- 236 -

On the Complexity of Finding Short Vectors
in Integer Lattices*

by
Erich Kaltofen

University of Toronto
Department of Computer Science
Toronto, Ontario M5S 1A4, Canada

Abstract. In [Lenstra, A., et a. 82] an algorithm is presented which, given n linearly
independent n-dimensiona integer vectors, calculates a vector in the integer lattice spanned
by these vectors whose Euclidean length is within a factor of 2("™D"2 of the length of the
shortest vector in this lattice. If B denotes the maximum length of the basis vectors, the ago-
rithm is shown to run in O (n®log B)?) binary steps. We prove that this algorithm can actu-
aly be executed in O (n%log B)? + n®(log B)®) binary steps by analyzing a modified version
of the algorithm which also performs better in practice.

1. Introduction

Various diophantine problems can be reduced to the problem of finding a short or a shor-
test vector in an integer lattice. Among them are integer linear programming with a fixed
number of variables [Lenstra, H. 81], integer polynomial factorization [Lenstra, A., et a. 82],
[Kaltofen 82], and the breaking of some variants of the Merkle-Hellman knapsack encryption
scheme [Lagarias 82], [Odlyzko 82]. A. Lenstra, H. Lenstraand L. Lovasz [Lenstra, A., et al.
82] present an algorithm which, given a set of n linearly independent n-dimensional integer
vectors whose Euclidean lengths are bounded by B, finds a vector in the Z-span of these vec-
tors the length of which is within a factor of 2"~1/2 of the length of the shortest vector in this
lattice. Their algorithm is shown to run in O (n®(log B)®) binary steps provided that classical
integer arithmetic is used. In this paper we present a modified version of this algorithm
which not only seems to perform better in practice, but we also prove that this version runsin
O(n%log B)? + n°(log B)®) binary steps when using classical integer arithmetic. With our
result one can prove that factoring an integer polynomial f of degree n can be accomplished
in O(n'! + n8logl f 1)3) binary steps, where |f1 is the length of the coefficient vector of f
(cf. [Lenstra, A., et d. 82)]).

* The research for this paper has been partially supported by the Connaught Fund, Grant # 3-370-126-80.
This paper appeared in: Proc. EUROCAL '83, Soringer Lec. Notes Comp. <ci. 162, 236-244 (1983).

- 237 -

If one employs fast integer multiplication the running times compare as follows.

Using a O (K*¥) complex K -digit times K -digit integer multiplication procedure where ¢ is a
small constant > 0 (cf. [Knuth 81, p. 280]): O(n®logB)** + n®%(logB)?) (ours) vs.
O (n°*¢(logB)?*) ([Lenstra, A., et a. 82]).

Using a O (K logK loglogK) complex K-digit times K -digit integer multiplication procedure
(cf. [Schbnhage and Strassen 71]): O (n®(logB)? logK loglogK) with K = n + logB (ours)
vs. K =nlogB ([Lenstra, A., et a. 82]). Notice that in this case both bounds are asymptoti-
cally equal and our improvement only lowers the constant multiplier for the given complexity.

In order to make this paper sufficiently self-contained we shall repeat some of the argu-
ments presented in [Lenstra, A., et a. 82] as well as adopt most of the notation used there.
Let by,...,b,0Z" be linearly independent (over Q, the rationals). By by ,...,b, we denote the
orthogonalization of this basis, namely

i-1

b =b — 3 Wb/, 1<i<n (L1)
j=1
J

where (,) denotes the scalar product and | | the square norm. The basis b;,...,b, is caled
reduced if

Ibel?2 2Ibe 12 for 1<k <n. (1.3)

Notice that our notion of reduced basis is weaker than the one given in [Lenstra, A., et al.
82].

Lemma 1 (cf. [Lenstra, A., et a. 82, Proposition 1.11]): Let b;,...,b, O Z" form a reduced
basis. Then for any non-zero vector x U Zbq+--+Zb,

21125 |p,|2

Hence byl is within a factor of 2"™D2 of the norm of the shortest vector in the lattice
spanned by by,...,b,.

Proof: Let x = 3/_riby = 5'_r’b" with r;0Z, r/0Q and 120, 1 < | < n. Since b’ is
orthogonal to by fori =1,...,1-1, (x,b) =r, (b)) =r (5 ,b). But (b ,b°) = (b ,b°) # 0.
Therefore, " =r,, which is an integer # 0. It follows that Ix12 = S/ (r")? 1?2
(rH)?Ib/12 2 Ib'12 > b} %272, the last inequality by using (1.3) inductively. Since b}
b, the lemma is proven. O

I wv

- 238 -

2. The Basis Reduction Algorithm

Algorithm R
[Given n linearly independent vectors by,...,b, with integer entries this algorithm transforms
this basis into a reduced one.]

(I) [Initialize the arrays p and B such that p;;, 1<j <i <n,and B = IbI% 1<1 <n,
satisfy (1.1) and (1.2)]]
FORi —« 1 TOn DO

[The following loop is skipped for i = 1.]
FOR| « 1TOi-1DO

1

Hij Bj

(biby) - Jillin Hij BI} :
=1

i1
B « Ib %= 3P .
=
k « 2.

(L) [At this point p and (3 correspond to the orthogonalization of by,...,b,. Moreover
by,...,bc-1 is reduced, i.e.

Ib'122 21b7 412 1<l <k-1,and Iy | < 2, 1< <i k-1 2.1)]

IF k=n+1 THEN RETURN (by,...,b,).
IF k=1 THEN k ~ 2; GOTO step (L).
Call agorithm S given below.

[Now (2.1) isaso vaid fori =k, i.e
T % for 1<j <k (2.2)]

IF By = %Bk-l THEN k ~ k+1; GOTO step (L).
[At this point

Ibi12< by, 12 [%—uﬁk_lJ by, |2 2.3)
the last inequality because of (2.2) for j = k-1]

Interchange by,_; and b, and update the arrays p and (3 such that (1.1) and (1.2) is
satisfied for the new order of basis vectors.

- 239 -

[As we will explain below, the only entries which change are 3,4, By and p;j, i = k-1,
k,1<] <i,aswel as | 1, Hix, K <i <n.Letyand v denote the updated contents
of B and , then, according to [Lenstra, A., et a. 82, 1.22]

M k-1Bk-1
Yi-1 = B *+ M k-1Pr-1r Vk k-1 = ———, (2.4)
Yi-1
By 1B
Y = Bro1 — Vk-1Vk-1 = : (2.5)
Yk-1
Vi k-1 = Hi k-1Vk k-1 * l-likBk/Vk—l} . -
<i<n, .
Vik = Hi k-1 ~ HikHk k-1 Or K<i=n (2:6)

Vk—l,j = ij , Vk,j = uk—l,j for 1SJ <k-1. (27)]
K — k-1: GOTO step (L). [

Algorithm S
[This algorithm replaces b, by b, - Zlk:‘ll)\, by, A O Z, such that the new py; satisfy (2.2):]

(M) [Initialize the modulus:]

By « max{PBq,...B}; M [\/(k+3)8j . [M can aso be chosen the least power of
the radix larger than that.]

(L1) FORmM « k-1 DOWNTO 1 DO step (L2)
(L2) [Make ., absolutely smaller than %:]

IF || 2 2 THEN
r « ROUNDED(W,,)- [ROUNDED(x) denotes largest integer z st. | z—x| < %.]
Replace by by (b,-rb,,) mod M. (2.8)
[Notice that in this case A, = r, otherwise A, = 0.]
[Readjust py; fori <j <m:]
FOR] « 1TOM-1DO Wy <« Hyj ~ I Hm;- (2.9
Him < Him ~ T

ENDIF

(B) Baance the residual entries of b, mod M such that each modulus > %M is replaced by
its negative equivalent < %M . O

- 240 -

Remark: If k is decremented in the main loop (L), (2.2) and (2.7) imply that || < % for
the new index k. Hence the subsequent call to algorithm S has no effect and therefore can be

omitted. In practice, one should keep a switch which is set/reset as k is in-/decremented, and
only call the subprocedure S if this switch is set.

3. Partial Correctness of the Reduction Algorithm

That step (I) computes the correct p's and [('s follows by substituting
b/ =b; + ¥/ b" into (1.2). We first focus on the subprocedure S. Since the vector
Z" 1)\ b, in the subspace spanned by b,...,b,_; is subtracted from by, neither b’, 1 <i <
n, nor W, i #k, 1<j <i, change. By (1.2), the new p; can be computed as
(k> j) k21

TSE _)\ - Z Am“mj,
i m=j+1

Hij = (b - Z)\ b, b)) =

|b|2

observing that (b; ,bj) = bj |2, But this is exactly the value computed within the loops (L1)
and (L2). After these loops are executed

gl < 2 for1<j <k

Therefore the new vector by, satisfies

|bk|2:|bk|2+ Zp. |b|2<Bk+(k 1)_k kf:?)Bk (31)
j=1

Thus the updated entries of b, will be absolutely bounded by %\/(k+3)Bk and it suffices to
compute these entries modulo an integer of twice this bound to obtain their true values in step

(B).

The partia correctness of algorithm R can now be immediately concluded by the use of
the invariant given at the label (L). The invariance of this statement is also easily established.
The counter k is incremented only if |bgl? > %I be_; |2 Subprocedure S does not change

any b’ or j for i <k. Hence with (2.2) the statement is true including the additional sub-
script. If the counter is decremented, 3 and W, 1 <i <k-2, 1 <j <i, ae not at all
affected by the updates (2.4) - (2.7), which implies the invariance in this case as well.

4. Complexity Analysis

Following the ingenious argument laid out in [Lenstra, A., et al. 82] we shall first show
that algorithm R must terminate by proving that k can be decremented at most O (n?log B)
times, where

B =max{lb,l?...,Ib,1%.

Of course, k can be incremented only an additional n times more which shows that the main

- 241 -

loop (L) is executed O (n“log B) times.
Let d; denote the Gramian of the vectors {b,...,b} that is

|

d = det[(bi b)J o ja =T1IB1Zfor 1si<n, (4.1)
shish g

(cf. [Gantmacher 59, Sec. 9.3].) From (1.1) it follows that al b, initially satisfy |b/'|? <

Ib 12 < B. Hence at the beginning

d <B' for 1<l <n. (4.2)

The only time throughout the algorithm any of the Gramians changes is when some | b1 2 are
updated. This only happens when k is decremented, that is, when b,_; and b, are inter-
changed. By (4.1) it follows that the Gramians d, are invariant to the order of the vectors
by,...,by, hence the exchange does not affect any d, with | # k-1. For d,_; = [b12,
the only of the Ib"l2 1 <i < k-1, being updated is | b,_; | 2, which is, by (2.4) and (2.3),
replaced by

bl 2+ p2yqlbg 412 < %I be_q |2 (4.3)

Therefore the new value of d,_; is at least % times smaller than the old one, and since no
other d, changes, the same is true for the product [],1d,. However, throughout the algo-
rithm, this product remains a positive integer, which, by (4.2), is initially not greater than
B("-D"/2 " Thus, the number of times k can be decremented is at most the number of times
M1}, can be reduced by the factor %, which is bounded by

(n=1)n
2

logysB| = O(n?log B).

This establishes our initial claim.

Before we can derive the binary complexity of algorithm R, we need to estimate the
lengths of intermediately computed integers. Since the entries in B and p are rationals this
includes predetermining their denominators. From (4.1) it follows that

) d
Iby12 = —— for 2<l <n. (4.4)
d -

It can be easily established (cf. [Lenstra, A., et al. 82, 1.29]) that
djj0Z for 1<j<is<n.
Therefore all calculated denominators have, by (4.2), O(n log B) digits.
We now estimate | b; 1%, |12 and ;; throughout algorithm R. Initially
Ib'12<B for 1<i<n, (4.5)

and it is easy to see that this condition remains true during the algorithm. The only changes

- 242 -

to I b1 2 occur in (2.4) and (2.5). But
0<Y1<5P1s 5B <B,
by (4.3), and by (2.5),

Yi = Bx-1 ~ Vk-1¥k-1 < Bx-1 < B.
Therefore, the new values of I by_; 12 and | by |2 are not greater than B. This also implies
that during algorithm R

b 1?2<nB for 1<i<n. (4.6)

The set {b4,...,b,} is only changed by the subprocedure S, where b, is updated. From (3.1)
we conclude that the new value of | b, | ? satisfies
b2 < %BK < nB,

the later inequality by (4.5). Finally, we conclude that at the label (L)
|y 12 _ dj_llbil2
| bj*| 2 d]

ue < < d;j4lb12<nBl for 1<j <i <n,

using Schwarz’' inequality on (1.2), then (4.4), (4.2) and (4.6) (cf. [Lenstra, A. et a. 82,
1.35]). It now follows from specification of algorithm R and (2.4) - (2.7) that any intermedi-
ate integer or any rational numerator has at most O(n log B) digits. Therefore, each arith-
metic operation in algorithm R takes O (n%(log B)?) binary steps, using classical integer arith-
metic routines.

Now let Tg denote the binary complexity of the subprocedure S. The arithmetic com-
plexity of step (1) is O(n?), that of step (L), excluding the call to agorithm S, O(n3log B).
Therefore, the binary complexity of the whole reduction is

O(n%(log B)® + Tgn?log B) 4.7)
with classical arithmetic. It remains to determine Tg.

Lemma 2: Let 0 < K < N be integers. To multiply a K-digit integer with an N-digit integer
or to compute the integer quotient and remainder of a K+N-digit integer divided by an N-
digit integer has binary complexity O(M (K)N /K) where O (M (K)) is the binary complexity
of multiplying two K digit integers.

Proof: The classical complexity as well as the one for fast multiplication can be found in
[Knuth 82, Sec. 4.3, esp. Sec. 4.3.3, Exercise 13]. To establish the fast divison complexity,
we observe that by grouping the digits of the dividend into integers of K digits, we can deter-
mine the quotient by just considering the first few groups [Knuth 82, loc. cit.]. This amounts
to dividing integers of size O(K) and then multiplying O (N/K) integers of that size. Divi-
sion and multiplication can be accomplished in O (M (K)) binary steps. [

- 243 -

It is clear that the arithmetic complexity of algorithm S is O(n?). Each coordinate
update of by in (2.8) as well as assignment (2.9) is executed that many times. We first focus
on the binary complexity of the later, assignment (2.9). Upon entry to algorithm S,

lpg! <Vn2"B =C for 1<j <k (4.9)

To prove this, we use the invariant at label (L) and the fact that I b} | = I'b,l > 1. For, by
(4.6)

B>|b|2—|b*|2+k_12|b*I2> 2lb 12> 2||C);|2>u"2"
nB = |b =1l Elllm | Mg by 1= = g T on

which proves (4.9). Let u{™ denote ; after (2.9) has been executed for the indices m and
j»] <m. We can prove by induction that

‘ p§gn)‘ < 2kme, (4.10)

For m = k, the u) are the original p; and (4.10) reduces to (4.9). We now deduce (4.10)
for m-1 from (4.10) for m. By (2.9), p{"™ = pfM-ryy;, 1 < j < m=2, where r is the
rounded value of pu{™_;. Hence,

Irl < 2‘ pim_y| < 2kl (4.11)

<

and |y | s% by the invariant at label (L). Therefore, ug“)‘ + 1 gy | <
2k-MC + %Zk‘mﬂc = 2k=(m-D¢C | as was to be shown. Thus, throughout algorithm S

ug"

[| <247 < Vn2*'B for 1<j <k (4.12)

This means that r is of size O(n+log B) and by the above lemma ROUNDED(y,,,) and the
assignment (2.9) can be computed in O((n+log B)nlog B) binary steps. Obvioudly, the
update of the coordinates of b, in (2.8) can be achieved in fewer binary steps since M <C.
In fact, by chosing M to be the least power of the radix larger than V(k+3)B , one can avoid
the cost for the division by M when computing the modulus. Therefore,

Ts = O((n+log B) n3log B)
and the complexity for the whole algorithm, (4.7) and (4.8), becomes
O(n®log B)? + n>(log B)>3),

assuming that the classical arithmetic procedures are employed. The running times cited in
section 1 for fast integer arithmetic can be easily deduced from lemma 2 and the above
analysis.

- 244 -

5. Conclusion

We have shown that the complexity bound in [Lenstra, A., et a. 82] for computing a
short vector in an integer lattice is too pessimigtic, in fact that the total exponent can be
lowered by one. We claim that our version also has its practical merits. The main gain is
during the update of b, in (2.8), provided that M is chosen an appropriate power of the radix.
If no modulus were taken, by (4.11) we would have to multiply with an r which could be
3n/2 bits longer than r mod M. Since this multiplication might be executed O(n*logB)
times the loss of time may become quite significant.

Other practical improvements have been suggested by A. Odlyzko [Odlyzko 82]. For
example, the entries in u and B could be made floating point numbers with extended preci-
sion. Then, whenever the loss of significant digits during roundoff becomes too great to
decide B = %Bk_l in algorithm R or calculate ROUNDED(y,,) in agorithm S, one can

recompute the u’'s and ’s like in step (1) of algorithm R. This change has been successfully
used to solve large problems by the VAXIMA version of the algorithm.

Acknowledgement. The presentation of this paper has greatly benefitted from the remarks of
two unnamed referees.

REFERENCES
[Gantmacher 59]
Gantmacher, F. R.: Matrix Theory, vol. 1. New York: Chelsea 1959.
[Kaltofen 82]

Kaltofen, E.. A Polynomial-Time Reduction from Bivariate to Univariate Integral Poly-
nomia Factorization. Proc. 23rd Symp. Foundations of Comp. Sci., IEEE 57-64 (1982).

[Knuth 81]

Knuth, D. E.: The Art of Computer Programming, vol.2, Seminumerical Algorithms, 2nd
ed. Reading, MA: Addison Wesley 1981.

[Lagarias 82]

Lagarias, J.C..: The Computational Complexity of Simultaneous Diophantine Approxima-
tion Problems. Proc. 23rd Symp. Foundations of Comp. Sci., IEEE 32-39 (1982).

[Lenstra, A., et a. 82]

Lenstra, A. K., Lenstra, H. W., Lovasz, L.. Factoring Polynomials with Rational
Coefficients. Math Ann. 261, 515-534 (1982).

- 245 -

[Lenstra, H. 81]

Lenstra, HW., jr.. Integer Programming with a Fixed Number of Variables. Univ.
Amsterdam: Math. Inst. Report 81-03, 1981.

[Odlyzko 82]
Odlyzko, A.M.: Private Communications 1982.
[Schbnhage and Strassen 71]

Schbnhage, A., and Strassen, V.: Schnelle Multiplication grosser Zahlen. Computing 7,
281-292 (1971).

