
- 236 -

sOn the Complexity of Finding Short Vector
in Integer Lattices*

E

by

rich Kaltofen

o
D

University of Toront
epartment of Computer Science

a

A

Toronto, Ontario M5S 1A4, Canad

bstract. In [Lenstra, A., et al. 82] an algorithm is presented which, given n linearly
d

b
independent n -dimensional integer vectors, calculates a vector in the integer lattice spanne
y these vectors whose Euclidean length is within a factor of 2 of the length of the(n −1)/2

-
r
shortest vector in this lattice. If B denotes the maximum length of the basis vectors, the algo
ithm is shown to run in O (n (log B)) binary steps. We prove that this algorithm can actu-

6

6 3

2 5 3ally be executed in O (n (log B) + n (log B)) binary steps by analyzing a modified version

1

of the algorithm which also performs better in practice.

. Introduction

Various diophantine problems can be reduced to the problem of finding a short or a shor-

n
test vector in an integer lattice. Among them are integer linear programming with a fixed
umber of variables [Lenstra, H. 81], integer polynomial factorization [Lenstra, A., et al. 82],

s
[Kaltofen 82], and the breaking of some variants of the Merkle-Hellman knapsack encryption
cheme [Lagarias 82], [Odlyzko 82]. A. Lenstra, H. Lenstra and L. Lovász [Lenstra, A., et al.

v
82] present an algorithm which, given a set of n linearly independent n -dimensional integer
ectors whose Euclidean lengths are bounded by B , finds a vector in the Z-span of these vec-

tors the length of which is within a factor of 2 of the length of the shortest vector in this(n −1)/2

36 l
i
lattice. Their algorithm is shown to run in O (n (log B)) binary steps provided that classica
nteger arithmetic is used. In this paper we present a modified version of this algorithm

n
O
which not only seems to perform better in practice, but we also prove that this version runs i

(n (log B) + n (log B)) binary steps when using classical integer arithmetic. With our
r

6 2 5 3

esult one can prove that factoring an integer polynomial f of degree n can be accomplished
in O (n + n (log

�
f
�
)) binary steps, where

�
f
�

is the length of the coefficient vector of f11 8 3

.

�

(cf. [Lenstra, A., et al. 82])

���������������������������

* The research for this paper has been partially supported by the Connaught Fund, Grant # 3-370-126-80.
This paper appeared in: Proc. EUROCAL ’83, Springer Lec. Notes Comp. Sci. 162, 236-244 (1983).

- 237 -

.

U

If one employs fast integer multiplication the running times compare as follows

sing a O (K) complex K -digit times K -digit integer multiplication procedure where ε is a1+ε

5 2+ε 5+ε 2 .
O
small constant > 0 (cf. [Knuth 81, p. 280]): O (n (log B) + n (log B)) (ours) vs

(n (log B)) ([Lenstra, A., et al. 82]).

U

5+ε 2+ε

sing a O (K log K log log K) complex K -digit times K -digit integer multiplication procedure
)(cf. [Sch"onhage and Strassen 71]): O (n (log B) log K log log K) with K = n + log B (ours5 2

-
c
vs. K = n log B ([Lenstra, A., et al. 82]). Notice that in this case both bounds are asymptoti
ally equal and our improvement only lowers the constant multiplier for the given complexity.

-
m

In order to make this paper sufficiently self-contained we shall repeat some of the argu
ents presented in [Lenstra, A., et al. 82] as well as adopt most of the notation used there.

Let b ,.. . ,b ∈Z be linearly independent (over Q, the rationals). By b ,.. . ,b we denote the1 n
n

1
*

n
*

orthogonalization of this basis, namely

b = b − µ b , 1 ≤ i ≤ n (1.1)
i −1

i j j
*

1
i
*

i
j =
Σ

i j
j
* 2

i j
*

µ = �
b
�

(b ,b)� ����������� , 1 ≤ j < i ≤ n (1.2)

where (,) denotes the scalar product and
���

the square norm. The basis b ,.. . ,b is called1 n

reduced if
�
b
�

≥
�
b

�
for 1 < k ≤ n. (1.3)* 2

1
���

k −
1
2

N

k
* 2

otice that our notion of reduced basis is weaker than the one given in [Lenstra, A., et al.

L

82].

emma 1 (cf. [Lenstra, A., et al. 82, Proposition 1.11]): Let b ,.. . ,b ∈ Z form a reduced

1 n

1 n
n

bbasis. Then for any non-zero vector x ∈ Zb +. . .+Z

2
�
x
�

≥
�
b
�

.

1

n −1 2
1

2

(n −1)/2Hence
�
b
�

is within a factor of 2 of the norm of the shortest vector in the lattice
spanned by b ,.. . ,b .1 n

i =1
l

i i i =1
l

i
*

i
*

i i
*

l l
*P Σ Σroof: Let x = r b = r b with r ∈Z, r ∈Q and r ≠0, 1 ≤ l ≤ n . Since b is

.orthogonal to b for i = 1 , . . . , l −1, (x ,b) = r (b ,b) = r (b ,b). But (b ,b) = (b ,b) ≠ 0i l
*

l l l
*

l
*

l
*

l
*

l l
*

l
*

l
*

2l
i
* 2

i
*

1l
*

l
2

i =Σ ≥
(

Therefore, r = r , which is an integer ≠ 0. It follows that
�
x
�

= (r)
�
b
�

r)
�
b
�

≥
�
b
�

≥
�
b

�
/2 , the last inequality by using (1.3) inductively. Since b =

b 1

l
* 2

l
* 2

l
* 2

1
* 2 l −1

1
*

the lemma is proven. �

- 238 -

A

2. The Basis Reduction Algorithm

lgorithm R
[Given n linearly independent vectors b ,.. . ,b with integer entries this algorithm transforms

(

this basis into a reduced one.]
1 n

I) [Initialize the arrays µ and β such that µ , 1 ≤ j < i ≤ n , and β = � b � , 1 ≤ l ≤ n ,

F

satisfy (1.1) and (1.2):]
i j l l

* 2

OR i ← 1 TO n DO

[The following loop is skipped for i = 1.]
FOR j ← 1 TO i −1 DO

µ ←
β
1�����

��
� (b ,b) − µ µ β

���
	 .

j −1

jl il l
1

i j
j

i j
l =
Σ

Σ l
2
l

i −1

i
1

βi i
2

l =
← � b � − µ β .

(

k ← 2.

L) [At this point µ and β correspond to the orthogonalization of b ,.. . ,b . Moreover
b 1 k −1

1 n

, . . . ,b is reduced, i.e.

� b � ≥ � b � , 1 < l ≤ k −1, and � µ � ≤ , 1 ≤ j < i ≤ k −1. (2.1)]
�
1
2

* 2
i j1

�

l −

1
2l

* 2

1 n .

I

IF k =n +1 THEN RETURN (b ,.. . ,b)

F k =1 THEN k ← 2; GOTO step (L).

[

Call algorithm S given below.

Now (2.1) is also valid for i = k , i.e.

� µ � ≤ for 1 ≤ j < k. (2.2)]
�
1
2

�

k −1

kj

1
2

I kF β ≥ β THEN k ← k +1; GOTO step (L).

[At this point

� b � < � b � ≤
�� − µ

�	 � b � (2.3)* 2
1

2
k −1

�

k ,k −

3
4

* 2
1

�

k −

1
2

t

k
* 2

he last inequality because of (2.2) for j = k −1.]

sInterchange b and b and update the arrays µ and β such that (1.1) and (1.2) ik −1 k

.satisfied for the new order of basis vectors

- 239 -

,[As we will explain below, the only entries which change are β , β and µ , i = k −1k −1 k ij

k i ,k −1 ik, 1 ≤ j < i , as well as µ , µ , k < i ≤ n . Let γ and ν denote the updated contents
of β and µ, then, according to [Lenstra, A., et al. 82, 1.22]

γ = β + µ β , ν =
γ

µ β� ����������������� , (2.4)
k ,k −1 k −1

1

2
k −1 k ,k −1

k −
1k −1 k k ,k −

k k −1 k ,k −1
2

k −1
k −1

k −1 kγ = β − ν γ =
γ

β β� ����������� , (2.5)

)
ν = µ ν + µ β /γ

���
� for k <i ≤n , (2.6µν = µ − µi ,k i ,k −1 ik k ,k −1

i ,k −1 i ,k −1 k ,k −1 ik k k −1

k −1, j kj k , j k −1, jν = µ , ν = µ for 1≤ j <k −1. (2.7)]

A

k ← k −1; GOTO step (L). �
lgorithm S

[This algorithm replaces b by b − λ b , λ ∈ Z, such that the new µ satisfy (2.2):]k −1
l l l kj1k k l =Σ

(M) [Initialize the modulus:]

B ← max{β , . . . ,β }; M ←
��

(k +3)B
	��

. [M can also be chosen the least power ofk 1 k k√
�
�
�
�
�

(

the radix larger than that.]

L1) FOR m ← k −1 DOWNTO 1 DO step (L2)

(L2) [Make µ absolutely smaller than :]km 2
1
�

�
1
2

I kmF � µ � ≥ THEN

r ← ROUNDED(µ). [ROUNDED(x) denotes largest integer z s.t. � z −x � ≤ .]
�
1
2

k

km

k mReplace b by (b −rb) mod M . (2.8)

[Notice that in this case λ = r , otherwise λ = 0.]m m

[kiReadjust µ for i ≤ j < m :]

FOR j ← 1 TO m −1 DO µ ← µ − r µ . (2.9)

µkm km

kj kj mj

← µ − r .

(

ENDIF

B) Balance the residual entries of b mod M such that each modulus > M is replaced by
�
1
2
�
 k

1
2

�its negative equivalent ≤ M .

- 240 -

rRemark: If k is decremented in the main loop (L), (2.2) and (2.7) imply that � µ � ≤ fokj 2
1���

e
o
the new index k . Hence the subsequent call to algorithm S has no effect and therefore can b
mitted. In practice, one should keep a switch which is set/reset as k is in-/decremented, and

3

only call the subprocedure S if this switch is set.

. Partial Correctness of the Reduction Algorithm

g
b

That step (I) computes the correct µ’s and β’s follows by substitutin
= b + µ b into (1.2). We first focus on the subprocedure S. Since the vectorj −1

jl l
*

1j
*

j l =Σ
Σm =1

k −1
m m 1 k −1 k i

* ≤
n

λ b in the subspace spanned by b ,.. . ,b is subtracted from b , neither b , 1 ≤ i

, nor µ , i ≠ k , 1 ≤ j < i , change. By (1.2), the new µ can be computed asi j kj

kj
j
* 2 k

m =1

k −1

m m j
*

j
* 2

k j
*

j
m = j +1

k −1

m mjµ Σ Σ=
� b �
� 1��������� (b − λ b , b) =

� b �
(b ,b)������������� − λ − λ µ ,

)observing that (b ,b) = � b � . But this is exactly the value computed within the loops (L1j j
*

j
* 2

dand (L2). After these loops are execute

� µ � ≤ for 1 ≤ j < k.���1
2

k

kj

sTherefore the new vector b satisfie

� b � = � b � + µ � b � ≤ B + (k −1)
4

� B��� =
4

k +3������� B . (3.1)2
j
* 2

k
k

kj

k −1

k
1

k
2

k
* 2

j =
Σ

√
���	�	�	�	�

k
���1
2

T khus the updated entries of b will be absolutely bounded by (k +3)B and it suffices to

p
(
compute these entries modulo an integer of twice this bound to obtain their true values in ste
B).

The partial correctness of algorithm R can now be immediately concluded by the use of
.

T
the invariant given at the label (L). The invariance of this statement is also easily established

he counter k is incremented only if � b � ≥ � b � . Subprocedure S does not change* 2
1

���
k −

1
2

i

k
* 2

*
ijany b or µ for i < k . Hence with (2.2) the statement is true including the additional sub-

lscript. If the counter is decremented, β and µ , 1 ≤ i ≤ k −2, 1 ≤ j < i , are not at ali i j

.

4

affected by the updates (2.4) - (2.7), which implies the invariance in this case as well

. Complexity Analysis

Following the ingenious argument laid out in [Lenstra, A., et al. 82] we shall first show
)that algorithm R must terminate by proving that k can be decremented at most O (n log B2

times, where

B = max { � b � , . . . , � b � }.

O

1
2

n
2

f course, k can be incremented only an additional n times more which shows that the main

loop (L) is executed O (n log B) times.

- 241 -

2

l 1 l sLet d denote the Gramian of the vectors {b ,.. . ,b } that i

d = det
��
(b ,b)

��
= � b � for 1 ≤ i ≤ n. (4.1)

l

i
* 2

1
l i j 1≤i , j ≤l

i =
Π

2
l
*

l
* ≤(cf. [Gantmacher 59, Sec. 9.3].) From (1.1) it follows that all b initially satisfy � b �

� b � ≤ B . Hence at the beginningl
2

l
ld ≤ B for 1 ≤ l ≤ n. (4.2)

The only time throughout the algorithm any of the Gramians changes is when some � b � arei
* 2

k −1 k -
c
updated. This only happens when k is decremented, that is, when b and b are inter
hanged. By (4.1) it follows that the Gramians d are invariant to the order of the vectorsl

2k −1
i
*

11 l l k −1 i =Π ,

t

b ,.. . ,b , hence the exchange does not affect any d with l ≠ k −1. For d = � b �
he only of the � b � , 1 ≤ i ≤ k −1, being updated is � b � , which is, by (2.4) and (2.3),* 2

1

replaced by
i
* 2

k −

� b � + µ � b � < � b � . (4.3)* 2
1

���
k −

3
4

* 2
1

2
k −1

k

k
* 2

k ,k −

−1 4
3���Therefore the new value of d is at least times smaller than the old one, and since no

-other d changes, the same is true for the product d . However, throughout the algol l =1
n −1

lΠ
n

B
rithm, this product remains a positive integer, which, by (4.2), is initially not greater tha

. Thus, the number of times k can be decremented is at most the number of times(n −1)n /2

l =1
n −1

l 4
3��� yΠ d can be reduced by the factor , which is bounded b

4/3
2 .���	�	�	�	�	� log B

� = O (n log B)
n(n −1)

2

�

.This establishes our initial claim

Before we can derive the binary complexity of algorithm R, we need to estimate the
s

i
lengths of intermediately computed integers. Since the entries in β and µ are rationals thi
ncludes predetermining their denominators. From (4.1) it follows that

)�
�	�	� for 2 ≤ l ≤ n. (4.4
d� b � =

dl
* 2

l −1

l

tIt can be easily established (cf. [Lenstra, A., et al. 82, 1.29]) tha

d µ ∈Z for 1 ≤ j < i ≤ n.

T

j i j

herefore all calculated denominators have, by (4.2), O (n log B) digits.

yWe now estimate � b � , � b � and µ throughout algorithm R. Initialli
2

i
* 2

i j

i
* 2� b � ≤ B for 1 ≤ i ≤ n , (4.5)

and it is easy to see that this condition remains true during the algorithm. The only changes

- 242 -

to � b � occur in (2.4) and (2.5). Buti
* 2

k −1 4
3���

k −1 4
3��� ,

by (4.3), and by (2.5),

0 < γ < β ≤ B < B

γ = β − ν γ < β ≤ B.2
k −1 k −11k k −1 k ,k −

k −1
* 2

k
* 2 s

t
Therefore, the new values of � b � and � b � are not greater than B . This also implie
hat during algorithm R

� b � ≤ nB for 1 ≤ i ≤ n. (4.6)

1

i
2

n k)
w
The set {b ,.. . ,b } is only changed by the subprocedure S, where b is updated. From (3.1

e conclude that the new value of � b � satisfiesk
2

k
2

k ,������� B < nB
3k +

4
� b � ≤

)the later inequality by (4.5). Finally, we conclude that at the label (L

µ ≤
� b �
� b ������������ =

d

d � b ������������������ ≤ d � b � ≤ nB for 1 ≤ j < i ≤ n ,
j −1 i

2

j −1 i
2 j

j

i
2

2
2

j
*j

u

i

sing Schwarz’ inequality on (1.2), then (4.4), (4.2) and (4.6) (cf. [Lenstra, A. et al. 82,

a
1.35]). It now follows from specification of algorithm R and (2.4) - (2.7) that any intermedi-
te integer or any rational numerator has at most O (n log B) digits. Therefore, each arith-

-metic operation in algorithm R takes O (n (log B)) binary steps, using classical integer arith2 2

metic routines.

Now let T denote the binary complexity of the subprocedure S. The arithmetic com-S
3 3 .

T
plexity of step (I) is O (n), that of step (L), excluding the call to algorithm S, O (n log B)

herefore, the binary complexity of the whole reduction is

O (n (log B) + T n log B) (4.7)5 3
S

2

S .

L

with classical arithmetic. It remains to determine T

emma 2: Let 0 < K ≤ N be integers. To multiply a K -digit integer with an N -digit integer
-

d
or to compute the integer quotient and remainder of a K +N -digit integer divided by an N

igit integer has binary complexity O (M (K) N /K) where O (M (K)) is the binary complexity

P

of multiplying two K digit integers.

roof: The classical complexity as well as the one for fast multiplication can be found in
,

w
[Knuth 82, Sec. 4.3, esp. Sec. 4.3.3, Exercise 13]. To establish the fast division complexity

e observe that by grouping the digits of the dividend into integers of K digits, we can deter-

t
mine the quotient by just considering the first few groups [Knuth 82, loc. cit.]. This amounts
o dividing integers of size O (K) and then multiplying O (N /K) integers of that size. Divi-

sion and multiplication can be accomplished in O (M (K)) binary steps. �

- 243 -

eIt is clear that the arithmetic complexity of algorithm S is O (n). Each coordinat2

u kpdate of b in (2.8) as well as assignment (2.9) is executed that many times. We first focus
on the binary complexity of the later, assignment (2.9). Upon entry to algorithm S,

�
µ

�
< n 2 B ≡ C for 1 ≤ j < k. (4.9)kj

n√
� �������

1
*

1 y
(
To prove this, we use the invariant at label (L) and the fact that

�
b

�
=

�
b

�
≥ 1. For, b

4.6)

nB ≥
�
b

�
=

�
b

�
+ µ

�
b

�
> µ

�
b

�
≥ µ

2

�
b

�

����������� >
2
�
µ
����� ,

2
jk

n

1
* 2

1
2

j −j
2

j
* 2

kj
2

l
* 2

kl

k −1

k
1

k
2

k
* 2

l =
Σ

kj
(m)

kjwhich proves (4.9). Let µ denote µ after (2.9) has been executed for the indices m and
j , j < m . We can prove by induction that

�
� µ

�
� < 2 C. (4.10)(m) k −m

j

k

k

j
(k)

kjFor m = k , the µ are the original µ and (4.10) reduces to (4.9). We now deduce (4.10)
for m −1 from (4.10) for m . By (2.9), µ = µ −r µ , 1 ≤ j ≤ m −2, where r is thekj

(m −1)
kj
(m)

mj
(m)

1k ,m − ,rounded value of µ . Hence
�
r
�

< 2
�
� µ

�
� ≤ 2 C (4.11)(m) k −m +1

1

m

k ,m −

j 2
1���

kj
(m −1)

kj
(m)

mj ≤

2

and
�
µ

�
≤ by the invariant at label (L). Therefore,

�
� µ

�
� ≤

�
� µ

�
� +

�
r
�	�

µ
�

C + 2 C = 2 C , as was to be shown. Thus, throughout algorithm S��� k −m +1 k −(m −1)1
2

k −m

kj
k −1 3n√

�
��������
µ

�
≤ 2 C < n 2 B for 1 ≤ j < k. (4.12)

This means that r is of size O (n +log B) and by the above lemma ROUNDED(µ) and thekm

e
u
assignment (2.9) can be computed in O ((n +log B)n log B) binary steps. Obviously, th

pdate of the coordinates of b in (2.8) can be achieved in fewer binary steps since M <<C .k

√ ���
�
�
�
�
� d
t
In fact, by chosing M to be the least power of the radix larger than (k +3)B , one can avoi
he cost for the division by M when computing the modulus. Therefore,

T = O ((n +log B) n log B)S
3

sand the complexity for the whole algorithm, (4.7) and (4.8), become

O (n (log B) + n (log B)),

a

6 2 5 3

ssuming that the classical arithmetic procedures are employed. The running times cited in
e

a
section 1 for fast integer arithmetic can be easily deduced from lemma 2 and the abov
nalysis.

- 244 -

5. Conclusion

We have shown that the complexity bound in [Lenstra, A., et al. 82] for computing a
e

l
short vector in an integer lattice is too pessimistic, in fact that the total exponent can b
owered by one. We claim that our version also has its practical merits. The main gain is

.during the update of b in (2.8), provided that M is chosen an appropriate power of the radixk

If no modulus were taken, by (4.11) we would have to multiply with an r which could be
)3n /2 bits longer than r mod M . Since this multiplication might be executed O (n log B4

times the loss of time may become quite significant.

Other practical improvements have been suggested by A. Odlyzko [Odlyzko 82]. For
-

s
example, the entries in µ and β could be made floating point numbers with extended preci
ion. Then, whenever the loss of significant digits during roundoff becomes too great to

ndecide β ≥ β in algorithm R or calculate ROUNDED(µ) in algorithm S, one cak 2
1
���

k −1 km

y
u
recompute the µ’s and β’s like in step (I) of algorithm R. This change has been successfull

sed to solve large problems by the VAXIMA version of the algorithm.

f
t
Acknowledgement. The presentation of this paper has greatly benefitted from the remarks o
wo unnamed referees.

REFERENCES

[Gantmacher 59]

Gantmacher, F. R.: Matrix Theory, vol. 1. New York: Chelsea 1959.

[Kaltofen 82]

Kaltofen, E.: A Polynomial-Time Reduction from Bivariate to Univariate Integral Poly-

[

nomial Factorization. Proc. 23rd Symp. Foundations of Comp. Sci., IEEE 57-64 (1982).

Knuth 81]

Knuth, D. E.: The Art of Computer Programming, vol.2, Seminumerical Algorithms, 2nd

[

ed. Reading, MA: Addison Wesley 1981.

Lagarias 82]

Lagarias, J.C.: The Computational Complexity of Simultaneous Diophantine Approxima-

[

tion Problems. Proc. 23rd Symp. Foundations of Comp. Sci., IEEE 32-39 (1982).

Lenstra, A., et al. 82]

Lenstra, A. K., Lenstra, H. W., Lovász, L.: Factoring Polynomials with Rational
Coefficients. Math Ann. 261, 515-534 (1982).

- 245 -

[Lenstra, H. 81]

Lenstra, H.W., jr.: Integer Programming with a Fixed Number of Variables. Univ.

[

Amsterdam: Math. Inst. Report 81-03, 1981.

Odlyzko 82]

Odlyzko, A.M.: Private Communications 1982.

[Sch"onhage and Strassen 71]

Sch"onhage, A., and Strassen, V.: Schnelle Multiplication grosser Zahlen. Computing 7,
281-292 (1971).

