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Extended Abstract

In this note we summarize the progress made so far on using the Com-
puter Algebra System MACSYMA [10] to explicitly calculate the defining equa-
tions of the Hilbert class fields of imaginary quadratic fields with prime class
number. Our motivation for undertaking this investigation is to construct
rational polynomials with a given finite Galois group. The groups we try to
realize here are the dihedral groups D, for primes p. These groups are non-
abelian groups of order 2p and are generated by two elements

c=(123 - -p)andT=(1)(R p)3 p—1)~~(2—g—1— E—gﬁ-)

with the relation 701 =0¢"1, as subgroups of the permutation groups of degree
p. These groups are solvable and thus can be realized as Galois groups. The
problem is to construct, for a given prime p, an integer polynomial with Galois
group Dy .

1. C. U. Jensen and N. Yui have found the following effective characteriza-
tion for polynomials to have Galois group .

Theorem (cf. Jensen and Yui [7, Theorem 11.1.2]): Let f.(z) be a monic integral
polynomial of degree p, where p is an odd prime. Assume that p = 1 modulo 4
and that the Galois group of f is not the eyelic group of order p (resp. assume
that p = 3 modulo 4). Then necessary and sufficient conditions that the Galois
group of f is [, are:

* This research was partially supported by the National Science and Engineering Research
Council of Canada under grant 3-843-126-90 (the first author) and under grant 3-861-114-30
{the second author).

First author’s current address: Rensselaer Polytechnic Institute, Department Mathematical
Sciences, Troy, New York, 12181.



an

(1) f isirreducible over the ring Z of integers.
(2) The discriminant of f is a perfect square (resp. is not a perfect square).

(3) The polynomial g(2) = [];ci<jep({T—a;—a;), o; being the roots of f,
which is of degree p{p—1)/ 2 and has all integral coefficients, decomposes
into a product of {p—1)/2 distinct irreducible polynomials of degree p
over Z. U

Given an integral polynomial of degree p, it is quite easy to test whether
conditions (1) — (3) are satisfied. Both the computation of the discriminant of
f and that of the polynomial g can be accomplished by resultant calculations.
The exclusion of the cyclic group of order p in the case that p = 1 modulo 4
may be more involved but it is, for example, sufficient to establish that f does
not have p real roots. For p = 8, 5, and 7 polynomials with Galois group I, are
known for at least a century (cf. Weber [12, Sec. 131]).

Unfortunately, extensive search for polynomials of degree 11 satisfying
conditions (1) — (3) has not yet produced even one such polynomial. This is, to
somie extent, not surprising since the polynomial g will, for randomly chosen
coeflicients, almost always be irreducible due to the Hilbert irreducibility
theorem. In order to construct such polynomials we therefore, at the
moment, have to rely on the Hilbert class field theory. We shall briefly sum-
marize the theoretic background of our computations.

2. We consider an imaginary quadratic number field Q(Vm ) with discrim-
inant d over the field Q of the rational numbers. Let az? + bxy + cy? a > 0,
GCD{a, b, ¢) = 1, be a positive definite primitive quadratic form with discrim-

o
inant d = b2 — 4ac. The integral matrix [7 g with determinant ad — vy = 1

transforms the quadratic form by replacing x by axz + By and y by yz + 0y
into an equivalent one of the same diseriminant d. The class number h{d) of
Q(vVm ) is equal to the the number of such defined equivalence classes of posi-
tive definite primitive quadratic forms of discriminant d. A unique reduced
form for each equivalence class can be selected with

—a<b=a<c or 0=sb=ag =c.
These conditions imply that |b | < V|d |/ 3 and hence h{(d) is finite.
Now let SL,(Z) be the modular group:

la,b,c,decZ ad ~bc =11,

ra b
SL®) = |¢
and let H denote the upper half complex plane:
H=f{z=z+iycC|ly>0i,
where Cis the field of complex numbers. SLy(Z) acts on H by

ra.b

l d() az +b

Tcz+d "’
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A fundamental domain F for SLg(Z) in H is defined to be a subset of H such
that every orbit of SLy{Z) has one element in F, and two elements of F are in
the same orbit if and only if they lie on the boundary of F. Then F is given by
the set

F={z=z+iy €C||z]=21, |x]s-é—§.
We now introduce the elliptic modular j-invaeriant. For each complex
number z with non-negative imaginary part, let ¢ = ¢?"% and let

Eyfz) =1+ 240 Y o5(n)q™, oan) = ¥ £3.

n=1 fln

t>0
Furthermore, let
1 . e ” n(dn—-1) n{3n+1)
Wz)=¢® [T (1—-q™)=g¢® |1+ N (-1)g 2 +qg 2% )
el o=l

The j-invariant j(z) is defined as

oy [Fa2) )
ie) = {mz)ﬁ] '

It is well-known that j(2) satisfies the following properties:
(i) (i) = 1728, j((+1 +iv3)/2) = 0,
(ii) j{z + iy) and j{—=z + 1y) are complex conjugates for any +x + iy € F, and

(iii) j(g) = é—+ 744 + 196884 + 21493760¢% + 864299970¢% + - - - .

3. The following theorem now shows how Lo construct an integral polyno-
mial with dihedral Galois group of prime degree.

Theorem (cf. Deuring [2]): Let Q(¥Vm ) be an imaginary quadratic field with
discriminat d, and with class number h(d) = p, p an odd prime. For ecach
reduced positive definite primitive quadratic form azz? + byzy + cy° of
discriminant d, 1 < k = p, let ¥, = (—=b; + vVd )/ (2a;) be the root of a¥? +
b + ¢, = O belonging to F. Furthermore, let the class equation H; be
defined as

Ha(e) = T = 5(00))

Then Hy(x) is an irreducible integral polynomial whose Galois group over @ is
the dihedral group D,. U

4. We constructed Hy(z) for selected imaginary quadratic fields Q(vVm)
with —m a prime and h{d) = 7 or 11. First we wish to make some comments
encountered during our caléulations. In all cases we knew the class numberin
advance. Therefore it was quite easy to calculate the ¥4, 1 = k£ = p. Indeed,
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for |by | = ap < ¢, we get two roots ¥, = (Fby + Vd )/ (2a,), and for 0 < b, <
a, = ¢, one root ¥, = (—b, + Vd)/(2a,), belonging to F. Using the above
mentioned properties of j we only had to evaluate j(1%,) for (p + 1)/2 different
values of ¥y. The evaluation of each j(¥;) was done to high floating point pre-
cision. We experienced that the Taylor series of j evaluated al g converged
extremely slowly. Therefore we evaluated the Taylor series of £, and 7
separately at g, then raised the value n{g) to the eighth power, divided £,(q)
by this result, and finally raised the quotient to the third power. This process
yields 7(g ) to high precision fairly quickly.

In each case there were two parameters to choose: The floating point preci-
sion and the order of the Taylor expansions. We decided to choose the same
order for both £, and 7. The constant coefficient of each polynomial turned
out to be the one of largest size. Therefore we chose the floating point preci-
sion typically 20 digits more than the number of digits in that coefficient. In
all cases we then could read off the correct corresponding integer from its
approximation. It turns out that the constant coefficient H;{0) must be a per-
fect cube. Verifying this condition proved to be a valuable test to see whether
the order of the Taylor approximation was high enocugh. If not, we incre-
mented the order by 5 and tried again. A further confirmation for the correct-
ness of all coefficients is to factor both H;(0) and the discriminant A(Hy) of Hy
both of which surprisingly have only small prime factors. A full explanation
for this phenomenon has been found only very recently by B. Gross and D.
Zagier. With their permission, we state a version of their theorem best suited
for our discussion.

Theorem {Gross and Zagier [3]): let ¢ be a prime. For a positive integer n €
N such that (2’-) # +1, define the function F,(n) by

A A t Fi I S '

¢ g
{ b 2

where (—) = (=} = -1, (=) = +1
(7 (7 =

withk, 7, > 1 andn; 2 0,

1 ifm = 12T Bl Ry

L
where {—(—;—) =—1withk, 21,523
and £ € N.

(@) Let Q(Vm), m <0 and —m a prime = 3 (mod 4), be an imaginary qua-
dratic field of discriminant d and of class number h(d) = h, an odd prime. Let
Gz y)=qz?+bzy +cy? ap > 1, by >0, k=1,2,.. .. (h~1}/ 2 be the
reduced positive definite primitive quadratic forms of discriminant d associ-
ated with Q(vVm ). Let Hy(x) be the class equation of Q(vm ). Then
h=1
A(Hg) = F(-m) ? where I=1, - Iy
2
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and

~m =1
}k = T}: F_m(mm—-n)r"(n),

n=1

me(n) = S#z.y) €LXZ| Glz,y) =n).

In particular, the largest prime dividing A{Hy;) does not exceed —m, and all its
prime factors except —-m appear in even powers,

(b) Let z, 2’ € F be imaginary quadratic numbers belonging to two distinct
imaginary quadratic fields Q(vVm ) and Q(¥m"), respectively, where —m and
—m' are primes = 3 (mod 4}, Then

. JREL
. s — 2
|Norm (G (=) =gl =| TI__Fnu(PRE) 7
0<:t<vdénm’
z o

where the Norm is taken over Q and w{m') denotes the number of units in

Q(vm').

In particular, taking z = _li‘g_f_"'ﬁ.. and 2’ = —11_—2—_—&, we have
3
L, 1+Vm —3m, —z? |
|Hy(0)| = |Norm (j(=5T)) | = | T] Fo(—7—5
O0<z <vV-3m
z odd

and therefore, the largest prime dividing Hgz(0) does not exceed —m. O

The table below summarizes the cases we considered.

m h(d) Order of Float‘ix}g point. CPU\time
Taylor exp. | precision (VAX 780)

~71 7 25 50 123 sec.
—151 7 25 70 177 sec.
—223 7 25 70 184 sec.
—251 7 25 70 187 sec.
—463 7 25 100 219 sec.
-167 11 25 100 340 sec.
—271 11 30 100 431 sec.
—B59 11 40 120 663 sec.

We shall illustrate our construction by two examples: @(vV—251) and Q(v—859).
The remaining polynomials can be found in the full paper [8]. In each case we
list quadratic form representatives as well as the polynomials Hy thus
obtained. We factored out powers of primes = 1000 dividing the coefficients.
We also present the factored discriminant A(Hy).
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Q(vV-251)
Reduced quad. form 4
z?2 +zy +63y° -:l-"-}'-\—z/:—«-'zm
32? raxy +21y~° —;—1—!;6—_———2—%
V=251
7z? rzy  +9y° ——~:Fl+-1—2}—&5—3-"-
5z° +tzy + 13y7 F3+ V251
10
H_ps1(z)

+ 2'7.20-1086122234032811  z°©

— 2%0.3%.7.13.8364B69403342457 29

+ 2%.3%.23.9113550120635043109  x*

+ 2%0.5.1381076650205107345607  x°

+ 27.113.2065916508433853809 x?

— 2%.118.817072976407817 =z !

+ {2%.119.39.47 )3

The discriminant is:

A(H _g51) = —2684114%1974291437104384 785385986 187161072
x 1277189%151%16741914199%2232239%2513.

Q(V—-659)
Reduced quad. form )
z? +2zy  + 165y? _-_—-i-_!-_é:____659
V859
3 + + 5542 | F1EV—-839
z zy Yy 8 ;
522 + zy + 33y2 .zF_LL_:.§§_9_
10
1122 tzy  + 15y3 3115-“——'2"659
9x2  &6zy +19y? | FOFV-659
18
F11+ V-850

183z% 1 1lay + 15y*?
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H—-G‘iﬂ(x)

+ 216.11.146901543611254714193693303939 210
— 281.3%.11.235675951725579164376833760794276851 z9

+ 246.5.317 212538488246572445053724168491078994014733 x
— 2%3.433. 677 1435368961007893717205050200736764670019511 xz’
+ 276.7.4588870126097653122052459557806209542390458567209 8

— 290.7.17-29-985109212020450689538604327952847403118219453  x
+ P10 1759326326545462166944141915014487335482302315767  x2
— 21%0.131-3750563577368052002523661987655534147026935923 xz2
+ 2188.42.23 . 409 27449498245914850869171135436577205414197 - 22
— 2162.3.41%.227 261 2263543437743627632811771 !

+ ((2%0.29.41% . 47.71.101-113 )3

The discriminant is:
A(H _gsg) = —217467222394231 36412643284 726532057 147 1 18310976101 10
x 103101138131121374151819119341974109%223%22742638
x 35963672383%41944314439%4672479%503459946072647°659°.

Using a different modular function, the class equations with much smaller
coefficients have been constructed by M. Hanna {5] for the imaginary qua-
dratic fields Q(V—=167) and Q(V—191) (class number 13) and by G. N. Watson
[11] for the flelds Q(v—383) (class number 17} and Q(vV—311) (class number
19). The given polynomials are actually the A degree integral factors of
zh H;((z~16)3/z), where h is the class number and H; the equation
corresponding to the modular function used. We can also carry out this
transformation on our class equations resulting in polynomials with much
smaller coefficients. Following we give Hanna’'s polynomial for Q(vV—167) which
has also passed the test for having Galois group D,; described at the beginning
of this paper:

2421045294 42841027 +628+ 1125+ 724+ 923+ 42+ 22 — 1.

Appendix
The Explicit Form of the Modular Equation of Prime Order

Let j(z) be the elliptic modular invariant. It is a classical result going
back to Kronecker (see, e.g. Weber [12, Sec. 89]) that if z = z + iy € C belongs
to an imaginory quadratic fleld with y > 0, then j(z) is an algebraic inieger,
This was proven by showing that j(z) satisfles an algebraic equation with
integral coefficients, called the modular eguafion (of order n for some n > 1).
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However, the explicit form of the modular equation has not been known,
except for few cases (cf. Fricke [3, IL.4]) .7

In this appendix, we shall discuss how to determine explicitly the modular
equations of order p where p = 5 and 7. For a prime p, let
lpol [14
A=1l01

~[0p with 0= 4 <p].

ra.b
Fora=[c 4| €Aandforz =z +iy € C y >0, we write jsa for

aztb
cz+d’’

(Geo)(z) = j(al2)) = j(
and form the polynomial

tp(z) = [[(& —jea) = [](z —j(afz)).

acd a€d

We can view &, {z) as a polynomial in two variables z and j over Z,
@y (z) = &y (z.9) € Zz.7],

and we call it the modular polynomial of order p The importance of this poly-
nomial is that there exists a prime p such that ¢,(j(z), j(2z)) = 0. Since the
leading coeflicient of &,(z,z) is ~z® j(z) must be an algebraic integer. The
equation ¢, (z,j) = 0 is called the modular equation of order p.

The modular equations of ordér p can be very difficult to determine expli-
citly as the cases p = 2 and 3 already suggest {cf. [3]). We shall make use of
the following result.

Theorem (Yui [13]): Let j*(2) = j(pz) with2z =z + iy, y > 0. Then

| .
0=0,(" ) =G P =) —5P) =p % 5 dp (G M 4§75

m=1 n=0
Pt St mem
—p E dm,mj .7 ]
m=0
where dy, , and d,,, ., are integers. O

The coeflicients d,, ,, and d,, ,, can be determined by noting that j*(g) =
7{g?) and then comparing the coeflicients of the g-expansions of the identity
in the above theorem. In order to obtain an equation for dg 4 one must expand
the this equation from q“pg“p through ¢° Therefore one needs the g-
expansion of j to the order p? + p — 1. Using this algorithm we could success-
fully determine ®; and ¢,. We present the explicit form of ¢,, again primes <
1000 factored out of the coefficients. @ is given in the full paper [8].

1 It was brought to our attention after we had completed our computations that W. Berwick [1]
already determined €5 and 0. Herrmann [6] $,. Their results coincide with ours but it ap-
pears to us that our methods are much more efficient.
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by(5%.7)=0=
j*8+ .23'3-7~31-(j6~j'7+j7-j'6)
~13553-22-33-7-(j5. " T+57-5"9)
+25.5%.72-11-43-509- (4 5" T+57-5°%)
—1067425727-2-3-7%-13-(§3- 5" T+ 37-5*9)
+263733037-24-3%- 72 43- (j2- 5" T+ §7j° R
—6866816589877-28-72.13-(F 5" "+57-5")
+26891-216.37.53.7.31- (" T+ ) 5757
+32268467570786329- 24 73 (525" ¢+ 5857 9)
+3793318421100253701707-23-3-72 (4. j* €+ 8.5 %)
+378554512130011411-2%-35-5-72-197-227- (3 j* %+ 585" 9)
+ 1879874666681814444868237667 - 22-72-29- (j?- 5" S+ 465" 2)
+ 10020909155496489683 - 217-37-53-72.59- (5 -5* 6+ 4€-5°)
+ 1323331291097 - 230-310.56. 7. 397 (5* & + 56)
+8389943-3%-72.13-67-97- 595" ¢
+3564129113417066178639013-2%-3%-5%-72. 11- 113
(5504559
— 23001155921 82896081319172688113878807 - 2% 72
SCARE MR T ALY N
+ 178299075699438778621099394269 - 21939 53. 72
(§R-§T%+555"R)
— 34025787722711812538264201 - 233 311.56. 72 (5 - j* S+ 55.5%)
+ 181122097371406153- 247 316.59.72. 13- 31 - (° ° + j9)
— 10374612889856513538191507 - 22-3°%- 7255 5° °
+ 3893394856539704078067727101 - 216.37.5%.72.37- 43 - 661
SEALE RS RE¥ M)
+ 82349740297426520782049295279 - 231 - 311. 56. 7. 17
XCLEE Mt ALY M
+ 48937858847511154820521-2%6-317.52. 72. 13- (5 - j" *+j4-j")
+ 1323331291097 280 319.512. 72. 179.397- (° * + j%)
+9120196318310961368476499139089037899-2-5-72-197-j%- 57 *
+ 609518324373969241528663 - 246- 318. 59 72. 409 (j2-5° 3+ 53579
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— 88980809456419-261.319.512.72. 193, 19. 487 - (5 -5 3+ 53-5")

+26891-276.3%5.515.93. 176.31 . (j* 3+ 59)

— 55595355657669950521589003991731 - 231 310.58. 72, j3. 4% 3

—22541-276-3%5.515.92. 177947 - (j - j R+ j2-5%)

4290.327.518. 3. 179.(j* 24 §2)

— 98755869850221841 -261-3%0.512.72. 173 42, 4* 2

+291.327.518. 1113 179.‘j ,j" +j8.
The computation of &5 took 982 seconds and the one of &, 4091 seconds CPU
time on a VAX 780. During the computation of ¢,; we ran out of virtual storage
after approximately 7 hours of CPU time. We have recently developed a
modified version of the above algorithm for computing ¢, which is much less

space consuming and which has already successfully computed the explicit
form of @11 [9}

The modular polynomial &,(z, z) factors into the product of powers of
some class equations (cf. Weber [12, Sec. 118]). For p = 7, the factorization is
the following.

by(z,2) = —x? (23353 173) (z—2%- 33.59)2
x(z+3%-5%) (z+21°-3%)% (2 +21°-3-5%)2

x (z%—27-3%- 1399z +21%. 36. 179)2,
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