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ABSTRACT

The complexity of the Berlekamp-Hensel agorithm for factoring polynomials in one or more vari-
ables with integer coefficients can become exponentia in the individual variable degrees of the input
polynomial due to the fact that, after factoring the projected polynomial and lifting its factors to
sufficiently large coefficients, one may need to combine exponentially many lifted factors to obtain the
true integer factors. In the univariate case, where the projection is taking the coefficients modulo a
prime number, we can find worst case polynomials by prescribing that their Galois groups consist only
of permutations with short cycles. Using the Chebotarev density theorem we then are able to construct
succinct certificates for our hard-to-factor polynomials. In the multivariate case the projection is evalua
tion of selected variables at integral points. By computing the minimal polynomial of the approximation
for a root we are able to replace the factor combination process by solving a system of linear equations.
The growth analysis for the size of the rational humbers involved shows that, provided the number of
variables is fixed, our agorithm reduces the problem in polynomia time in the total degree and
coefficient length to the problem of factoring univariate polynomials, which has recently been solved in
polynomia time as well. Therefore our agorithm can factor multivariate polynomials with a fixed
number of variables in polynomial time in the total degrees and coefficient lengths, except for splitting a
possible constant factor into its prime divisors. The evaluation process also leads us to the study of the
Hilbert irreducibility theorem, an effective version of which provides us with an aternate polynomial

time reduction from multivariate to bivariate polynomial factorization and irreducibility testing.



1. Overview

1.1. Review of Earlier Developments and Our Results

The problem of factoring polynomials with integer coefficients has a long and distinguished his-
tory. D. Knuth traces the first attempts back to Isaac Newton's Arithmetica Universalis (1707) and to
the astronomer Friedrich T. v. Schubert who in 1793 presented a finite-step algorithm to compute the
factors of a univariate polynomial with integer coefficients (cf. [Knuth 81, Sec. 4.6.2]). A notable cri-
terion for determining irreducibility was given by F. G. Eisenstein in 1850 [Eisenstein 1850, p. 166]. L.
Kronecker rediscovered Schubert’s method in 1882 and also gave algorithms for factoring polynomials
with two or more variables or with coefficients in algebraic extensions [Kronecker 1882, Sec. 4, pp. 10-
13]. Exactly one hundred years have passed since then, and though early computer programs relied on
Kronecker's work [Johnson 66], modern polynomial factorization algorithms and their analysis depend

on major advances in mathematical research during this period of time.

When the long-known finite-step algorithms were first put on computers they turned out to be
highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and
with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few
minutes of computer time indicates how successfully this problem has been attacked during the past
fifteen years. However, until very recently, some rare polynomials still took an exponential number of
steps in the degree of the polynomial to be factored by these modern agorithms. It is the main theme
of this thesis to investigate these hard-to-factor polynomials and, in the multivariate case, to give a new

algorithm which does not suffer from this exponential worst-case complexity.

In 1967 E. Berlekamp devised an ingenious algorithm which factors univariate polynomials over
Z,, p aprime number, whose running time is of order O (n3+prn?) where n is the degree of the polyno-
mial and r the number of actual factors (cf. [Knuth 81, Sec. 4.6.2]). The incredible speed of this algo-
rithm suggested factoring integer polynomials by first factoring them modulo certain small primes and

then reconstructing the integer factors by some mean such as Chinese remaindering [Knuth 69, Sec.



4.6.2]. H. Zassenhaus discussed in his landmark 1969 paper [Zassenhaus 69] how to apply the "Hensel
lemma" to lift in k iterations a factorization modulo p to a factorization modulo p?, provided that the
integral polynomial is squarefree and remains squarefree modulo p. Readers familiar with basic field
theory will know that if a polynomia over afield of characteristic O has repeated roots, then the greatest
common divisor (GCD) of the polynomial and its derivative is nontrivial. Hence casting out multiple
factors is essentialy a polynomial GCD process, but we will come back to this problem in a later sec-
tion. Squarefreeness is preserved modulo all but a reasonable small number of primes. Given a bound
for the size of the coefficients of any possible polynomial factor, one then lifts the modular factorization
to a factorization modulo p? such that p2/2 supersedes this coefficient bound. At this point either fac-
tors with balanced residues modulo p? are aready the integral factors or one needs to multiply some
factors together to obtain a true factor over the integers. The slight complication arising from a leading

coefficient not equal to unity can be resolved in various easy ways.

D. Musser [Musser 71, Musser 76] and, using his ideas, P. Wang in collaboration with L. Roth-
schild [Wang and Rothschild 75], generalized the Hensel lemma to obtain factorization algorithms for
multivariate integral polynomials. Subsequently, P. Wang has incorporated various improvements to
these multivariate factorization algorithms [Wang 77, Wang 78, Wang 79b]. In 1973 J. Moses and D.
Yun found the Hensel construction suitable for multivariate GCD computations (now called the EZGCD
algorithm) [Moses and Yun 73], and D. Yun has used this algorithm for the squarefree decomposition
process of multivariate polynomials [Yun 76b]. In 1979 G. Collins published a thorough analysis of the
average time behavior for the univariate Berlekamp-Hensel algorithm [Collins 79], while in the same
year improved algorithms for squarefree factorization [Wang and Trager 79] and Chinese remaindering

on sparse multivariate polynomials appeared [Zippel 79].

To completely factor a univariate polynomia over the integers means, of course, to also factor the
common divisor of al its coefficients. This thesis does not discuss the topic of factorization of integers

and we will not consider this problem as a part of polynomial factorization. However, some comparis-



ons are in order. Factoring large random integers is much harder than factoring integral polynomials.
This was partially confirmed by a polynomial-time reduction from polynomial to integer factorization,
which is, however, subject to an old number theoretic conjecture [Adleman and Odlyzko 81]. The prob-
lem of finding polynomially long irreducibility proofs ("succinct certificates') was first solved for prime
numbers in 1975 [Pratt 75] and has recently also been achieved for densely encoded integral polynomi-
als [Cantor 81]. A polynomial-time irreducibility test for prime numbers depending on the validity of
the generalized Riemann hypothesis (GRH) was discovered in 1976 (cf. [Knuth 81, Sec. 4.5.4]). P.
Weinberger obtained the corresponding result for densely encoded integer polynomials [Weinberger 81,
Knuth 81, p. 632, Exercise 38]. In 1971 E. Berlekamp pointed out that the modular projection and lift-
ing algorithm may take an exponential number of trial factor combinations [Berlekamp 70]. It was not
until 1982 when A. Lenstra, H. Lenstra and L. Lovasz overcame this problem by reconstructing the
integral factors from the lifted modular factors using a new integer lattice algorithm. Their algorithm
takes at worst polynomially many steps in the degree and coefficient size of the input polynomial [Lens-

traet al. 82].

Little work has been done on the theoretical anaysis of the multivariate versions of the
Berlekamp-Hensel algorithm. Similar to the univariate case, the steps involved may require an exponen-
tial number of trial factor combinations, though this problem may be probabilistically controllable by
virtue of the Hilbert Irreducibility Theorem. G. Viry has also shown how to replace the trial divisions
of multivariate polynomials by a simple degree test [Viry 80]. In chapter 3 we will prove that it is only
polynomialy harder to factor densely encoded multivariate integer polynomials with a fixed number of
variables than integer polynomials with just one variable. Together with the recent work on univariate
factorization mentioned above, this implies that multivariate integer polynomials with a fixed number of

variables can be factored in time polynomial in their total degree and coefficient size.

We will discover a characterization for those univariate polynomials that are hard-to-factor by the

Berlekamp-Hensel algorithm as a property of their Galois groups. This property can then be most pre-



cisely expressed by the Chebotarev Density Theorem and its recently discovered effective versions. We
then can obtain an alternate construction of succinct certificates for our hard to factor polynomials. Our
algorithm can be also used to compute the Galois group of univariate integer polynomials though we
require the computation of a resolvent for their splitting fields, i.e. the minimal polynomial for one of its
primitive lements. Whether our technique is then more efficient than a simple substitution method is

yet to be investigated. We will present all of our results on univariate polynomials in chapter 2.

The next section of this chapter establishes our notation. Section 1.3 contains a detailed descrip-
tion of the univariate Berlekamp-Hensel algorithm which we will need as a reference in chapter 2. The
last section of this chapter gives an overview of conventional methods for factoring multivariate integer
polynomials, in particular of the Kronecker and multivariate Hensel algorithms which we will refer to in
chapter 3. The detailed organization of chapters 2 and 3 can be found in their corresponding introduc-

tions. We conclude with a list of open problems in chapter 4.



1.2. Notation

By Z we denote the integers, by Q the rationals and by C the complex numbers. Z, denotes the
prime residues modulo p. If D is an integral domain, D[X4, . ..,%] denotes the polynomials in
X1, ..., X over D; degy (f) denotes the highest degree of x; in f O D[xy, ... %], degy «(f) the

highest total degree of monomials x; and x in f, and deg(f ) = degy x (f) the total degree of f.

The coefficient of the highest power of x, in f is referred to as the leading coefficient of f in x, and
will be denoted by Idcfy (f). We cal f monic in x, if Idcfy (f) is the unity of D. Asis well-known,
D[Xq, .. .,%] is aunique factorization domain (UFD) provided that D is a UFD. In this case the con-

tent of f 0 D[xy,...,%] in X, conty (f), is the greatest common divisor (GCD) of all coefficients of

f (x,) aselementsin D[Xy, . . . ,X,-1]. The primitive part of f in x, is defined as

ppx (f) = f/conty ()
and we call f primitive in x, if f = ppy (f). We also note that the total degree of any monomial in a

factor of f is less than or equal to the total degree of that monomia in f. The infinity norm of f O
Q[X4, - .., X /], the maximum of the absolute values of the rational coefficients of f, will be denoted
by Of 0. The sum of the absolute values of the coefficients will be denoted by Of 4, the square norm

by Of 0O

Onh O . . .
By hmoWwe denote the binomia coefficient CRGEDE



1.3. The Berlekamp-Hensel Algorithm

Given a polynomia h(x) O Z[x] we seek to compute its content and all its primitive irreducible
polynomial factors g;; (x) O Z[x], that is

v Os O
“h(x) = cont(h) |1 Eljll Gij (X)E

with al g;; irreducible and pairwise distinct. The complete algorithm consists of three separate steps,

namely
Algorithm 1.1: [Factorization of h(x) O Z[x]:]

(C) [Content computation:] The integer GCD of al coefficients of "h constitutes the cont(h),
h ~"h/ont(h). [h is now a primitive polynomial ]
(S [Squarefree decomposition of h:] Compute squarefree polynomias fi(x) O Z[x], 1<i <r,

r .
GCD(f;,fx) = 1for 1< j #k <r such that h(x) = [](f; (X)) .
i=1

(F) [Factor the squarefree f;:] FORi « 1,...,r DO

S

Compute irreducible polynomials gj; (x) O Z[x], 1< j <5, such that f;(x) = ﬁgij x). O
j=1

Step (C) is arepeated integer GCD computation and shall not be discussed further.

The computational aspects of step (S) were first investigated by E. Horowitz following an idea of
R. Tobey in 1969 (cf. [Horowitz 71]) whose algorithms were later improved by D. Musser [Musser 76],
D. Yun [Yun 76b] and P. Wang and B. Trager [Wang and Trager 79]. We shall briefly present D.

Yun's agorithm:
Algorithm 1.2: [Squarefree decomposition of a primitive polynomial h:]

(S1) g(x) « GCD(h(x), dh(xydx) where dh(xydx = h'(x) is the derivative of h w.r.t. X.



h(x) 1 dh(x) _ dcax)
g(x); dax) gx)  dx ax

C]_(X) -

r .
[Assume that h = [7] f{' with the f; squarefree and pairwise relatively prime. Then
i=1

1
.:*

r .
g=f"% ¢
i=2

which is relatively prime to g since GCD(f;,f;') = 1 (The f; are squarefree!). Thus

[l_ r O
d, =3 Oi-Df" ] ;0
i=2[] i=1jz O

(S2) FORK « 1,2,- -+ UNTIL ¢ = 1 DO

[At this point

r r O r O
o =[1fi, de= > Hi-kK)fi" [ ;01
i =k i=k+1 [ i=kjz O

X

fux) — GOD(E(0) GG Cersl) - —or

) . de(x)  dogsa(x)
Gy Geald) - |

fr(X) dx

The reader should be able to derive the correctness of this algorithm from the embedded comments. It
is important that the cofactor of h' in the GCD computation of step (S1) and that of d, in step (S2) are
relatively prime to the computed GCDs. This enables one to use, besides the modular GCD algorithm,
the EZGCD agorithm [Moses and Yun 73] whose general version needs the above agorithm if both
cofactors have a common divisor with the GCD. The relation between polynomial GCDs and squarefree

decompositions is even more explicit (cf. [Yun 77]).

Step (F) is the actual heart of the algorithm. As outlined in the introduction, various substeps are

needed for the Berlekamp-Hensel algorithm:

Algorithm 1.3: [Factorization of a primitive, squarefree polynomial f :]

(F1) [Choice of a modulus)] Find a prime number p which neither divides Idcf(f (x)) nor the resultant

of f (x) and df (xydx. The latter is equivalent to the condition that f (x) modulo p is squarefree.



(F2)

(F3)

(F4)

(F5)

By trying various primes in connection with the distinct factorization procedure we may also

attempt to minimize the number of modular factors in the next step.

[Modular factorization:] Factor f (x) modulo p completely by the Berlekamp algorithm [Knuth
81, Chap. 4.6.2], namely compute irreducible polynomials u(x), ..., U (x) O Z,[x] such that

Idcf(uy) = Idcf(f ) (modulo p), Uy, ..., U, aemonic and u(x) - - - u, (x) = f (x) (modulo p).

[Factor coefficient bound:] Compute an integer B(f ) such that all coefficients of any possible fac-

tor of f (x) in Z[x] are absolutely bounded by B(f ) (see lemma 3.539).

[Lift modular factors] q « p;

FORK — 1,2 -+- UNTIL q =2B(f) DO

q - g% [At this point q = p? ]
Compute polynomias u®(x) O Z,[x] such that uf) ---u® = f(x) (modulo q),
Idef(uf)) = Idcf(f ) (modulo q) and u® = u; (modulo p) where the coefficients of ;&) are

interpreted as p-adic approximations.
[Form trial factor combinations:]

h(x) « fT(X);C «{2,...,r};s «0;j] « 1,

REPEAT t < s;
FORmM ~ j,..., cadindity of C DO
FORALL subsets{iy, . ..,in} of C DO

Test whether g(x) = ppddef(h) u® - -+ u® (modulo p?) 7 divides h, where

k is the number of iterations in (F4) and the modulus is balanced before taking
the primitive part over the integers. If so then set s « s+1; gs(X) « g(X);

h(x) « h(x)g(x); j « m; C « C minus{i,, ..., in}; and exit both FOR
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loops.
END FORALL
END FOR

UNTIL t = s [No more factors discovered in the FOR loops]

S « s+1; gs(x) « h(x)

[All factors are computed as f (X) = g1(X) - - - gs(X).] O

We must scrutinize various steps further. By the choice of p in step (F1) f (x) = f (x) modulo p
is of the same degree as f (x) and the inverse of Idcf(f) exists in Z,. We factor the monic polynomial
Idef(f )™ f (x) first into distinct degree factors and then into irreducibles in step (F2). To satisfy the
condition on the Idcf(u;) we multiply the monic u, by Idcf(f) in Z,. Step (F4) utilizes the "Hensel-
lemma" and various lifting techniques have been investigated [Zassenhaus 69, Musser 71, Wang 794].

The following algorithm is due to P. Wang:

Algorithm 1.4: [Hensel Lifting Algorithm:]

[Given polynomials f (x) O Z[x], q relatively prime to Idcf(f ), ui(x), ..., u/(x) O Zg[x] such that
ldcf(uy) = Idcf(f ) (modulo q), U3, . .., u; monic and
ui(x) - - u’(x) = f (x) (modulo q). (A)

Furthermore given polynomials vi (x), . ..,V (X) O Zq4[x] with deg(v) < deg(u’) for 1 < i < r, and if

~ r
wesety = [] u then
i=Lj#

VIOOU(X) + -+ ) (x) = 1 (modulo ).
The goal is to produce polynomias uy” (x), ..., U (X), Vi (X), ..., v (x) O Z:[x] which satisfy the

same conditions as the single-starred polynomials if we replace the modulus q by g2]
(H1) Replace ldcf(uy) by Idcf(f ) modulo g2

[Lift u” by computingy; O Z4[x] such that u™ = u'+qu; with degfu;) < deg(u’) for i > 1]
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O ro. g
t(x) « OF (x)-[]u (x) Omodulo g
i=1 g
[The above replacement guarantees deg(t) < deg(f ). Also al coefficients of t are divisible by q
because of (A).]
t(x) < t(x)q; [Integer division, hence t(x) O Z;[x]. We need to determine’y;” with

Uz (OU0) + + U OOR() = LX), G)
FORi ~ 1,...,r DO

~U7(x) « remainder(t ()i (x), U (x)) in Zg[x]; U7 (x) < W'(x) + qui (x).

[Obviously the polynomials tv' solve (B) but do not satisfy the degree constraint for the~u; .

r
Hence the-u; solve (B) modulo |'|ui* but since all degrees are less than deg(f) there must be
i=1

equality.]

(H2) [Lift v/ by computing'v; O Z,[x] such that /" = v +qv and deg(v;) < deg(u;).]

oo . . O O

b(x) « OOl - v (X)d(x) Omodulo gV q;
oo =1 0 0

[Again the division is integral and b(x) O Zy[x] with deg(b) < deg(f).]

FORi ~ 1,...,r DO

~V; (x) « remainder(b (x)v/'(x), uf (x)) in Zg[x];

V(X)) « W(X) + v (x). O

In order to use the above algorithm within the loop of step (F4) we also need to initialize the
Vi (X) in Z, with

L vi(x)

MU () = 3 oo and deglv) < degu).
i=1 i=1™

To do this one can use the extended Euclidian algorithm r —1 times or use fast partial fraction decompo-

sition algorithms [Kung and Tong 77, Abdali et a. 77].
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Step (H2) is not necessary if one only considers the first solution v; and corrects u;" from modulus
g to modulus pg by calculating Al-j in Zy[x]. This method is referred to as "linear lifting" whereas our
algorithm has quadratic p-adic convergence. We also lift all factors in parallel while earlier versions
proceeded with one factor and its cofactor at a time. It is not clear which technique is preferable (cf.
[Yun 76a, Zassenhaus 78]), though the parallel quadratic approach seems superior [Wang 79a]. In order
to prevent p2 from overshooting B(f ) by too much one may calculate the last correction ponnomiaIsAlJ

with a smaller modulus than q.

As we will show in section 2.2, in the worst case step (F5) is the dominant step in our algorithm.

Therefore one is advised to test whether the constant coefficient of g(x) divides that of f (x).
D. Musser has carefully analysed a variation of steps (F1) - (F5), the result of which is the follow-
ing [Musser 71]: Let f =gy - - gs in Z[x], deg(g1) < deg(gz) < - - - < deg(gs), and let

O
B ing@‘_,S{deg(gi -1), %Ieg(giyzg if s>1

H= B [dey(f Y20 if f isirreducible
If f factorsintor polynomials modulo p then
min(2",r*) un? (n+log(B (f )))?

dominates the complexity of the factorization problem. This bound depends intrinsically on r which is
one reason why one should attempt to minimize this number in step (F2). If one does not, the algorithm
still performs quite well — on the average. An n-th degree polynomia in Z,[x] has an average of
log(n) factors as p tends to infinity and 2" averages n+1 where r is the number of modular factors (cf.
[Knuth 81, Sec.4.6.2., Exercise 5]. However, amost al integer polynomials are irreducible (cf. [Knuth
81, Sec.4.6.2, Exercise 27]), and one may not expect amost al inputs to our algorithm to behave that
way since a user probably tries to factor polynomials which are expected to be composite. In this matter
G. Callins has shown, subject to two conjectures, that if we restrict our set to those polynomials which
factor over the integers into factors of degree d,, do, . . ., ds for a given additive decomposition of n =

d; + ... + ds, the average number of trial combinations will be below n?. This result only holds if one
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processes combinations of m factors at a time as we did in step (F5) ("cardinality procedure"), because
if one chooses to test combinations of a possible total degree ("degree procedure") the average behavior

may be exponential in n [Callins 79].

The worst case complexity of the Berlekamp-Hensel agorithm is unfortunately exponential in n,
the degree of f. Thisis because, as we will prove in detail in section 2.2, there exist irreducible integer
polynomials of arbitrarily large degree which factor over every prime into linear or quadratic factors.
This means that we must test at least 2211 trial factor combinations to show that no integral factor
occurs. We will also show that the number of binary digits of the coefficients of those polynomials is
about their degree (cf. theorem 2.3) which makes the worst case of the Berlekamp-Hensel agorithm
truly exponential in its input size. Here the following remark is appropriate. We aways assume that
our algorithm operates on densely encoded polynomials. If we alow sparse encoding schemes, various
primitive operations on the input polynomials such as GCD computations are NP-hard (cf. [Plaisted 78])
and the factorization problem actually requires exponential space. In order to substantiate the last claim
we consider the polynomial x"-1 whose sparse encoding requires O(log n) bits. However, following
earlier developments, R. Vaughan [Vaughan 75] has shown that for infinitely many n the cyclotomic
polynomials W,, which constitute irreducible factors of x"-1, have coefficients absolutely larger than

eXp(nlog 2og log n)_

One question about our algorithm remains to be answered. That is how the choice of various
primes in step (F1) can influence later steps, especialy step (F5). It is clear that if a polynomial f fac-
tors modulo p; into all quadratic and modulo p, into all cubic factors, then the degrees of integral fac-
tors must be multiples of six. Indeed if the degree sets of factorizations modulo various primes are
completely incompatible we know the input polynomial to be irreducible without the need of steps (F2)
- (F5). For this situation D. Musser has developed an interesting model which, given a random irreduci-
ble polynomial f (x) O Z[x] of degree n, shows how to derive the average number p(n) of factoriza-

tions modulo distinct primes py, . . ., pyn) needed to prove f irreducible [Musser 78]. His approach is
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based on the fact that the degrees d,, . . ., d, of afactorization f =g, - - - g, modulo p, d, = deg(g;)
for1<i <r and p arandom prime correspond to the cycle lengths of a random permutation

@, ...,d)(dq+1, ... ,dy+dy) - - - (dyt+ - - - H+d D, L L L dgt s s )
of n elements. We will show in section 2.3 that this property remains valid for any given polynomial
provided that its Galois group is the full symmetric group. This result is in accordance with D.
Musser’s observation since ailmost all polynomials have the symmetric group as Galois group [Gallagher

72].



1.4. Factorization of Multivariate Integer Polynomials

We shall begin this chapter with Kronecker’s algorithm which, for certain coefficient domains

(such as C), is still the only one known.

Algorithm 1.5: [Kronecker Factorization of f (X4, ...,%/) 0 D[Xy, ...,%] with D being a unique

factorization domain.]

(K1) [Compute degree bound:] Obtain an integer d larger than the degree of f in any single variable.

(K2) [Reduction] “F (y) < Si(F) = f oy ....yo" 5

(K3) [Factorization:] Factor f (y) into irreducibles, i.e., f (y) =gi(y) - - ~gs(y);7gi(y) O D[y] for 1 <i

<S.

(K4) [Inverse reduction and trial division:] For al products g (y) - - ~gi (y) (similar to step (F5) in

algorithm 1.3) perform the following test:

gi ..... im(Xli e 1XV) i Si_L(gil T '_gim)

where S;t is the inverse of §; which is additive and

1

O ey
Sit [}\yb1+dbz+ TSP )\xll)1 ce xf
withO<sb <dforl<i<v,AOZ.

Test whether g; i divides f and if so remove this irreducible factor from f and proceed with

.....

its co-factor. O

The correctness of this agorithm follows easily from the fact that no variable in any factor of f
can occur with degree d or higher. The running time of the agorithm depends on of how fast the
univariate polynomial f (y) can be factored, the degree of which can be substantialy large. It should be
clear that step (K4) can take time exponentia in the degree of f, eg., if D = C and f isirreducible.

Unfortunately this exponential worst case complexity remains true for D = Z as we will show in section

- 16 -
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3.2. In this case, the Hensel lemma has produced a much more efficient approach. In the following we

will take a closer look at this algorithm.

The overdl structure of the multivariate factorization algorithm is remarkably close to that of algo-
rithm 1.1. First we choose a main variable x, i.e., the input polynomia ™ h O Z[y,, ...,%,x]. The
content computation of step (C) now becomes a GCD computation in Z[y, ... ,¥]. The squarefree
decomposition performed in step (S) can also be achieved by algorithm 1.2 if we replace the derivatives
a/dx by partial derivatives d0x and the GCDs by multivariate polynomial GCDs. However, in this case

P. Wang's and B. Trager’s algorithm becomes more efficient [Wang and Trager 79].

The idea of their algorithm is to find an evaluation point (b4, . . . ,b,) such that if

I .
h(yl! s !yV!X) = I_Ifi(yll CC vyvvx)l

i=1

is the squarefree decomposition of h, and

h(bs, . . . ,byx) Sh(x) = [TF )
i=1

isthat of h, thenr =r and f;(by, ...,b,,x) =f;(x), 1 <i <r. Under these conditions
1 B 07
ivi = _[}—
f, divides g ERC (h),
1 B¢ 07
- iVi = [1—
f, dividesg e )

and we can lift the equation
¢ 090 o
gy - - - WX) = fr (x) B=—-0modulo (y1=by, . . ., yy—by)
ofr(x) O

to determine f, from the univariate square decomposition of h, provided-g/f, # 1. Evaluation points
for which the above conditions do not hold are, as in the modular multivariate GCD algorithm, very

rare. (Cf. lemma3.1.)

Step (F), the complete factorization of a squarefree polynomia f (yq, . . ., Wy, X), iSagain a mgjor

challenge. As in the above squarefree decomposition algorithm we evaluate the minor variables y; at
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integers b, 1 < i < v, then factor the resulting univariate polynomia f (b, ...,b,,x) and finaly
rebuild multivariate factor candidates by a Hensel lifting algorithm with respect to the ideal P generated
by {(yi=b1), ..., (\w—by)}. Instead of presenting a complete algorithm we shall work out a simple
example and refer the reader to the papers by P. Wang [Wang and Rothschild 75, Wang 77, 78, 79b]

and D. Musser [Musser 76] for the details.

Example 1.1: Factor

fly,zx)=x3+ ((y+2)z + 2y + 1)x?
+ ((y+2)Z2 + (y?+2y+1)z + 2y% + y)x
+ (y+1)Z3 + (y+1)Z22 + (y3+yd)z + y3 + y2

The polynomial is monic and squarefree.

Sep F1: Choose an evaluation point which preserves degree and sguarefreeness but contains as many

Zero components as possible.

y=0, z=0: f (0,0x) = x3+ x? is not squarefree

y=1, z=0: f (1,0,x) = x3+ 3x® + 3x + 2 is squarefree.
Trandate variables for nonzero components

f (W+1,2,x) = x3+3x%+3x +2+(2x2+5x +5)w
+(2X HAW2HW3HH((3X2+4AX +2) +(X>+4X +5)W
+H(X +)WHW )z +((3X +2)+H(X +1)w ) Z2+(2+w ) 2

By fij(x) we denote the coefficient of w/z'.
Sep F2: Factor f oo(X) = goo(X)hoo(X) in Z[x]. We get

X3+ 3x2+3x + 2= (x+2) (X? + X + 1).
Sep F3: Compute highest degrees of w and z in factors of

f (w+1,z,x) = g(w,z,X) h(w,z,x): deg,(g.h) < 3, deg,(g,h) < 2.
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Sep F4: Lift gog and hgg to highest degreesinw and z. We set

g(W,z,x) = goo(X) + Gor(X)W + goo(X)W?

+o 4 (Go(X) F gu(X)W )z 4

and
h(w,z,x) = hg(X) + hgi(xX)w + hoz(X)W2
4o+ (th(X) + hll(X)W 4o )Z
+ (hyg(X) + hoy(X)W + - - - )22 +e
and compute go1, hot, 9oz, oz, - - -+ 910, N1, 911, Naa, -+ ., O20, hoo, - -+ N that sequence. Since f is

monic deg(gij) < 1 and deg(h;;) < 2 for i+j = 1. Multiplying g times h with undetermined g;;, h;; we

get goohor + hooGo1 = f o1 Whose unique solution is

(X+2)(x+2) + (x2+x+1)-1 = 2x%+5x +5,
by the extended Euclidean algorithm. In the next step we get

Joohoz + hooGoz = f 02~Gothox

which is solved by

(x+2)-1 + (X%+x+1)-0 = 2x+4 — 1-(x+2).
Finally

doohoz + NooBoz = f oz = Gothoz — Go2hon,

or

(x+2)0 + (X%+x+1)-0 =1 - 1-1 - O-(x+2).
This gives factor candidates for

f (W+1,0,X) = (x+2)+1-W +0-W2) ((x?+x +1)+(X +2)w +w?)

and a trial division shows them to be true factors.

We now lift z:

Jooh1o + hooG10 = f 10,

or

(X+2)x + (x24+x+1)-2 = 3x*+4x +2;
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9ooh11 *+ hooB11 = f11 — Goih1o — G1ohon,

or

(X+2)-0 + (X%+x+1)-1 = X>+4x+5 — 1-x — 2(x+2);

9ooh2o0 + Nool20 = 20 = G10h10,

or

(X+2)-1 + (x*+x+1)-0 = 3x+2-2x.
All other equations have 0 as their right-hand sides.

The factor candidates are

f(w+1,z,x) = %x +2)+w +(2+W)ZE E{x2+x +1)H(X+2)W +W2+xz+2° g

which are the actual factors. Setting w = y—1 we obtain

f(y,zx)= %+yz+y+z+1a %(2+(y+2)x+y2+zzg

In factoring the above sample polynomial we followed the algorithm by P. Wang [Wang 78]. Our
construction is actually a linear lifting technique. There is also the possibility of quadratic lifting
[Musser 76], but in the multivariate case, the linear algorithm seems to be more efficient [Yun 76a]. If
more than two univariate factors are present, one can again lift each one iteratively or lift them in paral-

lel as we demonstrated for the univariate case.
Various complications have been identified with the multivariate Hensel agorithm.

a)  Theleading coefficient problem: In our example we dealt with a monic polynomial in which case
the leading coefficients of all factors are known. If a polynomial leading coefficient is present,
one can impose it on one factor as in the univariate case, but this leads most likely to dense factor
candidates. P. Wang describes an algorithm to predetermine the actual leading coefficients of the
factors, which avoids this intermediate expression growth [Wang 78, Sec.3]. However, in section
3.3 we will choose yet another method which is not very efficient, in practice, but which is

guaranteed to work in polynomial time.
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b)  The bad zero problem: In our example, y had to be evaluated at 1 in order to preserve squarefree-

ness. The change of variables y; = w+b; for bj #0 can make the polynomial
f (wytby, ..., w,+by,X) dense. P. Wang suggests to compute the coefficients f; ...; (x) of
wif ce W\i,” by Taylor’s formula without performing the substitution

fi o i(X)= ————0—0 - O=—0 f(ys...,wX)O
ol il i) D6y1|:| Dayv 0 [3,=b,

See also R. Zippel's work on preserving sparseness [Zippel 79].
€¢)  The extraneous factors problem: This problem is the same as in the univariate case, namely that
f(byg ...,by,,x) has more factors than f (yy, ...,Ww,x) (in which case we cal by, ..., b,

“unlucky”). One immediate consequence may be that the correction coefficients g ... (x),
hi ...i (x) have non-integral coefficients. In order to avoid working with denominators one can

choose to work with coefficients modulo a prime which preserves the sguarefreeness of
f(by ...,by,x), and as a first step lift the coefficients. A good factor coefficient bound is given
in lemma 3.3. The algorithm 3.1 of chapter 3 provides a solution for this problem if the number

of variables is fixed.

Various implementation issues can be found in [Moore and Norman 81]. A good set of polynomi-
als for benchmarking an actual implementation of the factorization algorithm can be found in [Claybrook

76].

Little is known about the average computing time of the multivariate Hensel algorithm. The worst
case complexity can be exponentia in the degree of the main variable depending on what evaluation
points one chooses. In section 3.2 we will show how to construct irreducible polynomials for which
various evaluations yield al linear factors. However, unlike in the univariate case, it cannot happen that
an irreducible polynomial factors for all possible evaluations. Actualy, quite the opposite is true due to

the following theorem.
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Theorem 1.1 (Hilbert Irreducibility Theorem): Let f (yq, . . ., Y.X1,....%) beirreducible in Z[y4, . . .,
Vo X1y - - ., %]. By U(N) we denote the number of v-tuples (b4, ..., b,) O ZY suchthat Objg <N
forl<i <vandf(by,..., by, Xy, ..., %) isreducible in Z[x4, ..., %]. Then there exist con-
stants o and C (depending on f) such that U(N) < C(2N+1)"™® and 0 < a < 1. (Cf. [Knobloch 55]).

|

Unfortunately, no polynomia upper bounds on the length of C seem to be known which would
make the theorem useful for "redlistic" evaluations. We will formulate the open problem 2 in section 4

in this connection. In practice lucky evaluations seem quite frequent.

A specia problem is to test a polynomia f (x4, ...,%) 0 Z[Xq, ..., X for absolute irreduci-
bility, that is, to test f (x4, ..., %,) for irreducibility in C[x4, ..., %,]. The first criterion probably
goes back to E. Noether [Noether 22] which also implies that if f (x4, ..., %) is absolutely irreducible,
then f (X4, ..., X/ ) remains irreducible modulo almost all prime numbers. Unfortunately, the first such
prime number may be very large. A more efficient test for absolute irreducibility can be found in

[Heintz and Sieveking 81].



2. Hard-to-Factor Polynomials and Galois Groups

2.1. Introduction and Review of the Galois Theory

In section 2.2 we will generalize a class of univariate polynomials with integral coefficients attri-
buted to H.P.F. Swinnerton-Dyer by E.R. Berlekamp [Berlekamp 70, p.733]. We use Galois theoretical
methods to prove their properties of interest. Some of these results were published earlier in [Kaltofen

et al. 81].

These polynomials are of particular interest for the Berlekamp-Hensel factorization algorithm 1.3,
which determines factors modulo p and lifts them to find the integral factors of a polynomial. Because
the polynomials in the class we will define are irreducible over the integers but have a large number of
factors modulo p for every prime p, the Berlekamp-Hensel algorithm behaves badly on them. In de-
termining their irreducibility in step (F5) algorithm 1.3 needs a number of operations that is exponentia

in the degree and coefficient lengths of the polynomials.

As we will see in lemma 1.3 below, the degrees of modular factors of univariate polynomials are
closely related to the cycles of the permutations in their Galois groups. While we use this relation in an
elementary fashion in section 2.2, we will formulate it as the mathematically deep Chebotarev Density
Theorem in section 2.3. This new insight will also provide us with an alternate construction of succinct
certificates for normal polynomials and those whose Galois group is small (of polynomial cardinality in
their degrees). Our construction actually provides us with a deterministic algorithm for constructing the

Galois groups but its efficiency compared to standard techniques needs further investigation.

We will use some well-known properties of the cyclotomic polynomials in various places later and
shall mention them now: Let r be an integer with r = 2 and let {; be a primitive r-th root of unity.
There always exist ¢(r) distinct primitive r -th roots of unity in an extension field of Q or Z, provided
that g is a prime number not dividing r. By ¢ we denote Euler's totient function. These are the

powers of ¢, whose exponents are relatively primetor. Then

- 24 -
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r

W)= [ (g = [ (-2
i=1 dor
GCD(i r)=1
denotes the r -th cyclotomic polynomial which has all integer coefficients (or their residues modulo q if
the ground field is Z). By d O r we mean that d is adivisor of r and p denotes the Mbbius function:
pu(n) = (-1)™ if n is squarefree and has m distinct prime divisors, u(1) = 1, and otherwise p(n) = 0.

(Cf. [van der Waerden 53, p.112].)

If ¢, = exp(2ri/t) (i.e. the ground field is Q) then W, is irreducible over Z [van der Waerden 53,

p.162].

Lemma 2.1: Let g be a prime number and let m and r be positive integers such that r is relatively

primeto q. Then
W (X)) =W (x)®4") (mod q).

Proof: First we notice that for any integral polynomial f and any integer i =0, f(x¥) = f (x)¥
(mod q). Then by using the formulas for the cyclotomic polynomials and the Mbbius function given

above the stated congruence can be easily shown. O

By the Galois group of a polynomia we mean the automorphism group of its splitting field over
the field of its coefficients. Then the Galois group of W, over Q isisomorphic to U, under multiplica
tion modulo r [van der Waerden 53, p.162]. U, denotes the set of integral residues modulo r which are

relatively primetor.

The next two lemmas will help explain why the polynomials of section 2.2 split into so many fac-
tors modulo any prime number. First we show what happens to the Galois group when an integral poly-

nomial is projected onto a polynomial over a residue field.

Lemma 2.2: Let f be a monic separable polynomial in Z[x] and let f 0O Z,[x] be its natural projec-
tion modulo a prime number q. If f is separable (over Z;) the Gaois group of f over Z; is a sub-

group (as a permutation group on the suitably arranged roots) of the Galois group of f over Q. (Cf.
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[van der Waerden 53, p.190].) O

Lemma 23 Let f [ Z,[x] with g prime. Assume that al elements of the Galois group of f (as per-
mutations on the distinct roots of f) are written as products of digoint cycles. Then f does not contain

an irreducible factor with degree greater than the length of the longest cycle.

Proof: The statement follows immediately from the statement made about the generating element of the

Galois group of f in[van der Waerden 53, p.191]. O

We now summarize some properties of Galois fields. Let GF(Q") be the splitting field of x9"-x
as a polynomial in x with coefficients in Z,, q being a prime number. Then GF(q") is a finite field
with g" elements of characteristic g whose multiplicative group is cyclic. All fields with q" elements
are isomorphic to GF(q") and hence it is caled the Galois field with q" elements. The degree
[GF(a"):Zq] is n and GF(q") has exactly one subfield with q™ elements, GF(q™), provided that m
divides n. The automorphism group on GF(q") is isomorphic to Z, under addition and one of its gen-
erators maps each element a of GF(g") into a“ (the so called Frobenius automorphism) [van der Waer-

den 53, p.115].

Let f be an irreducible polynomial of degree n with coefficients in Z;, q being prime, and let a
be a root of f. Since Z,(a) is isomorphic to Z,[xW(f (x)), the residues modulo f, Z,(a) contains q"
elements and thus a O GF(q"). The remaining roots of f are a9, ..., o because of the structure

of the Galois group mentioned above.



2.2. Univariate Polynomials That Are Hard to Factor

Let n be a positive integer and let r be an integer with r = 2. By {, we denote exp(2mi/t), the
first primitive r-th root of unity. Let py, ..., p, be n distinct positive prime numbers. By
frop,. .. p,(X) we denote the monic univariate polynomial in x whose roots are

T R

withl<iq...,iy<r.

,,,,,,, p, have integral coefficients and are irreducible polynomials of degree r" over the in-
tegers. If r is a prime number, the following will be shown: If the coefficients of ffipl

jected into a field of residues modulo any prime number q, Zy, the image polynomials fy ,

(mod q) factor into irreducible polynomials over Z, which have degree at most r .

If r =2 this construction gives a dlightly simpler version of the Swinnerton-Dyer polynomials
which treat V-1 as an additional prime number. But our Galois theoretical proofs can be easily extended

to yield this special case.

The condition of r being a prime number is not crucia for the unpleasant running time behavior
for the factorization of these polynomials. For composite r the degrees of the irreducible factors in the

modular domain are then bounded by r? (we will actually prove a somewhat better bound).

A modified version of these polynomials is also presented because of its closely related properties:

By f, . ....p, We denote the polynomial whose roots are

i i i
Zro + Zrl pll/r R Zrn pn]/r

where1<igiq, ..., inp <r and GCD(igr) = 1.

o p, are integer polynomials which factor modulo any prime g into polynomials

whose degrees are bounded as for f, p- If ris2 4,6 oranodd integer, fr*;pl ,,,,, p, Isalsoirre-

ducible over the integers. Otherwise these polynomials may be reducible but we can guarantee that all

-28-
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factors over the integers are of degree at least 2r".

If n =0, f/.5 are the cyclotomic polynomials W, (x). We will show that for certain composite r
the maximum degree of factors in any residue field implies a super-polynomia running time for the
Berlekamp-Hensel factorization algorithm. This fact is discussed in [Musser 75, p.302]. D. Knuth

[Knuth 81, p.437] uses Berlekamp's agorithm to prove the modular factorization property for Ws.

We need some number theoretic facts which we shall establish now. Let r be an integer with
r = 2. Asabove, by U, we denote the set of residues modulo r which are relatively prime tor. This
set forms a group under multiplication modulo r and there exists a minimal non-negative integer A(r)
such that for each s O U, : s*") =1 (mod r). We cal A(r) the minimum universal exponent modulo r .

It is known (cf. [Knuth 81, p.19]) that

M2 =1, A4 =2 A2 =2"2fora =3

0 [l ] [l
A"y get 0= LCM @M@, - - ") O

where the g, are distinct odd prime numbers, @ is Euler’s totient function and LCM means the least
common multiple. Let p; be the i-th consecutive prime number. As a consequence of Tchebycheff's
theorem p; < 2 for al i > 1 [Hardy and Wright 79, Theorem 418, p.343]. This enables us to prove the

following:

Lemma 24: Let j be an integer with j = 2. Then there are infinitely many positive integers m

(namely the product of the first k odd prime numbers with k sufficiently large) such that

% > log,(g(m))'.

Proof: Letm =p,---px. Then

@m) = (p2-1) - - - (pk—1) < 2Kk
by the above estimate for p;. Therefore logy(@(m))l < k. Also

A(m) = LCM(p2-1, . . ., pe-D) < 2(pp-1)y2 - - - (pk—1)2 = 227 g(m).
Hence @(myYA(m) > 272> k3 for k chosen large enough. Therefore for al sufficiently large k:
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@mYA(M) > logz(@m)). O

In the proof of theorem 2.2 below we will make use of the fact that for every prime number r and

s’ -1_

for all s OU,—{1}: is a multiple of r. This follows from the Fermat theorem (a®®) =1

(mod b) for (a,b) = 1) and the fact that r is a prime number. In order to treat composite r we general-

ize this matter:

Lemma 2.5: Let r be a positive composite integer. By n(r) we denocte the minimum exponent such

Srl(r)—l

that for each s O U, —{1}: isdivisble by r. Then n(r) <rA(r). Infact, n(r) < dA(r) where

d =LCM({(s-L1r) O s O U, ~{1}}).

Proof: Since for any s, GCD(s—-1,r) divides r so must d and therefore d <r. We clam that
(s*-1)(s-1) is a multiple of r: To prove this we first factor s*()-1 as

(SMD-1) (s@DNO4g@DAO4 . . . 47).
Now the left factor is a multiple of r. It is therefore sufficient to show that the right factor is a multiple
of d since that means it can absorb any factor of r in s—1 (by definition of d). But

SO = (MK =1 (mod d) for 0 < k < d-1

since d dividesr and thus

(s DA+ . .- +1) =d.1= 0 (mod d),
asrequired. Thereforen(r) < dA(r) <rA(r).o

Let f and g be two monic polynomials whose coefficients lie in some integral domain R. Let q;,

1<i <deg(f)and B, 1< | < deg(g) denote their roots respectively. Since the polynomial

deg(f) deg(9)
(x—a;—Bj)
i=1 j=1

is symmetric in both the a; and the B; it follows from the fundamental theorem of symmetric functions
[van der Waerden 53, p.79] that its coefficients also lie in R. There is a resultant method which makes

it feasible to actually compute this polynomial:
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Lemma 2.6: Let R be an integra domain and let f and g be monic polynomials in R[x]. Then the
resultant

(—1)%eaT) &e9(0) res (f (x-y),g(y))
is a monic polynomial in R[x] of degree deg(f) deg(g) whose roots are a;+3; where a; (1 <i <

deg(f)) aretheroots of f and 3; (1< j < deg(g)) are the roots of g. (Cf. [Loos 82].) O

Now we mention a slight generalization of Eisenstein’s irreducibility criterion, which can be used

to show the irreducibility of some but not all of our polynomials.

Lemma 2.7 Let f(x) = apgtax+ - +a,x" O Z[x]. If there exists a prime number p and an
exponent i relatively primeton suchthatp’' Jao, p' 0ay ..., P Oan, P Han, pfagthen f
isirreducible over Z.

(Cf. [Kbnigsberger 1895].) O

Notice that the condition GCD(i,n) =1 in the above lemma is aso necessary, because

X4+4x3+8x2+8x +4 = (x?+2x+2)? yields a counterexample if this is not the case.

The next two lemmas constitute the key for our irreducibility proofs. By [K:F] we denote the de-

gree of afield K over a subfield F and by F(64, . .., 6,) we denote the field F extended by the ele-
ments 64, ..., 6,.
Lemma 2.8: Let r be an integer with r = 2, ¢, a primitive r -th root of unity, and let py, ..., p, be

distinct positive primes:

8  [QEs....;")Ql=r"

b) Ifr=3then2r" < [Q@ .piY, ... ,paY):Q] < @) r".

¢ Ifrisoddor2, 4, or6then [Q( p.¥,...,pnY"): Q] = (r) r".

Proof: Part @) is proven in [Besicovitch 40]. Part b) follows immediately from part &) and the fact that

for r = 3 every ¢, is anon-real number of algebraic degree @(r) over Q. Part c) is proven for odd r in
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[Richards 74] which is also a special case of [Caviness 68, Theorem 10, p.50]. If r = 2 part ¢) is actu-
ally the same as part a) because {, = -1. For r = 4 or 6 we combine part b) and the fact that both (4)

and @(6) are 2. O

Notice that part ¢) may not hold for even r > 8 depending on what primes p,, ..., p, ae

chosen. Counterexamples may be constructed using the fact that V2 0 Q(Zg) or V5 0 Q (Z40).

Lemma 2.9: Letr beaninteger = 2, {, a primitive r -th root of unity, and let p;, ..., p, be distinct

prime numbers. Then p,¥" is not an element of the field Q(Z,, p1¥", . . ., pn1¥").

Proof: If r is 2 the fact follows from pat @ of lemma 2.8. By Fy we denote the field
QW .pM, ..., pY) with1<k <n. Now assume that r = 3 and p,¥" O F,_; which implies that F,,
= Fn_1. Applying part b) of lemma 2.8 we get 2r" < [F,,:Q] = [Fn-1:Q] < @(r)r"™%, which is impossi-

ble. O
The following lemma will enable us to give an alternate proof of theorem 2.2:
Lemma 2.10: Let m [ Z,, q being prime, and let r be an integer greater than 1.

a) A necessary and sufficient condition for the existence of an r-th root of m in Z;, (i.e. aresidue b
such that b"™ = m (mod q)) is that r is either relatively prime to q-1 or m@24 =1 (mod q)

whered = GCD(g-1,r). (Cf. [van der Waerden 53, p.118, Exercise 2].)
b)  The polynomia x"—m in Z,[x] has at least one root a such that a O GF(qY) and d dividesr.

Proof: &) Let g be a primitive root of Z, i.e. a generating element of Z,—{1} with multiplication. Then
g, 9% ..., g97'=1 are distinct residues modulo q. If GCD(r,q-1)=1theng’, g%, ..., g@ =1 are
also distinct residues and therefore exactly one element is equal to m. If b is an r-th root of m then by
Lagrange's theorem

b@ D = Mm@ =1 (mod q) where d = GCD(q-1,r).

We finally prove that if m@=29 =1 (mod q) then m = g (mod q) for some integer j = 1. Assume m
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=g' (mod q) and d does not dividei. Then q-1 does not divide i (q—1)yd and therefore
m@4 = gl@1 £ 1 (mod q).
Hence m = g (mod q) with k = 1. Since GCD(r/d,q-1) = 1 there exists a j = k(r/d)™ (mod q-1)

and therefore m = g*¢ = g/ (mod q). (Notice that this proof works aso if we replace Z, by GF(q").)

b) We use induction on r: For r = 1 the statement is trivial. Assume that r > 1. We now distinguish

two cases:

Case 1. There is a factor rq > 1 of r such that an r;-th root m; of m exists in Z;. By part @ we
already know that thisis alwaystrueif r f1q-1. Letr, =r/ 1. Then

(r,=Dr (r,=2r

-1
x'-m = xrlrz—mrl1 = (x"=my)(X +X my+ - - +mr11 ) (mod q).

Applying the induction hypothesis to sz_ml yields the statement for r.

Case 2: r divides g—1. Let o be aroot of X"—-m and let {, be a primitive r -th root of unity both of
which lie in some Galois field. Let h be the minimal polynomial of a over Z; whose constant coeffi-
cient be denoted by ho. Since h(x) divides x"-m = (x—a)(x-¢;a) - - - (x=¢ a), it follows that hy =
{to® with s = deg(h) and t some positive integer. Therefore hf = mS. If d = GCD(s,r) we can find
suitable integers u, v such that us + vr = d. Then m? = m“m" = h§fm" = (h§m")" which implies
that m? possesses an r -th root in Z,. From part & we conclude that m?@™" =1 (mod q) and further
that there exists an r/d-th root of m. If s <r thenr/d > 1 and we can apply case 1. Otherwise x"-m

is already irreducible. O

Case 2 of the above proof yields an interesting side result: Let g be a prime and r an integer
dividing g—1. Then x"-m is irreducible over Z, if m@™¢ # 1 (mod q) for all divisorsd of r. Aswe
showed in part a) of the above lemma this is true for all m of the form g' where g is a primitive root of
Z, and GCD(ir)=1. Hence by picking a random residue m the probability that x"-m does not factor
in Zy[x] is @(ryr. Choosing an r-th degree polynomial randomly only yields a probability of 1

[Rabin 80]. Moreover it follows from theorem 328 in [Hardy and Wright 79, p.267] that



@ryr >0.56109 log r for almost al r. Therefore in searching for irreducible polynomials in Z[x] of
degree r, r adivisor of q-1, we will succeed considerably sooner by choosing the above polynomials

than entirely random ones.

Theorem 2.1: Letr be an integer with r > 2 and let p,, ..., pn be distinct prime numbers. Then

fr;ply o, and fr*;ply o, have integer coefficients and the following irreducibility conditions hold:

a) fr;pP o, is irreducible over the integers and each irreducible factor of fr*;pl, _...p, over the inte-

gers with r = 3 has degree at least 2r".

b) Ifr=246oroddthenf’, . , isirreducible.

Proof: Using lemma 2.6 inductively we see that the coefficients of ffipv L, and f, .,

------

gers and that their degrees are r" and @(r )r" respectively. (Notice that W, has integer coefficients as

mentioned before)) First we prove by induction that p,¥ +:--+ p,¥' is a primitive element of

QY ..., p¥"). We make use of the construction of a primitive element given in [van der Waer-
den 53, p.126]: Let a; = p* +- -+ py4" and ay, ..., .. be the remaining roots of f,., ., .
By the induction hypothesis Q(a;) = Q(p1Y', . .., Pna¥"). The minimal polynomial of aj is of degree

[Q(a1):Q] which is r"™* by lemma 2.8. Therefore frip, .. .p is this minima polynomial. Let
Bi=pnY", Bs ..., B betheroots of x"—p, which is irreducible by Eisenstein’s criterion (lemma 2.7).
Then a,+f3; is a primitive element of
Q(a1B) = Q.. ...p™)

provided that a+f3; # o;+f3; for 1<i < r"tand 1< | <r. For the sake of contradiction assume that
this condition cannot be achieved, namely there exist ani and a j > 1 such that a;—a; = ;—f;. Since
Bj = {fpn™" for some k = 1 it follows that ay—0; = p, ™ (1)) and therefore p, ¥ = (ot3—o; Y(1-7)9)
which is an eement of Q(Z,, p ¥, ..., pna¥"), in contradiction to lemma 2.9. Noticing that ¥, isir-
reducible we can prove in exactly the same way that {, + p,*' + -+ p,¥ is a primitive element of

Q. p1™, ..., pn™"). (However, the o; will be the roots of an irreducible factor of fr,, ., )
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We now conclude that the minimal polynomials of these primitive elements are of the same degree as
the field extensions obtained by adjoining them to the rationals which we know by lemma 2.8, part a)

and c). Therefore fro.. .p and, in the case that r = 2, 4, 6 or an odd integer, fr*;ply__,,pn are these
minimal polynomials and hence must be irreducible. All irreducible factors of f, oD, have degree

at least 2r" because al roots are primitive elements by the argument above and the lower bound of the

corresponding field extension is known from lemma 2.8b). O

Theorem 2.2: Let r be aninteger withr =2 and let py, ..., p, be prime numbers. For any prime

number g the following factorization properties hold for the projected polynomias f., ., (mod q)

and f , (mod g):

a  The maximum degree of any irreducible factor of both polynomials over the residue field modulo

g isa most rA(r). Specia case: If r is a prime number the maximum degreeisr.
b)  If n = 0 then the maximum degree of an irreducible factor of ;.5 (mod q) = ¥, (mod q) isSA(r).

Proof: a) We first show that the length of the longest cycle in any permutation of the Galois group of

frip,....p OF frip ... p isa most max(r,n(r)), where n(r) is as defined in lemma 2.5. Let o be an
automorphism on Q(Z,, p.¥', ..., p.¥"). Assuch it has to map the roots of the polynomials ¥, and
x"—p; into roots of the same polynomials. In particular o((,) = er ° where {, is a primitive r -th root of

unity and s, is relatively primetor. Also o(p¥) = Zrm' p Y, wherethem depend dsoono (1<i <

n). (Notice that {, generates al distinct r -th roots of unity.) We now distinguish two cases:

Case 1. sq = 1. Applying o r timeswe get o®) (p;¥") = p ¥ foral 1 <i < n and therefore o) maps

p, onto itself which is to say that the permutation corresponding to

Py

o has cycles of length at most r .

Case 2: s; > 1. By lemma 2.5 we know that both

-1

s)) =1 (modr) and =0 (mod r).

o
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A short computation shows that then

0(G) =g, and c(p V") = p

foral 1 <i <n. Therefore the cycle lengths of the permutation corresponding to o are at most n(r).

Cases 1 and 2 together prove the statement made initially. If the image polynomials are separable we
are finished by virtue of the lemmas 2.2, 2.3 and 2.5. But we can repeat the above arguments for auto-

morphisms on the splitting field of f,,, ~ , (modq) itself because as we mentioned before the

properties of r -th roots of unity carry over for ground fields of characteristic q, provided that q does not
divide r. Finally let g™ be the highest power of g dividing r. By using the identity introduced in the
proof of lemma 2.1 and by using lemma 2.1 itself we can determine the multiplicities of the roots of

W, (mod q) and x"—p; (mod q) (which lie in some Galois field). Therefore

fr;pl,...,pn = |é‘(r/q'“;pl,...,anﬂ (mOdq)
and
* = Lk~ Cg™a™
fro,...p = %r/qm;pl,...,pnm (mod q).

It follows from the formula for A given at the beginning of this section that A(r/q™) divides A(r). Then
by lemma 2.5 and the aready proven theorem for the case that g does not divide r we conclude that the
maximum degree in this case is r/q™ A(r/Q™) < rA(r). If r isaprime number the above proof together

with the remark made above lemma 2.5 actually gives the degree bound r .

b) If W, (mod q) is separable we know its Galois group to be a subgroup of U, under multiplication
modulo r. (This by lemma 2.2 but one may verify it directly.) The definition of A and lemma 2.3 then
lead to the statement. If W, (mod q) is inseparable g necessarily divides r. Again putting together the

above, lemma 2.1 and the fact that A(r/q™) divides A(r) proves the theorem for this case. O

In specia cases the bound rA(r) is actually too pessimistic: If the image polynomia is separable
or more generally if g does not divide r we have actually proven that the bound is max(r ,n(r)) which

may be considerably smaller than r A(r). One can show that this is generaly true by proving that n(d)
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is not larger than n(r) for any divisor d of r. By lemma 2.10a) we also know that each p; possesses an
r-th root in Z if r is relatively prime to q—1. Then the maximum degree over Z, can be bounded by

A(r) instead. The second case of lemma 2.10a) applies as well.

We now present a second proof of theorem 2 expanding ideas from [Berlekamp 70, p.734] with
the help of lemma 2.10b). However, this method does not introduce the function n and therefore in

view of the preceeding remarks is somewhat weaker.

Alternate Proof of Theorem 2.2: If q divides r we must apply the same reduction as in the last part of

the previous proof. Now assume that g f1r. We will show part b) first:

b) Let a be aroot of an irreducible factor g of W, (mod q). Then g is separable and the remaining
roots are a9, o, ..., a%*". However g™") = 1 (mod r) and also o' =1 which implies a?"” = a.

Therefore deg(g) < A(r).

a) By lemma 2.10 b) and the observation about the subfields of a Galois field we know that at least one
root of each x"—p;, 1 <i < n liesin GF(q"). From part b) above we conclude that all r-th roots of
unity are in a GF(g®) with s < A(r). Therefore all roots of x"—p; and W, lie in GF(q") and hence any
sum of them does also. If f,;ply o, (mod q) or f,*;pf o, (mod q) had an irreducible factor g of de-
gree greater than rs then one of its roots would generate GF(q9©)). But we know that this root lies in

GF(q"). Thereforedeg(g) <rs <rA(r). O

One may use lemma 2.6 in connection with a method to compute cyclotomic polynomials [Knuth

81, Sec.4.6.2, Exercise 32] to actually generate sample polynomials.

Example 2.1: n=0:

fgo(X) = We(x) = x*+1, A(x) = 2. (1)
f120(X) = Wip(x) = x*x*+1, A(12) = 2. @
f;_5;0 (X) = LIJ:|_5(X) = X8—X7+X5—X4+X3—X+1, )\(15) = 4. (3)

n=1:



f 3.0 (X) = X8+3x3+6x*+3x3+9x +9.
f g2 (X) = (x10+4x12-16x11+80x %+2x8+160x”
+128x5-160x°5+28x*—48x3+128x?—16x +1)
(x*6+4x2+16x11-80x *+2x8-160x "
+128x5+160x5+28x*+48x3+128x%+16x +1).
n=2:

f 203(X) = x*-10x%+1.

f 303(X) = x°-15x°%-87x3-125,

f 423(x) = x16-20x12+666x5-3860x *+1.

f523(X) = x®-25x2°-3500% 1°-57500x 1°+21875x 5-3125.

f523(x) = X1 B+Ox17+45x16+126x 15+189x 4+27x 1*~540x 12
—1215x1+1377x1%+15444x%+46899x8+90153x
+133893x5+125388x5+29160x *—32076x 3+26244x2
-8748x+2916.

n=3:

f 2035 = XB-40x5+352x*-960x+576.
f 103 = xB-16x5+88x*+192x%+144.

38

4)

©®)

(6)
)
(8)
9)

(10)

(11)
(12)

Example 2.1 illustrates very well our results: All but polynomial (5) are irreducible over the integers.

Since V2 [0 Q(Zg) we also know that (5) must be composite. Notice here that lemma 2.7 cannot be used

to show the irreducibility of (4), (9), (11) and (12). All the polynomials (1)-(12) factor in any modular

field into polynomials of smaller degrees and make excellent test cases for implementations of the Berle-

kamp-Hensel factorization algorithm. E.g. polynomial (10) factors

mod 7:  (X3+xZ+Ax+3) (x3+2x 245 +5) (X 3+2x2+4X +2)
(3x2+3x +5) (X 3+2x%+2X +3) (X 3+x%+x +2)
mod 17:  (X2+12x +16)(Xx>+16X +7)(x2+9x +13) (x2+9x +9)
(X24+16X +16) (X+12x +9) (X*+5x +7) (X*+16x +1) (X +8)?
mod 103:  (Xx3+9x%+27x+25)(x3+62x>+11x +28)(x >+73x2+94x +28)
(x3+39x2+95x +32) (X 3+92x 2+6x +25) (X 3+43x>+67x +32)
mod 1979: (x2+1823x +1632)(x2+85x +6)(x>+828x +749)
(xZ+1069x +6) (X 2+1069x +749)(x>+1069x +1632)
(x2+1069x +878) (x2+85x +1744) (x>+828x +1744)
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The variation of the maximum degree bound for different primes will be explained in section 2.3.

The Berlekamp-Hensel factorization agorithm contains the following "bottleneck” [Knuth 81,
p.434]: If f is a polynomia of degree k and splits in a chosen residue field into j irreducible factors
then one must perform at least 21 ~-1 trial divisions to prove its irreducibility over the integers in step
(F5) of algorithm 13. In the case of f,;, .. ,, k=r" and j = r"%A(r) and hence at least
27"NN-1-1 steps are executed. Fixing r gives an O(2¥) lower timing bound for these inputs. We will
show below that the lengths of the coefficients are bounded by O (k log log(k)) and thus the worst case
time complexity of the Berlekamp-Hensel algorithm is indeed an exponential function of the degree and
coefficient lengths of its inputs. Since the degrees of all irreducible factors of f,., =, (modq) are
independent of n the modifications of this algorithm suggested in [Musser 78] do not eliminate the

exponential running time behavior.

The cyclotomic polynomias W, with m chosen as in lemma 2.4 are significant because even if
Y, (mod q) is not squarefree then the multiplicities of its factors are prime divisors of m, which are a
small numbers compared to deg(W,) = @(m). The number of irreducible modular factors causes a

super-polynomial running time for the Berlekamp-Hensdl algorithm due to lemma 2.4.

Finally we establish certain bounds for the coefficients of our polynomials when the primes p; are
as small as possible. For a polynomial f, let Of 0, denote the sum of the absolute values of the coeffi-

cients of f .

Theorem 2.3: Letr beaninteger = 2 and let pq, . . ., p, bethefirst n primes.

a log(Of Oy = O(dey(f) log log(deg(f ))) for f =f,., ., andfor f = ff*?Pl» o,
b)  logy(OWm 1) < @m) for m = 1.

Proof: Given f (x) = ag + ax + - - - + a_x*™ + x 0 Z[x], let B denote the maximum of the abso-

lute values of the roots of f. Then, since the coefficients are the elementary symmetric functions of the
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Ck

roots, it follows that & < EB"“ for 0<i < k. Therefore Of 0, < (B+1)X.

a For f = ff?Plv---an the maximum absolute value of the roots is B = p*" +---+ p,¥" and for
f* =fip,....p itisB =1+B. Using the prime number distribution law [Hardy and Wright 79,
Theorem 8, p.10] we know that p; is of order O(i log(i)), so that B and B” are of order O(n?). Since
r is fixed n is of order O(log deg(f)) and O(log deg(f *)). Taking the logarithm of the previous in-

equality for the norm immediately establishes part a).

b) Every root of W,, has absolute value 1 and hence OW,, 01 < (1+1)®™. o



2.3. Computation of Galois Groups

In this section, we will exploit the Chebotarev Density Theorem for the explicit construction of
the Galois groups of univariate integer polynomials. In order to formulate our results, we need a con-
structive definition of the Frobenius element. This requires some fundamental results of the theory of
algebraic integers which we shall present now. The reader can find the corresponding proofs in most

any book on agebraic number theory, e.g. [Narkiewicz 74, Chap.2 and Chap.§].

Let f be a monic irreducible polynomial over Z, such that f is also normal, i.e., any root of f
generates the complete splitting field of f. Let a bearoot of f. If K isan algebraic number field then
all elements, whose minimal polynomials are monic, form a subring of K, the ring of algebraic integers
of K denoted by R¢. Let n = deg(f) and hence [Q(a):Q] = n. There exist algebraic integers by, . . .,
b, O Ry such that {by, ..., by} generates Ry over Z. Wecal {by, ..., b,} anintegral basis of
Ro(- We shall use two notations for the Galois group of Q(a). Ggq( denotes the group of all auto-
morphisms of Q(a), G; the group of al corresponding permutations of roots of f. The trace of an ele-

ment x 0 Q(a) is defined as

TowX) = 2 o),

GDGQ(G)

which is a rationa number. The discriminant of the field Q () is defined by

Dq(ay = det [Toy(0iby)li j=1,.. . n
which is independent of the choice for the integral basis {b;}. By ¥m Rg(q), m O Z, we denote those
algebraic numbers, which when multiplied by m become algebraic integers. Let A; denote the discrim-

inant of f,i.e, &¢ =res(f,f').

Lemma 2.11. If f O Z[x] is monic, normal and irreducible with the root o then A; = m? Dgq), Where
m is the index of the Z-module Z[a] generated by {1, a, ..., a"™%} in Ro(w- Furthermore, Ry (o) O

Ym Z[a] O YA Z[a].

Proof: The equation A; = m? Do(q) is @ specia case of [Narkiewicz 74, Proposition 2.6]. There it is
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proven that for an integral basis {b;} of Ry the set {cy, ..., ¢,} with
i
G = > dikbe (di O2Z), (A)
k=1

under the condition that ¢; O Z[a] and d;; positive and as small as possible, generates Z[a] over Z.

n
Also m = []d; which, by Cramer’s rule applied to (A), yields by O ¥m Z[a]. Since {b;j} forms an
i=1

integral basis, we obtain Ry 0 ¥m Z[a]. O

A prime number p which does not divide A; is called unramified. By f, we mean f taking each
coefficient modulo p; f, O Z,[x]. We shall now focus on the prime ideds in Ry). The following

lemma contains a classical result by E. Kummer.

Lemma 2.12: Let f O Z[x] be monic, norma and irreducible with the root a and let p be an

unramified prime. Furthermore, let f, =f,---f, modulo p with f; monic and (f;), irreducible in

GF(p)[x]-
a) Thedegreesof al f; areequdl, i.e.

degfi= -+ =deg f, =s
b)  The only prime ideals in Ry(q) containing pZ are
P = PRy + fi (0)Ro )
which are also maximal.
Proof: a) Let a;, a0, ..., a, be the roots of f. By lemma 211, there exist polynomias
g 0 ¥m Z[x] such that gi(a) =0a;, 2<i <n. Now let a, be aroot of (fi),. Since p does not
divide m, al other roots of f, can be computed by (gi),(0,). Therefore, the splitting field of f, is

GF(p®) and deg(fi), = s.

b) Assume P [ pZ is a prime ideal in Ry). Since fq(a)--- f,(a) 0 pZ[a] O P, at least one

fi(a) O P. Therefore, P, O P for somei O{1,..., r}.



46

Lety OP. By lemma 2.11 we can write y = g(a) with g(x) O ¥m Z[x]. Letg = m(m™ mod p)g.
We show first that if (f;), divides'g, theny O P;. Then we prove that if (f;), does not divideg, then

P = Rg(q), Which also establishes the maximality of P;, and finally that P; is prime.

First assume that—g =qf; +r with—q, r O Z[x];r,=0. Then (g —qf;)(a) = pr(a) O Ry with

r(x) 0 ¥m Z[x]. We have to show that r (a) 0 Rg(q). Let pr(ay), ..., pr(ay) be the conjugates of

k
pr(a). Then [] (x-pr(oy)) O Z[x] and since p does not divide m, we conclude that also
i=1

|'k| (x-r (o)) O Z[x], i.e, r(a) O Ry@). Therefore
i=1

y =g(a) =q(a)fi(a) + pr(a) O Pi.
Now assume that (f;), does not divide~g,. Then, since (f;), is irreducible, the resultant

R =reg(fi7g) # 0 mod p, but R O P {g(a) O P) and therefore P = Ry (q).

We proceed to show that 1 ZIP;. Assume it were, i.e., there exist y; = g1(a), Y2 = 92(0) 0 Rg(q) Such

that py, + fi (a)y, = 1. Then (f;),€92), =1 mod f, which isimpossible since (f;), divides f,.

Finally, we establish the primality of P;. Let y; = g1(a), Y2 = g2(a) 0 Ry St. yay2 O Pi. Then
(9192)(a) O P; and therefore (f;), divides (g192),. Since (f;), isirreducible, (f;), divides either one of

the polynomials{g1), ortg.),, say the first one. From the above it follows then that y; O P;. O

Lemma 2.12 actualy shows that the fields Ry mod P, GF(p)[x] mod (f;),, and GF(p®) are
isomorphic. From lemma 2.2 and the remarks on Galois fields in section 2.1 we deduce that the Galois
group Gfp is a cyclic subgroup of G¢ with one distinguished generator, isomorphic to the Frobenius
automorphism B — BP for al B O GF(p®). Let f be a monic integer polynomial of degreen, not
necessarily irreducible, whose splitting field is Q(a). Assume further that f, is squarefree. We now
identify the Frobenius automorphism under the permutations of G;. Let

f(x) = (X=g1(0))(x=g(a)) - - (x=g,(a)) mod f (o) (21)
with g¢ 00 ¥Ym Z[a], and let
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hei = (9k)p mod (fi)p, 1<k <n.

If aj isaroot of (f;),, then the elements hy; (a;) are all roots of f,. Let

fyf, =f modp
be a factorization of f into irreducibles with deg(f;) =s. Let hi i (o) be a root of (fj)p and let h;
denote hy ;' mod (fi)p. Notice that if t is a power of p the index k® is uniquely determined because

~f,, does not possess multiple roots. Then the permutation

0 o0 O s O
D(l!k{p)! L lk](_p )D e D‘rlkr(p)! ot lkr(p )D (2'2)

is the image of the Frobenius automorphism in G; using the root enumeration of (2.1).

At this point we shall be more precise in what we mean by root enumeration. Until now there
was no need in explicitly stating what algebraic structure Q (a) had. However, in the previous paragraph
it is important to set Q(a) to Q[xWf (x)) and a to the projection of x in that domain. We then can
make the factorization (2.1) canonical by imposing the condition deg(gx) < n=deg(f ). In order to find

a proper embedding of G; into G; we now can use any irreducible factor f; of f mod p. The splitting

field of f, is then aa[x]/(f (x)) %(p,fi (x)) and the natural projection maps canonical roots of f onto
unique roots of f,, since the later polynomial is squarefree. Notice that our permutation (2.2) not only

depends on f; but also on the initial resolvent f .

We call the image of the permutation (2.2) in Gg () the Frobenius element of P; in Q(a) and

0

O
denote it by D% [0 The Frobenius element generates exactly those automorphisms in Q (a) which
O 0O

map elements of P; into P;, the so-called decomposition group of P; in Q(a). Given f and the factori-
zation (2.1) we have described an algorithm of how to identify Frobenius elements by permutations in

Gf.

The Frobenius element depends on the prime idea P;. For a given automorphism o [ Ggq) we
define the conjugate class of 0, Co = {toti gt Go(a)}- Notice that the corresponding permuta-

tions of a conjugate class possess the same cycle structure. The group Gg() can be partitioned into
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finitely many such classes.

Lemma 2.13.: The set

0 0
DS(MDDi:L...,r
oo PO

forms a complete conjugate class of Gg(q), denoted by Fqoy(p). (Cf. [Narkiewicz 74, Proposition 7.12

OoOod

and Theorem 4.2].) O

The question arises whether any conjugate class of Gg(y) can be redized by Fq(p), letting p
range over al unramified prime numbers for f. The first positive answer goes back to L. Dirichlet for
the specia case of f being the m-th cyclotomic polynomia W,,. This case is equivalent to the problem
whether there are infinitely many primes in an arithmetic progression. In 1896, G. Frobenius showed
that certain unions of conjugate classes will always be realized by Frobenius elements, and in 1926 N.

Chebotarev proved his classical theorem.

Theorem 2.4 (Chebotarev Density Theorem):

Let C be a conjugate class of G; and let card(S) denote the cardinality of the set S. If

Nc(x) =card{ p O p prime, p <X st. FoP)=C }

then
_ Dc:ard(C) 0 x
") Heard@n " Toat)’

where lim g(x) = 0. (Cf. [Chebotarev 26] or [Narkiewicz 74, Theorem 7.10].) O

X —o00

The nature of the error term g(x) in theorem 2.4 has been quite successfully analyzed in the past

decade.

Theorem 2.5. Let Nc(X) be as in theorem 2.4.

a)  There exist absolute constant b, and b, such that N¢ %leQ(u))bzgz 1. (Cf. [Lagarias et al. 79].)
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b)  Assume that the Generalized Riemann Hypothesis (GRH) holds. Then Ne 70 logDo)? 0 = 1.

(Cf. [Lagarias and Odlyzko 77] and [Oesterle 79].) O

Theorem 2.5 and lemma 2.13 gives us a handle how to compute the complete Galois group of f .
After factoring f according to (2.1), we calculate all Frobenius elements for the prime ideals P4, . . .,
P overpZ,p unramified and p less then the bounds in theorem 2.5, by the procedure discussed above.
We will eventualy find n distinct permutations constituting G;. Until now we always assumed f , a
resolvent for Q(a), to be irreducible. We shall now show how to establish this fact in non-deterministic
polynomial time in n, the degree of f, and log(Of 0). Though this result has been superseded by the

results in [Cantor 81] and [Lenstra et a. 82], we believe that its proof reveals valuable new insight.
Algorithm 2.1: [Succinct Certificates for normal irreducible polynomials]

[For a given monic polynomial f[x] O Z[x] of degree n this agorithm verifies f to be norma and

irreducible.]

(F) Guess afactorization
(x=0) (x=go(@)) - (x=gn(a)) = f (x) mod f (ax)
with g; (o) O ¥m Z[a], m? a factor of A¢, deg(g;) < n, and the numerators of the coefficients of
g; absolutely smaller than the respective coefficient bound [Weinberger and Rothschild 76, Lemma

8.3).

(N) For al i with2<i <n verify that g®(a) mod f (a) O {a, g,(@) , ..., g,(a)}, for 2<k <n,

and that

g™(a) = a mod f (a)
where g™ denotes g; (g - - - (gi)) with n—1 substitutions.

(P) Guess anumber c <n and integers p,, 1 < A < ¢, not larger than blAbe, b, and b, from theorem

2.5a) such that the following conditions are verifiable.
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We show that all p, are prime numbers. For this step we use the prime certificates by [Pratt 75].

We also prove that all f mod p, are squarefree.
For al p, we perform the following computation:

We factor f into irreducibles mod p,, i.e.

fo---f =f mod p;.
The factors f; can be tested for irreducibility by the distinct degree factorization [Knuth 81,
Sec.4.6.2]. The proof of lemma 2.12 shows that al f; have the same degree s, = n/,. For each
fi we now construct the permutation o, ; corresponding to the Frobenius element determined by
f; according to the algorithm following the proof of lemma 2.12. Notice that the irreducible fac-
tor of f belonging to f; is not needed in this construction. In order to compute hP; mod (fi)p,

we use hinary exponentiation [Knuth 81, Sec.4.6.3].
(C) We veify that

cad{{ori O1l<A<c,1l<i<sr})=n O

Theorem 2.6: Algorithm 2.1 certifies f to be normal and irreducible in non-deterministic polynomial

time in deg(f ) and log(Of 0).

Proof: It is easily established that algorithm 2.1 works in non-deterministic polynomia time. If the
input polynomial f isindeed irreducible and normal we can find the described certificate by lemma 2.13
and theorem 2.5. The condition in step (N) is then satisfied because there exists a root a which can be

mapped to any g; (o) by some automorphism on Q (o), whose order is divisible by n.

Now let us assume that f is not irreducible. Steps (F) and (N) guarantee that f is at least normal, i.e.
any root generates the complete splitting field of f. To prove this we need to express every root g; (o)

as a polynomial of g; (a), e.g.

g; (o) = g; (G V)(gi (@)).
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Therefore, f =f,---f, with f4, ..., f; irreducible and having the same splitting field. As we pro-
cess different primes p; our algorithm computes the Frobenius elements of G; using the distinct resol-
vents f4, ..., fi. For each resolvent f; we get at most the complete Galois group of G; using the
root enumeration of step (F) w.r.t. that resolvent. Hence, for each f; we get at most nt -1 permutations
not equal to the identity. Therefore, for all resolvents we can get at most n—t distinct permutations
unequal to the identity. Since t > 1 our algorithm can produce at most n—1 distinct permutations in

step (P) and the test in step (C) will dways fail. O

Once we can certify normal polynomials irreducible it is an easy generaization to certify a poly-
nomial f of degreen with small Galois group irreducible. Here small shall mean of polynomial cardi-
nality in~n. We shall prove f irreducible by presenting its Galois group. First we guess a normal
irreducible polynomial f whose splitting field contains that of f. In order to show that log(Of O) can
be chosen polynomial imn and log((Jf 00) we consider the construction of a primitive element for the
splitting field of f [van der Waerden 53, p.126]. If ay, ..., a, are the roots of f then we can select

integers by, . .., b, sufficiently small such that the roots of f are of the form o + bzaiz + o+
b, . We now factor f according to (2.1) and compute Frobenius elements as described above. We

actually obtain the permutations corresponding to the automorphisms restricted to the smaller splitting

field. If atransitive set of permutations is obtained our input polynomial f is certified to be irreducible.

In view of theorem 2.5b) one may consider to use our algorithm deterministically. We require the
computation of a resolvent f as well as the factorization (2.1). For smal Galois groups both tasks can
be achieved in polynomial time using the algorithms in [Trager 76] in connection with the polynomial
time factorization algorithm for univariate integer polynomials. However, once we have a resolvent f
we can obtain its Galois group by first factoring

f(x) = (x-0)(x=gz(a)) -+ * (X=gn(c)) mod f (ar)
and then calculating the permutation o; corresponding to the automorphism a - g; (a) by the substitu-

tions
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Ok (g (@) mod f (a) = ge(a), 2< k <n
implying that g; (k) = k. This approach avoids the necessity for the GRH though the agorithm using

the identification of Frobenius elements may be more efficient, in practice.

It is interesting to ask how quickly one can obtain a generating set for the Galois group G; of an

arbitrary integer polynomial f. One can easily show that every finite group G can be generated by at

most %ogz(card(G))Selemmts which implies that a small generating set S for G; exists. Once such a

set is known various questions about the group such as solvability can be answered in time polynomial
in card(S). The open problem 4 in chapter 4 asks to compute S in time polynomia in deg(f) and

log(Of 0).

We conclude this section with an example for which the calculations were carried out on

[Macsyma 77].
Example 2.2:
f(x)=xb+3x5+6x*+3x3+9x +0.
Then
f (x) = (x-a) (x=-g2(a)) (x-g3(a)) (x-g4(@)) (x-gs(a)) (x-ge(a))
with

go(0) = % (a® + 2a* + 40 + 6),

gs(@) = % (4a® + 60* + 1203 — 1202 + 90 + 27),

9.(0) = —3 (o - 1207 + 9,

gs(a) = —% (a® + 3a* + 60 + 60 + 9u + 18),

ge(Q) = —% (50° + 90* + 180° — 60% + 9 + 45).

fp EflfzfngdSWith

fi=x2+2 fo,=x?-x+1 and fz=x2-x +2
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hyi(ag) = ay, hl@yl(al) ==y = ha(ay);
h21(01) = 2011 = 2, hye 1(01) = = 2011 = 2 = hga(a);
hgi(0g) =-a; -2, h4(5)’1(0(]) =0y = 2= hsy(ay).

0
SMD: (1 3)(2 6) (3 4).
o P: o

h12(a2) = dg, hye (A2) = = 0z + 1 = hpa(ay);
h32(02) = = 20, = 1, hye 5(05) = 2012 + 2 = hyp(a);

hs2(02) = 0z + 2, hye 5(02) = = 0z = 2 = hg(05).

O
REQ -1 53 26 o).
o P2 0O

h13(as) = dg, hye 5(a3) = = a3 + 1 = hs3(ag);
h23(03) = = 203 + 1, hye 5(03) = 203 = 1 = hys(ay);

h3s(03) = 203 + 2, hye 4(03) = —03 + 1 = hsg(ag).

0
SMD: (1 5) (2 4) (3 6).
o Ps o

fo =11 f,mod 7 with
fi=x®+x2-2x-3 and fo,=x>+2x?-x - 3.
hyi(og) = ay, h1<n,1(a1) =203 = 2 = hyg(0y),
h o (0) = = 30q + 1 = hg1(a);
ha1(a) = 204, hye,(01) = = 30y + 3 = hs,(ay),

Ngo 1(01) = 0g + 2 = hga(ay).

REOT_ 1 4625 3,
o Ps O

h12(02) = 0z, hye ,(02) = 20 + 3 = hg(a2),
o o(02) = = 302 + 2 = hyp(ay);
h22(02) = =302, hyn ,(02) = a2 = 2 = hgp(ay),

N4 ,(02) = 205 + 1 = hs(a).

0
R@RE_ 1 5 4 35
0Ps O

p=31:



f = (x-14) (x-12) (x-9) (x—1) (x+2) (x+6) mod 31.

O
§¥@mm®®@©@
O Fe 0O

The Galois group of f has 3 conjugate classes,

Ci={(H )@ (O ®)},
C={13(26B4H)1L2YyB H( 6),(1 52 4 (3 6)}
Cs={(1 46 (253,16 423 5)

The group is the symmetric group on 3 elements.
Note added on November 17, 1997: In Step (N) the computation of g™ may cause exponential

growth in the coefficient length. However, if f is normal, each g;®) must be found among the roots of

f.



3. Paolynomial Time Reductions from Multivariate to
Univariate Integer Polynomial Factorization

3.1. Introduction

Both the classical Kronecker algorithm (algorithm 1.5) and the modern multivariate Hensel algo-
rithm of section 1.4 solve the problem of factoring multivariate polynomials with integer coefficients by
reduction to factorization of univariate polynomials and reconstruction of the multivariate factors from
the univariate ones. However, as we will see in section 3.2, the running time of both methods suffers
from the fact that, in rare cases, an exponential number of factor candidates obtained from the univariate
factorization may have to be tested to determine the true factors. In this chapter we will present a new
algorithm which does not require exponential time in its worst case. But before we can state our result
precisely, we need to clarify what we mean by input size. We will assume that our input polynomials
are densely encoded, that is al coefficients including zeros are listed. Hence, the size of a polynomial
with v variables, given that the absolutely largest coefficient has | digits and the highest degree of any

varigble is n, is of order O(InY).

Let v, the number of variables, be a fixed integer. We will show that the problem of determining
all irreducible factors of v-variate polynomials is polynomial time Turing-reducible to completely factor-
ing univariate polynomials. Recently, A. Lenstra, H. Lenstra, and L. Lovasz [Lenstra et al. 82] have
shown that factoring univariate polynomials is achievable in polynomial time. Their algorithm excludes
the full factorization of a possible common integer content, which all coefficients of the polynomial to
be factored might have. Therefore, our result implies the following theorem. Factoring an integer poly-
nomial with a fixed number of variables into irreducibles, except for the constant factors, can be accom-

plished in time polynomial in the total degree and the size of its coefficients.

In [Kaltofen 82] we have already established a polynomia time reduction from multivariate to

bivariate polynomial factorization. However, our new algorithm is less complex, though still exponen-

-56 -
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tia in the number of variables. On the other hand, the results in [Kaltofen 82] imply a polynomial time
reduction for irreducibility testing, which our new algorithm does not provide. Therefore, we will

include this older irreducibility test in section 3.5.

If one does not fix the number of variables, our definition of input size may not be appropriate
since the input size then grows exponentially with the number of variables. In this case, sparsity con-
cepts are definitely needed (cf. [Zippel 79]), but little is known about even the space complexity under

these conditions. In section 4 open problem 1 corresponds to this question.



3.2. Exponential Cases for the Kronecker and Hensel Algorithms

We only consider bivariate polynomials though the constructions easily generalize. First, we dis-
cuss some exponential cases for the Kronecker algorithm 1.5. This algorithm transforms the bivariate
polynomia f (z,x) into f (y) = f (y%,y), d = max(deg, (f ),deg, (f ))+1. It requires time exponential in
the degree of f in the case where f isirreducible, but f splits into linear factors. It is easy to construct

such f 's, as we do below, by working backward from f (y).

Example 3.1

T (y) = (y-Dy-3)(y-2y-Dy+1)(y+2)(y +3)(y +4)
=y® - 30y® + 273y* - 820y? + 576.

Set d=3: f4(z,x) = z2x?>-30z%+273xz-820x>+576 which is irreducible. In step (K4), agorithm 1.4

needs 127 trial combinations to determine irreducibility.
Set d=5: f,(z,x) = x3z2—-30xz+273x*-820x?+576 which is irreducible because deg, (f )=1.

This condition can always be enforced by choosing d large enough and yields exponential cases of arbi-

trarily high degree.

Example 3.2. Letn = (rkl pi)-2 with p; the i -th prime number. Let f 5(z,x) = X" — z2, which is irredu-
=2

cible by lemma 2.7, since n is odd. We obtain f 5(y) = y"(1-y"*?) where 1-y"*? factors into 2!

cyclotomic polynomials. Since n is of order O (2 '%9K)) the number of possible factor candidates cannot

be polynomia in n.

The abundance of univariate factors disappears as soon as we choose a dightly different evalua

tion. For example,

f 1(3x®x) = 9x®-270x5+819x*-820x2+576

and

f 5(2x%x) = 2x8-60x8+273x*-820x°+576

-0 -



59

are both irreducible. We have used such evaluations in [Kaltofen 82] and, as we will see by theorem
3.3, it is highly probable that substituting 2x% or 3x¢ for z in f (z,x) already preserves the irreducibility
of f. However, to prove that a multiplier of polynomial length definitely works is a much harder task,

and we have only succeeded in showing this for the multivariate to bivariate reduction.

To construct an irreducible polynomial f (y4, . . .,Yy,X) such that f (O, ...,0x) has al linear fac-
tors is quite easy. The following example demonstrates the construction of a polynomial which has all

linear factors for various evaluation points.

Example 3.3. Let f (y,x) have degy(f) < 3 and

f(-1,x) = (x=2)(x—1)(x+1)(x+2) = x*-5x%+4,
f (0,X) = (X—Dx(X+1)(x+2) = x*+2x3-x2-2x,
f (1x) = (x=2)(x—1)x (x+1) = x*-2x3-x2+2x,
and f (2,x) = x*+2. By interpolation f (y,x) O Q[y,x] is determined uniquely, namely

Fyx) = x4+ (2y°-3y>-3y+2)x% + (2 yP-2y+ L y-1)¢?
+ (Y243 2K - 3y 2y,
We can also remove the rational denominators, namely
Ty =6 ()
= x* + (12y3-18y?-18y +12)x> + (30y3-72y2+42y -36)x>
+ (—432y3+648y2+648y —432)x — 432y3+2592y2-2160y.
Since f (2,x) isirreducible, so is'f (y,x), but

“f (-1,x) = (x=12)(x—6)(x+6)(x +12),
“f (0,x) = (Xx—-6)x (x+6)(x+12),
“f (1,x) = (x=12)(x—6)X (X +6).
The above construction obviously generalizes for arbitrarily high degrees but the number of

unlucky evaluation points (i.e. those integers b for which f (b,x) splitsinto linear factors) is bounded by

the degree in y. The Hilbert Irreducibility Theorem states that for any irreducible polynomial
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f (y,x) O Z[y,x] there exists an integer b such that f (b,x) remains irreducible. It can be shown that
the ratio of unlucky points to the size of the interval, from which the points are taken, tends to zero as
the size of the interval goes to infinity (theorem 1.1). The reader is referred to Appendix B for a
bibliography on the Hilbert Irreducibility Theorem. Unfortunately, we do not understand the distribution

of unlucky evaluation points of small size. In this connection, we state open problem 2 in section 4.



3.3 The Reduction Algorithm

In this section, we shall discuss the proposed algorithm in detail. This algorithm uses ideas from

an agorithm for univariate factorization proposed by [Zassenhaus 81]. After the algorithm we give a

correctness proof using the theory of subresultants. Its complexity analysis is deferred to the next sec-

tion.

We wish to emphasize that the following version can be improved significantly by performing

various steps at once. However, we are most interested in the theoretical result, namely that the algo-

rithm works in polynomia time, and we have not yet investigated the conditions under which a highly

tuned version of this algorithm might out-perform the Hensel algorithm in practice. (Cf. open problem 2

in section 4.)
Algorithm 3.1:
[Given "f(zq,...,2z,X)0Z[z4,...,%,X], this agorithm constructs one irreducible factor
~9(zy, .- -,zX) O Z[zy, ...,z x] Of T ]
(1) [Precondition f :]
IF cont(f ) or pp(f ) is univariate THEN factor it by a univariate factorization algorithm and return
one irreducible factor, ELSE
(11) Determine a primitive squarefree factor-s(z,, . . .,z,,X) of f by a multivariate version of ago-
rithm 1.2 or Wang and Trager’s algorithm as described in section 1.4.
(12) [Makes monicinx:] n « degds); c(zy, .. .,%) < ldcf(s);
- ] X a
S(Zg, -+ -, X) « C(2Zq, - -.,2) Tslzy,...,2,—1
@ ) - oz s ooy
[Notice that s is monic in x, an irreducible factor of which can be back-transformed to an irredu-
cible factor of s (see step (E2)).]
(13) [Find good integral evaluation points wy, . . ., W, such that s(wy, . .., W, X) is squarefree.]

_ O
FORALL integersw; with Ow; O < S@ deg,(s)g 1<i <v, DO
O g

-6l -
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Test whether s(wq, . . . ,W,,X) is squarefree. If so, exit loop.

f(Yy - o WoX) « S(Y1tWq, . .., Yy P X).

(F) [Factor f(O,...,0x):]
Compute an irreducible factor t(x) of f (0, ...,0x); m « deg(t).
[Let B be aroot of t. In the following, we will perform computations in Q (B), whose elements are

represented as polynomials in Q[] modulo t.]

(N) [Newton iteration. For purposes of later analysis, we emulate the Newton iteration by a Hensel
lifting algorithm. We adopt the following vector notation: k= (kq, ... ,k,), 0= (O, ... ,0),375
vy ke k= (Kgzky ..., kotk,'), ke Kif, for all i, ki < k', K] = kot - - - +ky, if k2.0
and —e otherwise.

Let J betheidea in Q(B)[ys, - . -, W] generated by {y4, ..., W}. Thegoal isto construct

Oy - W)=Y D%: aAp)

i=0 i

forj = 1,2, - - - such that

f Y- Y0 (Y, - .o, Y)) =0mod 317
Rewrite f (y1, . .., Yu.X) = 3 ofx) ¥

[Since f is monic and deg, (f ) = n, deg(fx) <n for Okg = 1]

(N1) [Initiaize for Hensel lifting:]

g¢x) « x—B; héx) — fxygéx) O QP)Ix].
(N2) [Bound for approximation:]

d «~ degy, .. y(f); K ~ d(2n-1).

FORALL k=0with 1 < k1 < K DO steps (N3) and (N4). [The kmust be generated in an order

such that [JkJ is non-decreasing.]

(N3) IF 0Ok] = 1 THEN bgx) — f{x) ELSE
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(N4) [Solve gx)hkx) + héx)gkx) = bix) with gx), hx) 0 Q(B)[x], deg(ap = O, deg(n) = n-2]

A GX) — DKB)/ f(B)
hix)  Chx)-h@)kx) o g6).

(NB) oy « B+ 2ok ad

FORi « 0,...,n-1D0oax® — a,' mod J**.

(L) [Find minimal polynomial for o :]

FORI| « m,...,n-1 DO

Try to solve the eguation

-1 )
oD+ Tulyy, ... w)a O =0 mod Ik
i=0
with undetermined coefficients for ui(ys ..., W) O Qlyy ..., Wi
v+d O v+K O

(3.2

such that

degy ... y(U) < d. [There are I d O unknowns in mp K O linear equations. (Cf.

lemma 3.4.)]

If there exists a solution, set

glyn ..., Y X) « x' + gui (Y1, . . .,Y)X' and GOTO (E).
[We will prove that g is an irreducible factor of f .]
g « f. [Inthiscase f isirreducible]
(E) [Recover non-monic factor-g(zy, . . . ,2,,X)’]

(ED) g(zq,...,2,X) « g(z1=Wq, . . ., 2= Wy ,X).

(E2)=g(z1, ... 2 X) « P(Q(z1, - - .12 C(21, - -, 2)X)). O

We shall now prove the correctness of the above algorithm. Obvioudly, if g(y4, . .

- Y X)



divides f then g(z4, ..., z, X) divides s(zy,..., z, X). The proof for the correctness of the
transformations in the steps (12) and (E2) is quite easy and can be found in [Knuth 81, p.438, Exercise

18]. We first must show that step (13) will yield good evaluation points.

Lemma 3.1: Lets(zy, ...,z,x) 0Z[zq,...,2,X] be monic of degree n in x and sgquarefree. Then
L . D(2n -1) .

there exist integers w; with Ow; 0 < D— degz(s)El 1<i <v, such that s(wyq, ... ,W,X) is

squarefree in Z[x].

Proof: Let n = degy(s), di =deg,(s) for 1<i <v. Sinces is squarefree, its discriminant

Az, ... ,2) = res(s,090x) # 0
[van der Waerden 53, p.86]. Since A is the given resultant, it follows that deg, (8) < (2n-1)d; for

1<i <v. If wewrite A(zy, . ..,z) as apolynomid in Z[z,, .. .,z,] with coefficients in Z[z4], not

all these coefficients can be zero. Let u(z,) be one particular non-vanishing coefficient. Since deg(u)
. : . Hon-1) U
< (2n-1)d; there exists an integer w; with Ow; ;0 < DT d.:0 and u(wq) #0. Therefore
O O
AW1,Z5, . . .,2,) Z 0 and the lemma now follows by induction on the number of variables. O

Next, we must demonstrate that the steps (N3) and (N4) actually produce a root o;(yy, . . . , ).
Step (N1) sets up the basis for the Hensel lifting of the equation
g¢x) hgx) = f(yy, ..., y,x) mod J.
If we have computed the sequences of polynomials {g{x)} and {h{x)}, O< k1 < O] < 0k1-1, then in
step (N4) we want to compute gg¢x) and hgx) O Q(B)[x] such that

= 930 ) 39= ST

[3R0 HES o ko
which implies that hyand ggmust satisfy

gx)hkx) + héx)gix) = bgx). (32
Note that gff) = 0 and h¢f) = f o(B). The second equation follows from the fact that if 3, B, . . ., Bn

are dl roots of f ¢x) then h¢x) = |ﬂ|(x—[3i) and h¢p) = |£|([3—Bi) = f o(B). Therefore the unique solution
i=2 i=2
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of (3.2) with deg(g) = 0 is ax = b¢BYf o(B). If we now solve (3.2) for h¢x) we get

hix) = (bkx)—h¢x)akx)Ygéx)
which is a polynomial in x since b{p) — h¢B)ax= 0, and is of degree at most n—2. As we will see in
section 3.4, the solution for (3.2) with deg(g) < deg(g) and deg(h) < deg(hg is uniquely determined by a
linear system in n unknowns, whose coefficient matrix is the resultant of ggx) and h¢x), which in our

case happens to be equal to f ().
We now know that

f(ylv e 1yV1aK(y11 s =yV)) = 0 mod ‘JK+1
because

E?(' 2 @Agg 2 hJ(X).%E f(yn ... ,Y,x) mod J¥*,
O

0 O<ki=K DHED}QSK

The polynomia g(y4, . . . ,Yv,X) is constructed in step (L) such that

gy - - WO Ve - - - W) =0 mod J¥*E
We will now prove that g must divide f. Our argument will show that if g does not divide f, then
(3.1) has a solution for | < deg(g). One main condition for this to be true is that our approximation is

of order K, as determined in step (N2). First, we must prove a simple lemma.

Lemma 3.22 Let g(yy -..,W.X) divide f(yy, ... ,V,X) in Z[yq, ..., W,X] and assume that

g(0,...,0,B)=0inQ(B). Then

90 - Wl (Y1, - -, W)) =0mod I
forall j = 1 with aj(ys, . . .,Yy) a computed in steps (N3)-(N5).
Proof: The reason is simply that since X — o (ys, . . . ,Yy) divides f (yy, . . . ,yy,X) mod J* andBisa
root of single multiplicity x — aj(ys, . . . ,Yy) must also divide g(y, . . . ,Yy,X) mod JI*L This argu-
ment can be made formal but we shall provide a more indirect proof. Let p be the first index such that

gL - W Op (YL - - -, W) # 0 mod JP*L
Because p is the first index
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g(yl! L lyVlap(yL e vyv)) = z Yl&mOd Jp+l
ka=p
with at least one y# 0. Let h be the cofactor of g, i.e. f =g h. Since B is a single root,

r =h(,...,0B) #0. Therefore

g(ylv e 1yV1ap(ylv s 1yV)) h(y11 e !yV!ap(yL e vyv))

= 5 3% 0mod JP*!
k1=p

in contradiction to ap(ys, - . . ,Yv) being the p-th approximation of aroot of f. O
Theorem 3.1: If step (L) finds a solution for (3.1) then g(y1, - . . , W .X) derived from it is irreducible
and divides f (y4, . . . ,Wv,X). Hence, the first solution for (3.1), if any, must be integral.
Proof: Let

D(yl! e lyVlX) = GCD(f (y11 e !yV!X)1 g(yli e !yV!X))
and let | =degy(g), j =deg(D). By §(y1 - - ., Y.X) we denote the j-th subresultant of f and g as
polynomials in x with coefficients in Z[y,, . ..,y] (cf. [Brown, Traub 71, Section 5]). There exist
polynomials Uj (y1, . . ., W.X), Vi(Y1, - . ., W.X) O Z[yq, . .. ,\.X] such that U;f +V;g =§. There-
fore, D divides § and since D is monic Idcf,(§) D =§. Since Idcf,(S) is a subdeterminant of the

resultant of f and g w.r.t. x, its total degreeinys, . ..,y, can be bounded by

deg, ., (Idch(S)) < (1+n)d < K.

However,
(Ujf + V]g)(ylv s !yV!uK(yl! s :yv))
= |dCfX($) D(yll L ryVIGK(ylv L !yV)) = 0 mOd JK+1
and therefore D@O,...,0pB)=0. By lemma 32 it follows that
D1 -+ WO (Y1 - - - W) =0mod J¥*1 and from the minimality of | in (3.1), we conclude that g

isirreducible and g = D which divides f. O

This concludes the correctness proof for our algorithm. In the case that v = 1 the bound K of
step (N2) can be improved to [d(2n-1ymU (cf. [Lenstra et al. 82, Proposition 2.7]). However, this

improvement seems not to carry over for the general case, the reason being that Q(y, . .., Yy) isnhot a



Euclidean domain. An example executed on [Macsyma 77] can be found in Appendix A.
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3.4 Complexity Analysis of the Reduction Algorithm

The goal of this section is to prove that algorithm 3.1 takes, for a fixed number of variables v,
polynomially many steps in deg(f) log((Jf ), provided that we can factor fyin time polynomia in
deg(f g log(Of ¢1). We wish to emphasize again that our main interest is in a polynomial time upper
bound, but that we are not concerned about the best we could do by either fine tuning our algorithm or
by determining sharper upper bounds. We aso do not consider the influence of the underlying data
structure used to represent the multivariate polynomials on our algorithm performance. In the analysis
below we formulate the asymptotic complexity as a function in the total degree rather than the max-
imum degree of individua variables. Since the number of variables is fixed both notions for the degree

are codominant.

Sep (1): To obtain a squarefree factors of f, we make use of squarefree decomposition agorithms all
of which employ polynomial GCD computations. All of the GCD agorithms such as the primitive
remainder, subresultant or the modular algorithm [Brown 71], or the EZGCD algorithm [Moses and Yun
76], take for a fixed number of variables polynomially many steps in the maximum degree of the input
polynomials and the size of their coefficients. That this time bound extends to the squarefree factoriza-
tion process is shown, e.g., in [Yun 77]. Of course, deg(s) < deg(f ) in step (11), and a good bound for
0s O can be determined by the following lemma.

Lemma 33: Let gs,...,0n OC[Xy, ... %], let f =g1-- gy and let n; = degx](f), n = i”j-

j=1

Then

m Dnj+1|j/2
Mogos<s2"of o [EB—=—U <e"of O
i=1 i=1 2 0

with e < V6 H2.44949. (Cf. [Gel’fond 60, pp.135-139].) O

<

O

Therefore Os < eV Tf 1. That the steps (12) and (13) take polynomial time is quite easily

established. As a matter of fact, some of the GCD algorithms used for the squarefree decomposition of

- 69 -
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“f in step (11) aready provide the points wy, . .. ,w, of step (13) as a by-product. Step (12) substan-
tially, but yet polynomially, increases deg(s) and log(Os ). (E.g.
deg(s) < n deg(s) and OsO < (deg(s)+1)Y "OsO";
cf. lemma 3.4 and lemma 3.7.) Step (13) again may increase (f O but Taylor's formula of section 1.4,
p.21, provides a quick polynomial size estimate. (E.g.
0f O < v dey(s)" deg(s)*90s 1;
cf. lemma 3.1 and lemma 3.4.) We will not present the explicit polynomial time bound for step (I)

because the following bounds for the steps (F), (N) and (L) clearly dominate the worst case complexity

of step (I).

Sep (F): As A. Lenstra, H. Lenstra and L. Lovasz have recently shown, t(x) can be computed in at

most O rHleg(f 312 + deg(f og(T1f 571,)° £ steps [Lenstra et dl. 82].

Sep (N): We first count the number of additions, subtractions and multiplications over Q(B) (which we
shall call ASM ops) needed for this step. Then we bound the absolute value of all elements of Q(B)
which appear as intermediate results. Finally, we bound the size of all computed rational numerators
and denominators, and then we count the number of rational operations. The most difficult task will be

to compute size bounds.

We can ignore the time it takes to retrieve the polynomials f{x) as well as the execution time for

step (N1). In order to count the number of times steps (N3) and (N4) are performed we need a lemma.

Lemma 3.4: There exist E{’JJ_ Ilg< (j+1)V7* different v-dimensional integer vectors kwith k> Oand

k1 =j. The number of vectors with (k1< j is E{';’J B< (j+1)".

Proof: One chooses from v components j times allowing repetition. For k] < j one introduces an

additional dummy component. O
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Therefore, steps (N3) and (N4) are executed less than (K+1)V times. Step (N3) takes O(KVn)
ASM opsin Q(B). Clearly this bound dominates the complexity of step (N4). Hence o, can be calcu-

lated in O(K?'n) ASM ops.

We now proceed to compute an upper bound B, for al absolute values of the coefficients of ak

in Q(B). We actualy use a dlightly more general approach which we will also use in section 3.5.

Lemma 3.5: Let f (x) = g(x) h(x) be a non-trivial factorization of f (x) O Z[x], monic, squarefree of

degree n in C[x].
a Thenboth OgO, oho <2"0Of O, < Vn+1 2" Of g and if Bisany root of f, OBO < 20f O

b) If M isany (n-1) by (n—1) submatrix of the Sylvester matrix of f and g, then

0 -2
ndetM)O <T(f) = 2" Of O

¢) Theresultant of f and g is bounded by /S(f ) < Ores(g,h)0 < 2T (f ) with

S(f) = (4of o) V22,
Proof: a) The bound for Of O and Og O is the Landau-Mignotte bound translated to maximum norms
[Mignotte 74]. Assume f (x) = X" + a,_x" ™+ - +agand let p O C with gpg = 20f 0. Then

opo"-1

< opo"
o1 <P

Oan-1f" ™+ - - - +ao0 < Of O

because Of O = 1. Therefore f (B) # 0.

b) By pat a), we know that each entry in the Sylvester matrix of f and g is bounded by
Vn+1 2" Of 0. Hadamard's determinant inequality [Knuth 81, Sec.4.6.1, Exercise 15] then gives the
bound.

c) Let g(x) = (x=B1) = = - (x=Bx) and h(x) = (X—By+1) * - (X=PBn). Then

resg.)= M1 BB

and the discriminant of f, A = I_Ii¢j (Bi—B;j), is an integer not equal O [van der Waerden 53, pp.87-89].
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From a) we conclude that Of;—3; 0 < 40f O for 1<i <j <n. Therefore

1<VoAo =071 op-BoBores(f.g)o 0 1 oORi-p 00
<i<j=k a +1<i <j <n g
< ores(f ,g)0 (40f O)" D02
because k(k-1) + (n—k)(n-k-1) < (n-1)(n-2) for 1 < k < n-1. The upper bound follows from b) and

the fact that f is monic. O
The following lemma estimates the size of a genera version of the Catalan numbers.

Lemma 3.6: Let d=1 for al v-dimensional vectors kwith k1 =1 and let

d= Y dedsforke 0k = 2
Bsk<Osi<pk-1

Then

1 Rok-20 oK

Blg
o Do O er ~ W

d.k:
Proof: Let G(yy, ... W) = 3 j10kbe the generating function for d, Then

G-, %W)P2=GWyw ..., W) = (Yot )
and thus

[ 0_21mpi- -
Gy - .-, W) =5 %L—w/'l—4(y1+ CUMIpE 2T Eﬂi'_f E(yﬁ Cy)
i=1
|

klu—'k\ﬂ is a multinomia coefficient, it is less than v:¥9, Similarly
g k!

which yields our formula. Since

the given binomial coefficient is less than 2°2¢, o

We are now in the position to formulate and prove the main theorem on the coefficient growth for
the Hensel lifting algorithm. This theorem also resolves the growth problem left open by [Kung and

Traub 78] who considered the Newton iteration for the case that v = 1.

Theorem 3.2: Let f(yy, ..., W.X)OZ[yy ... ,W.X] be monic of degree n in x, such that
fgx)=1(0,...,0x) issquarefree. Let B be an agebraic integer generating a subfield of the splitting

field for f o By Z[B] we denote the ring generated by Z and {3} whose elements are polynomials in 3
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with integer coefficients of degree [Q(B):Q]—-1. Let g¢x) hg¢x) = f §x) be a non-trivia factorization of
foin (Z[BD[x]. Then there exist unique polynomials gfx), h¢x) O Q(B)[x] with k=0 0k1 =1 and

deg(g) < deg(g). deg(h) < deg(h) such that

Fya ) = 55 0030 55 e 36

[0 0 &0 0
Furthermore, let

1 Lr@withR 0z, r@®) 0z,

res(gehg R
and let S(f ) and T(f § be as defined in lemma 3.5. Findly, let N(f) = max(n?, nOf 0), and let dibe

as defined in lemma 3.6. Then for all k= Owith k1 > 1

R2H07 gx), R*HO7 hyx) O (Z[B])[X]

and, independently of which root (3 of f gwe choose,

2ao-1
090, Oha < d N() SEAT(Fag
Proof: The existence and uniqueness of gcand hyfollows from the fact that (3.2) has a unique solution
with the given degree constraints, b, being computed as in step (N3). Now let
C= max(OgQ, Ohd, Of O) and let D= Obd. Since deg(g) < deg(gg and deg(hyd < deg(hg we con-
clude that

0gshed < (n-1) 0gd] Ohedd < (N-1) CsCys
By definition Cs= Of O and thus we obtain from (N3)

thS n Z CNSCJQS (A)
Bsk<Osi<nki-1

If we solve (3.2) by undetermined coefficients for gxand hywe encounter the Sylvester matrix of ggpand
he A(gghy, as the coefficient matrix, namely

(he G) A(gshg = b (B)
By p we mean the coefficient vector (p,, . . . ,pg) of the polynomial p(x) = ppx™ + -+ -+ po. Using

Cramer’s rule for (B) and the fact that

1 _ 1
Odet(A(gehg)  Ores(gehy = S(t
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(by lemma 3.5b), we get the estimate

Ces max(f O, nDLS(F ) T(F9). ©)

Our claims now follow by induction on k1.

Case k1 = 1: Since b= fxO Z[x], Cramer's rule applied to (B) yields R g R hO (Z[BD[X].
(Notice that 3 is an algebraic integer.) Also Dy< Of O and hence by (C)

Cs max(Of O,nOf O S(FY T(fg) < dkN(f) S(f) T(f.
Case (k1 > 1. By hypothesis and from (N3) we obtain R?%72 b, [ (Z[B])[x]. Cramer's rule applied

to (B) then yields R?¥1 g, R?7L b, O (Z[B])[x]. From (A) with the hypothesis we also get

bs n 2 CsCxs
Bsks<Osisrki-1

sn (N(f) S(fg T(fy)**2 O 2 s
bsu<asi<nio-1 0
=n (N(f) S(f) T(f )P 2dy

By (C) we finaly obtain
Cks max(Of O, n DS(f T(f))
2
<ty (N(F) S(Y (1970

< IEN(F) S(fy T(f )2t o
Since the polynomials gxand hyare unique we can conclude from theorem 3.2

Dad < deN(F) S(F3 T(f) gml for 1< g < K.

From the lemmas 3.5 and 3.6 we obtain

0 , ) K-1
Do, 0 < By(f) = ()" m?of 0 @4of o)™ 2"(nof O)" g

< (4v)¢ (2nOf o), (3.3)
assuming that n = 4. Obvioudly, log(B(f)) is polynomial in deg(f ) and log(Of 0).

We now demonstrate for the polynomials go= x—f3 and hpas computed in step (N1), that

R _ ) ,
Tesigany 1 211 with R = res(t(x).f ).
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where t is the minimal polynomial of B. Let 3, ... ,B, betheroots of hg Then

res(gen = [1(B-r) = 468
There exist polynomials A(x) and B(x) O Z[x] such that At + Bfg = R. Thus R/f ¢B) = B(B) O
Z[B], which we wanted to show. Now let m = deg(t). By lemma 3.58) Ot < Vn+1 2"[f 47, and
using Hadamard's determinant inequality for the resultant res(t,f o(x)) we obtain

+n

<Hnen 2 pips < @nof o) (3.4)

for n = 4. Again, we note that log(OR [O) is bounded by a polynomial in deg(f ) and log(OOf 0).

From theorem 3.2 we can also conclude that

R20K-1a, (0 Z[B] for 1 < kI < K. (3.5)

We now extend our estimates to the powers of a, mod JX*1 as well as count the ASM ops for step

(N5).
Lemma 37 Letag=Bandleta, V=5, al) Jfor 2<i <n-1, then

Dad) 0 < (K+1)V0UBy(f) and R?H1a® O Z[p],
with R as defined above. All o, "), 2 <i < n-1, can be computed in O(K?n) ASM ops.

Proof: It is easy to show that

alM =3 al) a,0< gk <K,i 21,
Ossk
where there are less than ([k1+1)" < (K+1)" terms under the right hand sum. The lemma now follows

by inductiononi. O

Therefore we get from (3.3) forall 0<i <K andforn =4

0o, V0 < By(f) = (K+1)VBy(f )" < 2% ™ (2n gf g)> ™. (36)

Lemma 3.7 also establishes that the common denominator of any rational coefficient computed

throughout step (N) is R*™, We are now in the position of estimating the size of any numerator of the
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rational coefficients of a, ), 1 <i < n-1. To do this, we shall state a well-known lemma

Lemma 3.8: Let 3 be any root of t(x) O Z[x], monic, squarefree of degree m. Let A be area upper

bound for the absolute value of any conjugate of 3. Assume that

h-1 [
0> ¢p' O< C withg OZ
[i=o0 O

Furthermore, let D be the absolute value of the discriminant of t. Then

C m! AMm-12
e

(Cf. [Weinberger and Rothschild 76, Lemma 8.3].) O

gc s ,0<i <m.

In our case, we can choose A = 200f ¢7 by lemma 3.58), C = By(f) R, and D > 1. There-
fore, if we bring all rationals computed in step (N) to the common denominator R?¢ %, we have shown
that the absolute values of the numerators are bounded by

By(f ,m) = R By(f) m! (20f g7)™MY2 < 23K (2n f )%™, (3.7
using (3.4), (3.6) and n = 4. Though this bound is quite large, it is of length polynomial in deg(f) and
log(Of O). This bound aso implies, that al ASM ops are computable in time polynomial in deg(f)
and log(Of 0). Addition and subtraction in Q () means adding or subtracting the numerators of poly-
nomials in Q[P] of degree m-1, after eventually multiplying them with a power of R to produce a com-
mon denominator. Multiplication in Q(B) is multiplication of m-1 degree polynomials in Q[B] fol-
lowed by a remainder computation w.r.t. t(). Again a common denominator can be extracted a priori.

Any AMS op takes at most O (m?) integral operations.

Sep (L): Letti(yy, -« - W) = Joerjoeq Uigdand let

0 -1 0 al 0
o= ¥ DYa’p 0¥
o<k [J=0 O

Then (3.1) can be written as

%('Hlf S alus=0 (3.8)

i=0 O<s1=<d
for O<s <K, j = 0,...,m=-1. By lemma 34, it follows that (3.8) consists of



77
p = m%’&KB< m(K+1)" equations in g =1 E{/a-dg< (n-1)(d+1)" unknowns. Applying Gaussian
elimination to (3.8) takes O (pq?) rational operations. It is easy to show that this is the dominant opera-
tion count, which, expressed in input terms, is
O(m nV*3 d¥). (3.9)
From the previous analysis, we know that al & can be brought to the common denominator R and
their numerators, num(ag’), then satisfy Onum(a’)0 < Bs(f ,m). As can be shown with little effort,
al intermediate rationals computed during the Gaussian elimination process are fractions of subdeter-
minants of the coefficient matrix for (3.8) extended by the vector of constants [Gantmacher 58, Chap.2].
It is not necessary to calculate the GCD of the numerator and denominator of a newly obtained rational
since, as can also be shown, the denominator of the row used for the elimination in subsequent rows
divides the numerators and denominators in these rows after the elimination step. Thus Hadamard's
determinant inequality produces a bound for the size of any intermediately computed integer which is

polynomial in deg(f ) log(Of 0). E.g. one such bound is

B(f m) = g By(f.m)[
whose logarithm is by (3.7) of order
log(B4(f ,m)) = O(d"*? vn* log(4n Of 0)), (3.10)
assuming that d = n. Hence, step (L) aso takes at most polynomial time in deg(f) and log(Of 0O).
Notice that (3.9) and (3.10) give a very crude bound for the complexity of the steps (N) and (L). Since
we know that any solution of (3.8) must be integral of quite a small size, due to lemma 3.3, a Chinese
remaindering algorithm could be used to solve (3.8) [McClellan 73] and we believe that this approach

will be much more efficient, in practice.

Sep (E): Step (E1) is the counterpart of the transformation of step (13). Step (E2) is similar to step (12),

but also involves a content computation. Both steps can obviously be performed in time polynomial in

deg(g) and log(O0g 0)-



3.5. Multivariate Irreducibility Testing

As we have seen in section 3.3, in order to establish the irreducibility of the polynomia f by
agorithm 3.1 we need to factor f o Reducibility of fydoes, of course, not imply reducibility of f. The
following theorem partialy fills this gap by constructing from a polynomia f (y4, . . .,Vy,X), monic in
x such that f(O,...,0Xx) is squarefree, a polynomia g(y1,x) in time polynomia in deg(f) and
log(Of 0O), such that g is irreducible if and only if f is irreducible. Unfortunately, our approach does
not allow us to eliminate y;. We could include this as an open problem, but in view of the polynomial

time agorithm for univariate factorization a solution appears to be not so significant.

In the next theorem we will need the algebraic closure of polynomial domains and we shall intro-
duce the theory now. Let K be afield of characteristic 0, K its algebraic closure. By K (t)" we denote
the fractional power series domain in t over' K, any element of which is of the form 3., & t"9 with
k,gdZ,g=1landa OK fori =-k. Itisaclassica result in complex analysis that every algebraic
function admits a fractional power series expansion which converges in a neighborhood of zero. We

state this theorem in its algebraic version as a lemma.

Lemma 3.9 (Puiseux’'s Theorem): "K[t], the algebraic closure of K[t], can be embedded into K (t)" .

(Cf. [van der Waerden 39, pp. 50-54] or [Walker 50, pp. 97-106].) O

We write K (ty, . ..,t)" for (- (K(t)")({ty)" - --)()" and notice that K(ty, . ..,t,)" con-

tains the algebraic closure of K[tq, . .. ,t,].

Theorem 3.3: Let f(yy ..., W.X) OZ[ys ...,%.X] be monic of degree n in x such that
fo=f(0,...,0x) is squarefree. Let T(fg be as in lemma 3.5, and let N(f) be as in theorem 3.2.
Furthermore, assume that f (yy, ...,y X) is irreducible. Let d =degy \(f) and M =deg, y, ().
Then for any integer ¢ with

o0 2 Bs(f) = 2 (4v)? ™ (2 N(F) T(f 22
f(YLCylyYBy L !yV!X) ISIrredUCIbIe In Z[y1!y3! L nyyX]-

-80-
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Proof: By lemma 3.9 and the subsequent remark the polynomial

gC(ylvy3l s !X) =f (yllcyl!yS! e ,X) has n roots in Q(ylly3! e vyv)* and f(ylly21 e !yV!X) has

n rootsin Q(yYyz - - . ,Y) . Each of the roots of g, corresponds to a root of f with y, = cy;. Hence
each factor of gc(y1, Y3, . .., X) O Q(Ywn, Vs - . ., V) [X] corresponds to a factor of f (yq, Vo, . ..,
X) O QY1 Vo - .., W) [x] with y,=cy;.* We will show that for an integer ¢ of the stated size no

factor derived from f in such a way can be an integral polynomial dividing g.. For simplicity we
write yfor the variables y;, y, and xfor the variables ys, . . ., Yy, X and again use our vector notation
but now all vectors have either 2 or v—1 components. Our plan is the following: We first show that any
candidate factor h(yy, yo, ..., X) of f(y1, Yo ..., X) O Q(y1, ..., W) [x] contains at least one
monomial by dRwith byp# 0 and d < OpJ < 2d. From it we get a monomial t(c) y1"*Rin h(y,cy X

where t(c) is a non-zero polynomial in c. Since degy (gc) < d, no polynomial factor of g, has a degree

in y, higher than d. By choosing ¢ larger than the absolute value of any root of t(c) we force

degyl(h(YLCyl, X)) 2 Om>d
and hence h(y1,cys, . . . ,x) cannot be a polynomial dividing gc(y1ys, - - - ,X). Let

h(y]_, e =yV=X) = z z bﬁ.ﬁ
kO 0
be the product of a subset of the linear factors of f (x) with the constant coefficients in Q(yy, . . . , W)

and let

_h(ylv L !yV!X) = z Zbﬁ.ﬁ

&0 20
be its cofactor, i.e. f = hh. We first can assume that
h(©00ys, . ..,X) =3 bk Z[ys, . . . ,X].
&0
Otherwise h(y1,cy1,Ya - - . ,X) could not be an integer polynomial for any choice of c. Similarly we
can aso assume that by, by are zero for al j and kwith (k' > M, where (k' is the vector derived

from kby removing its last component.? Otherwise, even if h(yi,cyiys . ..,X) were an integer

# Prof. H. Lenstra points out that, by using the uniqueness of the Hensel lifting procedure (theorem 3.2), the need for Puiseux
theorem can be completely avoided to establish this correspondence.

@ This argument if false. See SIAM J. Comput., vol. 14, no. 2, p. 485 (1995) for the correct argument (note added November 17,
1997).
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polynomial, it could not divide g, because its or its cofactor’'s degreeinys, . . . ,y, were to high.
Now there must exist at least one by or by with

d < g <2d and a;QiOor_QKiOE

To see this, assume the contrary. Then

5 S b¥D T b= 0w

[jJsELHgsM ,0<oigsd 0 @sulgsM ,0<oigsd 0

since no term r 4% r a nonzero rational, with d < [JjJ < 2d in the left product could be canceled by
higher terms in the product of the complete expansion of h and h. (Notice that f does not contain a
monomial inyy, y, of degree larger than d.) But this contradicts the fact that f isirreducible. Without
loss of generdity we now can assume the existence of mpsuch that

bp# OwithO< OO <M andd < O < 2d.
We collect al non-zero by with j; + j»> = py + p2. Let gbe that of all vectors jwhose second component
islargest. Then the following inequalities hold

d2<01+0dz2<2d andd <j, +j,<2d. (A)

We now consider the coefficient t(c) of y?1+p2 Kingly.ey,ys - . . ,X), namely

t(C) = by ™ - - by by
By lemma 3.5a) the absolute value of any root of t(c) is bounded by 2 OtAdcf(t)J. We now apply
theorem 3.2 with B = 1, g¢x) =h(0, ... ,0x) and h¢x) =h(0, . ..,0x). Notice, that if R = res(gghy
then YORO<1 and hence we can set S(f3=1  Theefore RAIMO*M-1p 17  and
Omo+0a] < M+2d by (A). Since b# 0 it follows that

0,0
—[< R2M+4d-1 < (2 T(fj)ZM +4d—1’
[ ]

the last inequality by lemma 3.5¢c). Also by theorem 3.2, lemma 3.6 and (A)

Oby0 < (4v)CMO+OIO(N (f )T(fj)z(!‘@‘l < (4v)MH2A(N(f )T (f )M +4d-1
Therefore
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2 OUAdcf(t) 0 < 2 (4v)2*™M (2 N(F) T(f §2)*d+aM-1, (B)
Thus, for any integer ¢ absolutely larger than the right-hand side of (B) we know that t(c) # 0, and

therefore h(yq,cy1,ys, . . . ,X) contains a non-zero monomial t(c)y?lmz Kand cannot be a polynomial
factor of g:(y1.y3 - . . ,X), as argued above. Our given bound then obviously works for any factor can-
didate h. O

Our irreducibility test can now be constructed easily by induction. We compute the bounds
Cy, - - ., Cy—1 Such that for the sequence of polynomials f =f,
f2(y17y37 e ,X) = fl(y17cly11y31 L 7X)1
f3(y11y41 e 7X) = f2(y1102y11y41 e 1X)= reey

fV(yl!X) = fV—l(leCV—Zylax)r g = fVl
we have ¢ = Bg(fj). Since v is assumed to be fixed and since Bg(f;) is of size polynomia in deg(f;)

and log(Of; 0), g can be constructed in time polynomia in deg(f ) and log(Of 0). By theorem 3.3, g

isirreducible if f isirreducible. On the other hand, if f = f ;f , then

g(yuX) = fays.Cyn - - - C-aynX) Fay1,Ciya - -+ Cym1Y1X).

One can prove theorem 3.3 for the more general substitution y, = c y3, s being an arbitrary posi-
tive integer. Since the bound Bs(f ) grows monotonicly in [Of [0 we can, in the case that f is reducible,
find a bound for ¢ using lemma 3.3 such that the given substitution maps all irreducible factors of f
into irreducible polynomials in one less variable. Together with a Kronecker style algorithm this then
leads to a different polynomial time reduction from multivariate to bivariate polynomial factorization. In
the case of v = 2 the complete proof is given in [Kaltofen 82], which, following the lines of the proof
for theorem 3.3, is readily extended to any fixed v. Instead of using Kronecker’s algorithm one can also
apply the multivariate Hensel lifting algorithm (see section 1.4) with the coefficients in Q(y4). Since

our evaluation guarantees that no extraneous factors can occur all computed coefficients actually lie in

Z[y4].

The type of substitution y, = ¢ y3 is derived from a version of the Hilbert Irreducibility Theorem

[Franz 31] and theorem 3.3 can be regarded as its effective counterpart. For the classical Hilbert



Irreducibility Theorem, no such an effective formulation seems to be known. (See open problem 2 in

section 4.)



4. Conclusion

We have discussed the phenomenon of extraneous factors during the uni- and multivariate Hensel
algorithm which can cause in both cases exponential running time in the degree of the polynomia to be
factored. Two classical theorems are central for the analysis of this problem. The Chebotarev Density
Theorem in the univariate and the Hilbert Irreducibility Theorem in the multivariate case. An effective
version of the first provided us with an algorithm for the determination of Galois groups, an effective
version of the second provided a reduction agorithm from multivariate to bivariate irreducibility testing.
We also have shown how to overcome the extraneous factor problem in the multivariate case by approx-
imating a root and then determining its minimal polynomial, which lead us to solving a system of linear

equations. We conclude this thesis with a list of open problems.

Problem 1: Does there exist a polynomial p(d,v) and an infinite sequence of polynomias
f(Xq,...,%) 0Z[Xq ...,%] with the following property: If d is the maximum of the degrees in the
individual variables then any f contains less than p(d,v) monomials with non-zero coefficients; more-
over, there does not exist a polynomia q(d,v) such that any factor of f contains less than q(d,v)

monomials with non-zero coefficients? In ssmple words, are there sparse polynomials with dense factors?

Problem 2: Does there exist an infinite sequence of irreducible polynomials f (y,x) O Z[yx], n =
deg(f ), such that for no polynomia p(n) any polynomia f (i ,x) is irreducible for an integer i with
Oig < p(n)? This problem asks whether there is an effective version of the Hilbert Irreducibility

Theorem.

Problem 3: Devise an agorithm which, for a fixed number v, computes irreducible factors of
f(Xy, ..., %) 0 Zy[Xq, ..., %] in time polynomial in p deg(f). Algorithm 3.1 partially solves this
problem provided that we can find good evauation points in step (13). Can one determine irreducibility

of f in deterministic or probabilistic time polynomial in log(p) deg(f )?

Problem 4: Given a monic irreducible polynomial f O Z[x], n = deg(f ), construct a generating set for

-85-
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the Galois group of f in time polynomial in n log(Of 0). Notice that such a set contains at most

logo(n!) = O(n log(n)) elements.

Da steh’ ich nun, ich armer Tor,
und bin so klug als wie zuvor.

J. W. v. Goethe - Faust

(Here | stand with all my lore,
poor fool, no wiser than before.)
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APPENDIX A

Vaxima 1.50
Sat Mar 6 01:41:14 1982

(c2) /* Sample run of algorithm 3.1: */

/* Inhibit garbage collection message. */

geprint:false$

(c3) /* The following bi-variate polynomial is squarefree and

monic in X as well as 0 is already a useable evaluation

point for y. Therefore, step (1) is not needed. */

fix1 6+X1 5+H(2*y+4)* X1 4+(y+3)* X1 3+(y 1 243*y+5)* X1 2+(2-y)* X-y1 2+y+2;
2 2 2 4 3 6

d@)x (y +3y+5-y +x Qy+4)+x (y+3)+y+x(2-y)+x

5
+X +2

(c4) I* Step (F): */
factor(subst(0,y,f));

2 2 2
(d4) X +1)(x +2)(x +x+1
(c5) I* We choose B=%i, the imaginary unit. */
/* Step (N): */
/* Step (N1): */

0[0]:x-%i;
(d5) X - %i

(c6) h[0]:quotient(subst(0,y,f),g[0]);
5 4 3 2
(d6) x + (%I +1) x + (%i +3)x +(3% +2)x + (2% +2) x +2 %i

(c7) I* Step (N2). We actualy choose K smaller than described,
though this does not influence the outcome of latter steps */

K:5;
(d7) 5

(c8) /* Precompute inverse of f'(0,%i)=h[0](%i). */
r:ratsimp(1/subst(%i,x,h[0]));

04 -



1
(d8) - -
2

(c9) /* Computation of g[j] and h[j] using b[j]: */

for j:1 thru K do (
display(f[j]:ratcoeff(t.y j)),
/* Step (N2): */
if j=0
then display(bj]:f[j])
else display(bfj]:ratsimp(f[j]-sum(g[s]* h[j-s] s, 1,j-1))),
display(g[j]:ratsimp(subst(%i x,b[j])*r)),
display(hj]:quotient(b[j]-h[0]*g[j].9[0]))

4 3 2
f=2x +x +3x -x+1
1
4 3 2
b =2x +x +3x -x+1
1
g = %i
1
4 3 2
h =-%i x +(4-%i)x + (% +3)x + (% +5)x+ 3 %i
1
2
f=x-1
2
4 3 2
b=-Xx+(-4%-1)x +(2-3%i)x +(1-5%i)x+2
2
5 %i
g =--
2 2
4 3 2
5%ix +(5%i-12)x +(-5%i - 12) x + (- 8 %i - 6) X - 6 %i
h =
2 2



4 3 2
S10X + (- 32 %i - 10) X + (10 - 27 %i) X+ (13 - 31 %i) x + 21
b =-
3 2
25 %i
g =
3 2
h =
3
4 3 2
25 06 X + (25 %i - 60) X + (- 17 %i - 60) X + (- 37 %i - 48) X - 29 %i
2
f =0
4
b =
4
4 3 2
_ 125X + (- 380 %i - 125) x + (109 - 330 %i) X + (164 - 376 %i) x + 238
4
619 %i
g =- -
4 8
4 3 2
h = (619 %i x + (619 %i - 1488) x + (- 391 % - 1488) x
4
+ (- 910 %i - 1248) x - 762 %i)/8
f =0
5
4 3 2

b =- (- 1738 x + (- 5164 %i - 1738) X + (1430 - 4545 %i) x
5

+ (2299 - 5123 %i) x + 3209)/8

4291 %i

96
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4 3 2
h =- (4291 %i x + (4291 % - 10320) x + (- 2611 %i - 10320) x
5
+ (- 6283 %i - 8832) X - 5373 %i)/8
(d9) done

(c10) /* Assign K-th order approximation of root of f. */

a[K]:9%i+sum(-g[j]*y1].j,1,K);
5 4 3 2
4291 %y 619%y 25%y 5%y
(d10) - + - + - %i y + %i
8 8 2 2

(c12) /* This command verifies our approximation as it was proven. */

remainder(subst(a[K],x,f),y1 (K+2));
6
63729 %i y
(d1vy e

(c12) /* Compute powers of g K] mod y1 (K+1). */

asquare[K]:remainder(a[K]t 2,y t (K+1));
5 4 3 2
(d12) 1290y -186y +30y -6y +2y-1

(c13) acube[K]:remainder ([ K]* asquare[K],y t (K+1));
5 4 3 2
18537 %iy - 2667 %iy +428%iy -84 %iy + 24 %iy - 8 %i
(d13)

8
(c14) afourth[K]:remainder (a[K]* acube[K],y 1 (K+1));
5 4 3 2
(d14) -3684y +528y -84y +16y -4y +1
(c15) /* Set up undetermined polynomials of possible factor. */

u[0]:wO+v0*y+ul*yt 2;

2
(d15) wy +voy +wo0
(c16) u[1]:wl+vi*y+ul*y12;

2
(d16) uly +vliy+wl

(c17) u[2]:w2+v2*y+u2*y1 2;



2
(d17) U2y +v2y+w2
(c18) u[3]:w3+v3*y+u3*y1 2;

2
(d18) udy +v3y+w3

(c19) /* Compute equation (3.1) for 1=2. */
L 2:remainder(asquare[ K]+u[ 1]* a[K]+u[ 0]yt (K+1));
5
(d19) - ((4291 %i w1l - 619 %i v1 + 100 %i ul - 10320) y

4
+ (- 619 %i wl + 100 %i v1 - 20 %i ul + 1488) y

3
+ (100 %i W1 - 20 %i V1 + 8 %i ul - 240) y

2
+ (- 20 %i w1+ 8 %i v1- 8 %i ul - 8 U0 + 48) y

+ (8 %i wl-8%i vl-8v0-16)y-8 % wl-8wO0 + 8)/8
(c20) t2:[1%
(c21) /* Retrieve linear equations for the coefficients. */
for i:0 thru K do
for j:0 thru 1 do (

display(s2[i,j]:ratcoeff(ratcoeff(L2,y,i),%i ))),
t2:cons(s2]i,j],t2)

);

2 =wl0-1
0,0

s2 =wl
01

2 =v0+2
1,0

s2 =vl-wl
1,1

s2 =u0-6
2,0

98



s2 e,
3,1 2
2 =-186
4,0
619 wl - 100 v1 + 20 ul
s2 =
4,1 8
2  =1290
5,0
4291 wl - 619 v1 + 100 ul
2 =-
51 8
(d21) done

(c22) /* Try to solve the system. */
errcatch(linsolve(t2,

[wO,v0,u0,w1,v1,ul]));
Dependent equations eliminated: (15 7)
Inconsistent equations: (2 4 6)
(d22) (]
(c23) /* Compute equation (3.1) for 1=3. */

L 3:remainder(acube] K]+u[ 2]* asquare[ K]+u[ 1]* a K]+u[ O]yt (K+1));
(d23) ((10320 w2 - 4291 %i w1l - 1488 v2 + 619 %i v1 + 240 u2 - 100 %i ul

5
+ 18537 %i) y + (- 1488 w2 + 619 %i wl + 240 v2 - 100 %i v1 - 48 u2

4
+ 20 %i ul - 2667 %i) y + (240 w2 - 100 %i w1l - 48 v2 + 20 %i v1 + 16 u2

3
-8%i ul + 428 %i)y + (- 48 w2+ 20 %i wl + 16 v2 - 8 %i v1 - 8 u2

2
+8% ul+8u0-84%i)y + (16 w2 -8%i wl-8v2+ 8% vl+8v0

+24 %i)y-8w2+ 8% wl+ 8wO0 -8 %i)/8

99



(c24) t3:[1%
(c25) /* Retrieve linear equations for the coefficients. */

for i:0 thru K do
for j:0 thru 1 do (
display(s3[i,j]:ratcoeff(ratcoeff(L3,y,i),%i,))),
t3:cons(s3[i,j],t3)
)

s3 =wO0 - w2
0,0

s3 =wl-1
0,1

s3 =2w2-v2+Vv0

1,0

s3 =-wl+vl+3

1,1
s3 =-6w2+2v2-u2+ul
2,0

5wl-2vli+2ul-21

2,1 2

s3 =30w2-6Vv2+2u2

25wl-5vl+2ul-107

3 =-
31 2
s3 =-186w2+30v2-6u2
4,0
619 wl - 100 v1 + 20 ul - 2667
s3 =
4,1 8

s3  =1290 w2 - 186 v2 + 30 u2
50

4291 wl - 619 v1 + 100 ul - 18537

51 8

(d25) done

100



101

(c26) /* Try to solve the system. */

errcatch(linsolve(t3,
[wO,vO,u0,wi1,v1,ul,w2,v2,u2)));

Inconsistent equations: (57 1)

(d26) (]

(c27) /* Compute equation (3.1) for 1=4. */

L4:remainder(afourth[K]+u[ 3]* acube] K]+u[ 2] * asquare[ K] +u[ 1]* a[ K] +u[ O]yt (K+1));
(d27) ((18537 %i w3 + 10320 w2 - 4291 %i w1l - 2667 %i v3 - 1488 v2 + 619 %i v1

5
+ 428 %i u3 + 240 u2 - 100 %i ul - 29472) y

+ (- 2667 %i w3 - 1488 w2 + 619 %i wl + 428 %i v3 + 240 v2 - 100 %i v1

4
- 84 %i u3 - 48 U2 + 20 %i ul + 4224) y

+ (428 %i w3 + 240 w2 - 100 %i w1l - 84 %i v3 - 48 v2 + 20 %i v1 + 24 %i u3

3
+16u2-8%i ul-672)y + (- 84 %i w3 - 48 w2 + 20 %i wl + 24 %i v3

2
+16v2-8%ivl-8%i u3-8u2+8%i ul+8ul+128)y

+ (24 %i w3 + 16 W2 - 8 %i wl-8%i v3-8v2+8%i vli+8v0-32)y
- 8 %i w3 - 8w2 + 8% wl+8w0 + 8)/8
(c28) t4:[1%
(c29) /* Retrieve linear equations for the coefficients. */
for i:0 thru K do
for j:0 thru 1 do (
display(s4[i,j]:ratcoeff(ratcoeff(L4,y,i),%i ))),

t4:cons(s4[i j],t4)
);

A =-w2+w0+1
0,0
A4 =wl-w3
0,1

A4 =2w2-v2+v0-4
1,0
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A =3w3-wl-v3+vl
1,1

A =-6w2+2v2-u2+u0+ 16
2,0

21w3-5wl-6v3+2vl+2u3-2ul

A =-
2,1 2
A4 =30w2-6v2+2u2-84
3,0
107 w3-25w1-21v3+5vl+6u3-2ul
A4 =
3,1 2
A =-186w2+30v2-6u2+ 528
4,0
2667 w3 - 619 wl - 428 v3 + 100 v1 + 84 u3 - 20 ul
A =-
4,1 8
4 =1290 w2 - 186 v2 + 30 u2 - 3684
5,0
18537 w3 - 4291 w1l - 2667 v3 + 619 v1 + 428 u3 - 100 ul
A4 =
51 8
(d29) done

(c30) /* Try to solve the system. */

linsolve(t4,
[wO,v0,u0,w1,v1,ul,w2,v2,u2,w3,v3,u3));

Solution

(e30) wl=0

(e31) vi=0

(e32) w0 =2

(e33) u2=0

(e34) w2 =3

(e35) v2=1



(€36) w0 =0
(€37) vo=-1
(€38) uL=0
(€39) w3=0
(e40) v3=0
(e41) u3=0

(d41) [e30, €31, 32, 33, €34, €35, €36, €37, €38, €39, e40, e41]
(c42) /* Substitute solution into factor. */

g:ev(xt 4+u[3]*x1 3+u[2]*x 1 2+u[1]*x+u[ 0] ,%);

(d42) i(y+3)-ytx +2

(c43) /* Test whether it divides f as was proven. */

remainder(f,g);
(d43) 0

(c44) /* Finadly we demonstrate what happens if K is too small (4). */

a[4]:remainder(a[K],y1 5);
4 3 2
619%iy -100%iy +20%iy - 8 %iy + 8 %i
(d44)

8

(c45) asguare[4]:remainder(asquare[K],y 1 5);
4 3 2
(d45) -186y +30y -6y +2y-1

(c46) acube[4]:remainder(acube[K],y 1 5);
4 3 2

2667 %iy -428%iy +84%iy - 24 %iy + 8 %i

(d46) -

8
(c47) afourth[4]:remainder(afourth[K],y 1 5);
4 3 2
(d47) 528y -84y +16y -4y +1
(c48) /* Compute equation (3.1) for 1=4. */

L4:remainder(af ourth[4]+u[ 3] * acube[ 4] +u[ 2] * asquare] 4] +u[ 1]* & 4] +u[ 0],y 5);

(d48) - (2667 %i w3 + 1488 W2 - 619 %i w1 - 428 %i v3 - 240 v2 + 100 %i v1
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4
+ 84 %i u3 + 48 u2 - 20 %i ul - 4224) y

+ (- 428 %i w3 - 240 w2 + 100 %i wl + 84 %i v3 + 48 v2 - 20 %i v1 - 24 %i u3

3
-16u2+8%i ul+672)y + (84 %i w3+ 48 w2 - 20 %i wl - 24 %i v3 - 16 v2

2
+8%i vl+8% u3+8u2-8% ul-8ul-128)y

+ (- 24 % w3-16 w2 +8%i wl+8% v3+8v2-8%i vli-8v0+32)y
+ 8 %i w3+ 8 w2 -8 %i wl-8w0 - 8)/8
(c49) t4:1%
(c50) /* Retrieve linear equations for the coefficients. */
for i:0 thru 4 do
for j:0 thru 1 do (
display(s4[i,j]:ratcoeff(ratcoeff(L4,y,i),%i ))),

t4:cons(s4[i j],t4)
);

A =-w2+w0+1
0,0
A4 =wl-w3
0,1

A4 =2w2-v2+v0-4
1,0

A =3w3-wl-v3+vl
1,1

A =-6w2+2v2-u2+u0+ 16
2,0

21w3-5wl-6v3+2vl+2u3-2ul

4 =-
2,1 2
A =30w2-6v2+2u2-84
3,0
107w3-25wl1-21v3+5vl+6u3-2ul
A4 =

31 2
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4 =-186w2+30v2-6u2+ 528
4,0
2667 w3 - 619 wl - 428 v3 + 100 v1 + 84 u3 - 20 ul
A4 =-
4,1 8
(d50) done

(c51) /* Try to solve the system. */

linsolve(t4,
[wO,vO,u0,w1,v1,ul,w2,v2,u2,w3,v3,u3));

Solution
u3
(e51) wl = --
9
2 u3
(e52) vl = ---
3
v2 + 15
(e53) w0 = -------
8
9v2-9
(e54) uz2 = --—-----
8
v2 + 23
(e55) W2 = --—----
8
v2-1
(e56) uo = - —----—-
8
3v2-7
(e57) VO = ---—----
4
u3
(e58) ul = - --
9
u3
(e59) w3 = --
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8 u3
(e60) V3 = -—-
9
(d60) [e51, €52, €53, €54, €55, €56, €57, €58, €59, e60]

(c61) /* We now specialize u3=0 and v2=0 in the above solution. */

g:ev(ev(xt 4+u[3]*x 1 3+u[2]*x 1 2+u[ 1]* x+u[0],%),u3=0,v2=0);

2 2
y 223 9y 7y 4 15

(d61) O (i PR
8 8 8 4 8

(c62) /* g does not divide f, however */
resultant(f,g,x);
Juser/vaximalrat/result being |oaded.
[fad /user/vaximalrat/result.o]
10 6 5 4 3 2
(d62) 5184y (Bly +324y -135y -806y +865y -98y + 169)

(c63) /* which is divisible by y1 4 explaining the problem. */
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