,..., ¥,) in 280 equations and k& unknown

coefficients of 5. Hence we can find a solution in Fly,,...., Yyy] where A is a

A2 W)
2m by 2m, m < 9, determinant of coefficients of powers of x; in f; (X1, YoXq ,...y YyX9)-
Therefore deg(d) < 28° and any choice of c, ,..., ¢, with Ac, ..., c,) # O forces

GCD; ¢ <k (fi(Xq, CXq ..., CyX3)) = L since Zikzlsi (Cyeeny Gy Xg) Fi(Xg, CXqhuny G Xq) =



1. O

In theorem 2 we will need a non-monic version of the Hensel lemma whose statement
and proof follows for completeness We adopt the following vector notation: k = (Ky,...,k,),
0=(0,...,0), y¥ —y Yy ,k+k = (kqxkq',..., kxk,"), k < k' if, for al i, k < k', and
finaly Ikl =kq ++k, if k =0, and —co otherwise.

Theorem 1 (Hensel lemma): Let f (yq,...,.¥y.X) O Fly4,....yyX], F afield, be of degree n in
X, [(y1,..yy) = Idef, (f) such that 1 =1(0,..., 0) # 0 and fo(x) = f (0 ,..., O, x) is square-
free. Suppose

1o+ 9o0)] [ 160 +hgt)] =1gfox), i+ =n

is a non-trivia factorization of Iof 0 in F[x]. Then there exist, for all k with [kl = 1, unique
polynomials gy (x), h, (x) O F[x] with deg(gy) <, deg(hy) <] such that

LY 1W) Ty X) = (1)
gk(X)s_/"] {'(Yll---,y\/)xj + th(X)Xk].
0

[I(yl,...,yv)xi +
k20

k=0
Proof: We truncate the multivariate Taylor series in (1) to maximum order m and establish
the existence and uniqueness of Ok hk, 0 < |kl <m in that truncated equation by mductlon
onm. Form =0, k =0 and the statement is true by assumption. Rewrite | = Zk>0 Ik y
with I, O F, and If 2N = Zk>0fk yX with fi O F[x] and deg(fy) < n. We now consider
the coefficient of yX, [kl =m, in

namely
> [l (xl hk—s + x! gk—s) + gohy S]
Oss<k,l<lIsl<lkl-1 S K=s
where we denote the sum in this expression by b,. By induction hypothesis, by is unique and

deg(b) < n. It is necessary and sufficient for (1) to be true to order m that él,( and hy, |kl
= m, satisfy

g(lox) +ho) + h(Ix' +gg) = fi — by

Since f o is squarefree, onl + hg and on + gg have no common polynomial factor which,
by the extended Euclidean algorithm for polynomials guarantees the existence of Ok and hk
Under the degree constraints deg(g,) < i, deg(h,) < j and the fact deg(f,—b,) < n these
polynomials are also unique. [ B -
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Remark: The purpose of multiplying f with | before lifting is to be able to uniquely
predetermine the leading coefficients of any possible polynomial factorization of f =g h.

3. An Effective Hilbert Irreducibility Theorem

We proceed to prove a random, but very effective version of the Hilbert irreducibility
theorem for multivariate polynomials over an arbitrary field F with one restriction. In the
case in which char(F) = p > 0 we require that for each element a [ K there existsab O K
such that bP = a. This condition is, of course, satisfied if F is a finite field.

The fundamental theorem of this section follows now.

Theorem 2: Let f (Xq,..., X,) O F[xy,..., X, ], F afield, have total degree d and be irredu-
cible. Assume that df /ox, # 0. Let S O F and let c, ,..., Cy1y Wq yuees W, _; be random
elementsin S. Then the probability

P(f (X +Wyq, CoXg W0, Cy_gXg + Wy 1, X2)
45 20
card(S)
Proof: By lemma 2 the probability that f (wq ,..., W,_q, X) remains squarefree and of the
same degree as f is a least 1 - (2n+l)d/card(S) where n = deg, (f) and d =
%, (f). Assume now that this is the case.

becomes reducible in F [xq,X,]) <

.....

We first show how to evaluate f such that it remains irreducible in F (x{)[X5]. Write
gV W-1X) = Y1 V) T 2HWa, Yy 1t Wy -1,X)

where
(Y1, Yy—1) = Idcfy (F)(Y 1wy, Yy 1wy, ).
Let F[[y ,..., Yy-1]] denote the domain of formal power seriesiny; ,..., y,_1 over F. We
set
9 (Y1 X) =9(Y1 CoY1re-Cy-1Y1s X)
and

lc(yD) =1(y1 Co¥1,---.Cy-1Y 1)

Then each factor h(yy, x) O F[[y,]][x] of g with ldcf, (h) = I, corresponds to a factor h O
FIIYq ..., Yy-qll[X] of g with Idcf, (h) =1 such that

h(y1 %) = he(y1.X) = h(Cy1,....CymY 1, X)-

Since if that were not the case we could present, by theorem 1, two different factorizations of
O which, when evaluated at y; = O would result in one and the same factorization of 9 (O,
x) O F[x]. But thisis impossible due to the unigueness of the Hensel lifting procedure, as



proven in theorem 1.

We will show that for integers c, ,..., ¢,_; not nullifying a certain polynomial 1(z, ,..., z,_¢)
0 F[z, ,..., Z,_4] of degree at most 4d (2" 1-1) no factor derived from g in such a way can
be a polynomial dividing -

Let
i .
h(yq.-Yy-1.X) = Z 2 by yk x]
0 k>0

be a factor of g(y4, ,---» Yy, X) INn F[[yq,..., y\,_]_'l][x] with 0 <i < n and ldcf, (h) =1 and
let

h(yq....Yy-1.X) = Z > by

j=0 k=0
be its cofactor, i.e. g = h h. There must exist at least one bK,j or bL<,J with
2d < |kl < 4d and (b ; # 0 or b ; # 0).
To see this, assume the contrary. Then
i . n-i _ .
> Y by X‘] { > Y b ¥EX| =gy Wyo1X)
j=0 0<lkl<2d — j=0 0<lkl <2d —

since no monomial a yX xJ, a a non-zero element of F, with 2d < |k| < 4d in the left pro-
duct could be cancelled by higher terms in the product of the complete expansion of h and h.
Notice that g does not contain a monomial in y of degree larger than 2d. But this contrad-
icts the fact that f is irreducible. Without loss of generality we now can assume the
existence of a vector p and an integer m such that

bpm #0with2d < Ipl <4d and0<m <i.

Set
tp,m(Yl’---’yv—l) = ! ‘Z‘ b; ,mXi
which is the coefficient of x™ in h of order Ipl iny; ,..., y,; and which is a non-zero
polynomial in F[y; ,..., Yy—1]. By choosing c, ,..., ¢,_; such that
tom(Y1 CY1--,Gym1Y1) # 0

we guarantee that h;(y1,X) has a non-zero coefficient of order Ip!l iny;. Therefore h. can-
not be a polynomia dividing gc- The polynomia m(z; ,..., z,-;) then can be chosen as the
product of t, (1, Z ,..., 1) # O over al possible factor candidates h. Since there are at
most n irreducible factors of g in F[[y, ,..., Yy-1]]1[X] and we do not need to consider com-

plementary candidates there are at most 2" 1-1 possibly reducible factors to refute (see aso
remark below). Thus deg(m) < 4d (2" 1-1) and we know that each non-zero ¢, ,..., ¢,_; of TT
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prevents the polynomial gE(xl, X,) from having a factor in F[[x4]][x,] &l of whose
coefficients have order in x4 less than degxl(gg (X1, X5)). Therefore this bivariate polynomials

is irreducible in F (x4)[X,] and so is

f(Xg + Wy, CoXp + Wo,..,GyogXy—g + Wy g, X)).

We finally must refute a possible content in F[x;]. Let l;(y;,..., Yy—1) be the coefficient of
X' in f (y;#Wy ..., Yy_1#W,_1, X), deg(l;) < d. Note that |, is our previous | and aso |, (0
,..., 0) #0. Since f isirreducible GCDy<; < (l;) = 1. By lemma 3 there exists a polynomial
A with deg(A) < 2d? such that A(c, ,..., G,—y) # 0 implies GCDq<i <1 (li (Y1, CoYq ...,
C,-1Y1)) = 1. For such ¢, our evaluated polynomial cannot have a content in X, i.e. a factor
in F[x4].

In summary, we must avoid zeros of TA By lemma 1, random ¢, ,..., ¢,_; from S make
(md(cs ..., ¢y,—1) # 0 with probability 1 — (deg(m) +deg(d)) / card(S). Taking the choice of
the w into account, the probability of successis at least

card(S) -

n-1_ 2 o _ o
1- (2n+1)d 1- 4d (2 1) +2d > 1 452°-3d 51 452
card(S) card(S) card(S)
with & = deg(f). [

Remark: The bound 43 2%/card(S) can be substantially improved if one knows the number r
of factors of g(0,..., 0, x) in F[x]. E.g. 25(2" +2d)/card(S) is a possible upper bound for
the probability of failure.

As we have aready pointed out after lemma 2, the condition df /ox, # O is automati-
cally satisfied if char(F) = 0. For characteristic p > 0 we can prove that theorem 2 is still
correct without this assumption about the derivative of f provided that for each element a [J
F there exists an element b O F such that bP = a. We need the following additional lem-
mas.

Lemma 4: Let F be afield of characteristic p > 0 and let f (x) = a,x" +-+ ay 0 F[x] be
irreducible. Furthermore, assume that there existsan index i, 1 <i < n, such that for all b O
F,bP #£a. Then f (pr) isirreducible in F[x] for all integers A = 0.

Proof: By induction on A. For A = 0O, f(x) is irreducible in F[x] by assumption. Now
assume that f (po) is irreducible in F[x], but suppose f (pr) is not. Then there exist poly-
nomials g, h O F[x], g non-constant and irreducible, GCD(g, h) = 1 such that

FOP) =gk hx), k=1 *)
and either k > 2 or h # 1. Differentiating (*) we get, since A = 1,

dg dh
k == h=-g —.
dx g dx
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Hence, dh/dx = 0, which is equivalent to h(x) = h(xP), h O F[x], and either k = p| or
dg/dx = 0, each of which imply that g(x)X = g(xP)¥ g O F[x] non-constant, k = 1. There-
fore, (*) can be rewritten, with y = xP, as

FP) = gy)* hy).
By induction hypothesis we conclude that h =1 and k = 1. Thush =1 and k = 2 and we

must have f(pr) = (g(x)")P which means that each coefficient a; is the p-th power of a
coefficient of g(x)', contradicting our second assumption. [

Lemma 5: Let f (X1 ,..., X,) O F[Xq,..., X,], F afield of characteristic p > 0O, have total
degree & and assume that there exists an index i, 1 <i < v, such that of /0x; # 0. Further-
more, let S O F and let c, ..., Cyr Wq yeees w, be random elementsin S. Then the probabil-

ity

df (X1+Wq, CoX1+tWoH,...,C, X1HW,, ) o 5
= < .
dx, )< card(S)
Proof: Write
k
fXp.. %)= 2 &X' .XVK/'
O<lkl<d

Then, by assumption there exists a k such that a %0 and p I k. The coefficient of xlf in

fX1+YnLZXg+Yo e X1+ W) OF[Xy, Y10 Wi 20000, 2] IS

k k . d d
YO 1Yy 2o 02y) = 8 Y1 vty 3 2yl

where the given monomia only occurs once since we can unambiguously deduce from the
given exponents the term in the expansion it came from. Therefore y # 0 with deg(y) < d.
Thus, by lemma 1, y(wq ,..., W, C» ,..., C,) = 0 with a most the given probability, but this
is obviously necessary for df (x;+wy ,..., G, X3+, )/dx; = 0. [

We now formulate our irreducibility theorem in the most general way we shall prove
here.

Theorem 3 (Effective Hilbert Irreducibility Theorem): Let f (X ,..., x,) O F[Xy,..., %], F a
field, have tota degree & and be irreducible. If char(F) = p > 0 we require that each
coefficient of f in F possesses a p-th root in F. A sufficient condition for this to be true is
that F be perfect. Let SO F and letc, ,..., C¢,_1, Wy ,..., W,_, be random elements in S.
Then the probability

P(f (X +Wyq, CoXg W, ..., Cy_1Xg + Wy 1, X3)

45 20
card(S)

becomes reducible in F [xq,X,]) <
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Proof: If char(F) = 0 or df /ox, # O then our theorem is identical to theorem 2. Therefore
assume that char(F) = p > 0 and that

f(XpeoXy) = F(Xpoo Xy, XPY), 1= 1,
with f(Xq ,..., X,—1, 2) O F[Xq ,..., X,—1, 2] and 0f /0z # O (i.e. W is as large as possible).
Since f is irreducible so must be f and we can apply theorem 2 to f. Looking at the last
inequality in the proof of theorem 2, randomly chosen w, ,..., W,_4, C» ,..., C,_1 from S keep
f (X +Wq, CoXq+W5 ..., C,_1X1+W,_1, X5) irreducible in F x4, X,] with probability at least 1 —

Now there must exist a coefficient a (Xq ,..., X,—1) of (xP")' in f such that not all da lox;, 1
< j £ v-1, vanish. Otherwise, by virtue of our assumption, f would be a p-th power of a
polynomial, hence reducible. Let wy ,..., W,_1, C» ,..., C,_1 In addition to the constraints of
theorem 2 also be such that, for

& (Xg) = & (XpHwWy, CoX1HtW),...,Gp X1 HWy ),
da /dx, # 0. Then
f (X1 X) = F (Xg+Wy, CXq4Wo,..,CygXgHWy_g, X))

must be irreducible in F[x4, X5]. For, interpreting the evaluated polynomial corresponding to
f as an element of F(x,)[x,] it is clear that its coefficient & is not a p-th power. Hence
lemma 4 applies and shows that f isirreducible in F (x9)[x,]. By the proof of theorem 2, f
cannot possess a content in F[x4].

It remains to estimate with which probability the additional condition on the w, ,..., ¢,_; IS
fulfilled. By lemma 5 this is true with probability at least 1 — d/card(S), thus the overal rate
of success is at least

_|452°-3d , d 5 q . 482
card(S) card(S) | card(S)

We remark that one can generalize theorem 3 to arbitrary fields. Using von zur
Gathen's (1985a) Lemma 4.2 we get a slightly smaller success probability 1 — 5d 29/card(S)
for these exceptional fields. We note, however, that the usual fields occurring in algebraic
computation are perfect, such as fields of characteristic O, finite fields, and algebraically closed
fields, and therefore do not discuss the details of that generalization.

4. Probabilistic Irreducibility Testing

We now apply theorem 3 to construct a probabilistic irreducibility test for a sparse mul-
tivariate polynomial f (x; ,..., X,) O F[Xq ,..., X,], F an arbitrary field (with the restriction
stated in theorem 3 in case that char(F) > 0). Our agorithm outputs ‘*definitely irreducible’”’
or ‘‘probably composite”’ or ‘‘failure’” where the chance that the irreducibility of f is not
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recognized as such is less than a given constant € < 1. The algorithm selects random ele-
ments in S 0 F and calls an irreducibility test for polynomials in two or three variables,
depending on the characteristic of F. Apart from the calls to these unspecified subroutines
our agorithm works in polynomially many steps in deg(f) and monomias(f), where
monomias(f ) denotes the number of non-zero monomialsin f .

If we furthermore specify F = Q or Z,, then our agorithm is also of polynomia com-
plexity in the number of bits needed to encode the coefficients of f and log 1/e. In this case
the required polynomial-time subroutines exist. (Cf. Katofen (1985a) for F = Q and von zur
Gathen and Kaltofen (1985) for F = Z,. The latter algorithm is only a probabilistic one and
may, with controllably small probability, return ‘‘failure’’.)

For char(F) = 0 our agorithm is quite simple:

Algorithm 1.
[Given an irreducible polynomia f (x4 ,..., X,) O F[xq,..., X,], char(F) = 0O, this algorithm
attempts to prove the irreducibility of f with a failure chance less than € < 1:]

(R) [Random choices] From a set S O F with card(S) = 4deg(f ) 298(f)/e select random
elementsc, ,..., Cy_q, Wy ,.ony Wy_q.

(1)  [lrreducibility test:]
f(x1, %) o T (Xptwy, cXgtwp e Cy-1X1tWy—1, X2)-
IF deg, (f) < deg,,(f) THEN RETURN (“‘failure’’). ELSE call an agorithm testing
f (xq,X5) for irreducibility in F[x4,X5]. IF f is irreducible THEN RETURN ‘‘f is
definitely irreducible’” ELSE RETURN “‘f is probably composite’”. []

Complexity analysis for F = Q: We first multiply by a common denominator of all rational
coefficients of f. Therefore we may assume that f O Z[x4 ,..., X,]. Now let & = deg(f)
and choose S the interval {-252%¢ < s < 252%¢}. We evaluate each monomial by x¥ of f,
|kl <8, and then add up to get f. It is easy to see that B

gK(Xl’XZ) = bl,( (X1+W1)k1 (C2X1+W2)k2"'(Cv—1X1+WV_1)kV_1X;/

can be computed in O (3%) integer operations. In fact, the coefficient of xi1 in Ok IS

R T B o S T ettt

. - [ Iy —
P4ty =i 1 v-1

0<is<ky,....0Si, 1<k, 4

which is O (2'%" (252%¢)'k') in magnitude. Therefore logl g, | = O(8% + 8log /e + logl f 1)
and logl f | = O(logp + logl gKI) where p = monomias(f). To add up al g, takes Oudd
integer operations. In summary, algorithm 1 runs in O (1 &%) integer operation with integers
of

O3 + 6Iog% +logl f | + logp)
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digits. The later is also a bound for logl f I. The agorithm needs O (v& + vlog 1/€) random
bit choices. This analysis does not account for testing f (xq,x,) for irreducibility. We can
cal Katofen (1985a), Algorithm 2, but the cost of this cal might be quite high, O (&%
log®l f 1), which most likely does not reflect the true behavior of that algorithm. However,
the actual cost can be expected to grow quickly with &. This is why we chose S dependent
on g, the wanted failure probability, and call the bivariate algorithm just once.

We now treat the case in which F has only finitely many elements. Algorithm 1 obvi-
ously may run into problems since the sufficiently large subset S of F may not exist. Our
approach here isto work in F* = F[x4]. We now present the algorithm.

Algorithm 2:
[Given an irreducible polynomia f (X ,..., X,) O F[Xq,..., X,], card(F) < oo, this algorithm
attempts to prove the irreducibility of f with a failure chance less than € < 1:]

(C) [Check for content in F* = F[x,]:] Rewrite f to f* (X5 ,..., x,) O F [X5,..., X,] and
verify that all coefficients of f* in F* have no GCD in F[x,]. Otherwise RETURN
(**f is definitely composite’’).

(R) [Random choices] From a set S O F* with card(S) = 4deg(f *) 299 )/e sdlect ran-
dom elements c, ..., Cy—1 Wo .oty W, _1.

(1)  [lrreducibility test:]
F(xoXa) « F7 (Xp+Wp CaXp+Wg,... .G g Xo+ W1, X3).

IF deg,, (f) < deg,, (f") THEN RETURN (‘‘failure’). Compute the GCD of all
coefficients of  in F*, g" [x4]. Set f (X4, X2, X3) « f (Xo X)/g" (X7) O F[Xy, X5, Xa].
Now call an algorithm testing f for irreducibility in F[X4, X5, X3]. IF f is irreducible
THEN RETURN (‘‘f is definitely irreducible’’) ELSE RETURN (**f is probably com-
posite’’). [l

The correctness of this algorithm follows from Gauss lemma stating that if a polyno-
mial h(Xq ,..., X,) O D[Xq ,..., X,], D a unique factorization domain, is irreducible, it
remains irreducible in QF(D)[X4 ,..., X,]. We again select a concrete field F to carry out
timing estimates.

Complexity analysis for F = Z: Let & = deg(f ") and choose

(6+2)log 2 + logd — loge
logp

Notice that card(S) = 452%. Step (C) takes O(nd?) field operations in Z,, U =

monomials(f ). Furthermore, f can be computed in O (u&? - & (%;gs)z) where the second

factor arises from computing powers of ¢ and w;. Also deg, (f) = O(8 6| Z)gs) and

S ={s(xy) | s(xy) OF[x,] and deg(s) < }.
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deg,, »(f) < 8. Hence the calculation of the GCD g* costs O (&° (%;;”)2) operations in

Z,. Assuming that d —loge = logp, algorithm 2 runsin

N
o &* (6+Iog§)2)

binary steps. The algorithm needs O(v (0 -logg)) random bit choices. Again, we do not
account for testing fA(xl, X, X3) for irreducibility. We can call the algorithm presented in
von zur Gathen and Kaltofen (1985). That algorithm is also random and has a small probabil-
ity of failure. Furthermore, its complexity in d is quite high.

In this section we only dealt with irreducibility testing of sparse polynomials. Theorem
3 can, of course, be employed to produce sparse factorizations in the spirit of Zippel (1981)
and von zur Gathen (1985b) (see also Kaltofen (1985b)). In Zippel (1981) the sparse Hensel
lifting is started with f(cq ,..., C,_1, Xq), C1 ,..., C,_1 U F whereas in von zur Gathen
(1985b) the evaluation isto f (X1, X5, C3Xq + UgXy + W3 ..., C, X1 + UyXo + W), G, U, W, [
F. Unfortunately, we have no effective Hilbert Irreducibility Theorem for evaluations in F
and neither we nor von zur Gathen (1985b) choose evaluations in the coefficient domain. In
order to use a unified Hensel procedure which always evaluates in F we could, however, view
theorem 3 in the following way. Let the coefficient field of f (x ,..., x,) be F (X1) (F (X1, X5)
for char(F) > 0). Then our algorithm must select random elements in this field which are
linear in x4 (X, for char(D) > 0).

5. Conclusion

Though we were able to prove a very effective version for the Hilbert Irreducibility
Theorem in the case in which the coefficients came from a transcendental extension of the
integers, the classical version with integral coefficients still defies such error estimates. Again
the set of evaluation points mapping the irreducible multivariate polynomial into a reducible
univariate one is of measure 0 (cf. Dbrge (1926)). Although recent research has produced
very concrete descriptions of integer point sets preserving polynomia irreducibility (cf. Fried
(1974) and Sprindzhuk (1983)), the possibility that the first integer preserving irreducibility
might be exponentially in size cannot be excluded yet. However, practical experience indi-
cates that the classical theorem also provides an excellent, though not proven, irreducibility
test.

Within the last two years since this paper has been written the Effective Hilbert Irredu-
cibility Theorem presented here has been applied in two new settings. First, it is used to
determining the factorization pattern of a multivariate polynomial defined by a straight-line
program (cf. von zur Gathen (1985a) and Kaltofen (1985c)). Furthermore, it is used in the
algorithm by Kaltofen (1985c) for factoring multivariate polynomials given by straight-line
programs into sparse factors. In retrospect, the usage of linear substitutions also eliminates
the so called ‘‘leading coefficient problem’™ during the Hensel lifting process and therefore
appears to be superior to classical evaluation techniques.
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