
ON THE COMPLEXITY OF FACTORING POLYNOMIALS

WITH INTEGER COEFFICIENTS

by

Erich Kaltofen

A Thesis Submitted to the Graduate

Faculty of Rensselear Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee

_ ____________________________
Bobby F. Caviness, Thesis Adviser

_ ____________________________
Charles M. Fiduccia, Member

_ ____________________________
Mukkai S. Krishnamoorthy, Member

_ ____________________________
Robert McNaughton, Member

_ ____________________________
B. David Saunders, Member

Rensselaer Polytechnic Institute
Troy, New York

December 1982

CONTENTS

Page
ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

1. Overview ... 1

1.1 Review of Earlier Developments and Our Results ... 1

1.2 Notation .. 6

1.3 The Berlekamp-Hensel Algorithm .. 7

1.4 Factorization of Multivariate Integer Polynomials ... 16

2. Hard-to-Factor Polynomials and Galois Groups ... 24

2.1 Introduction and Review of Galois Theory .. 24

2.2 Univariate Polynomials That Are Hard to Factor .. 28

2.3 Computation of Galois Groups ... 44

3. Polynomial Time Reductions from Multivariate to Univariate
Polynomial Factorization ... 56

3.1 Introduction .. 56

3.2 Exponential Cases for the Kronecker and Hensel
Algorithms ... 58

3.3 The Reduction Algorithm .. 61

3.4 Complexity Analysis of the Reduction Algorithm ... 69

3.5 Multivariate Irreducibility Testing .. 80

4. Conclusion .. 85

REFERENCES .. 87

APPENDIX A ... 94

APPENDIX B ... 107

ii

To my parents, who waited so long,
and to my wife, for all her support.

iii

ACKNOWLEDGEMENTS

I shall not begin without naming some of the scientists who have made contributions to this thesis.

I would like to thank all members of the examining committee for their assistance. Prof. Paul Wang

gave valuable suggestions for section 1.4. Dr. David Musser developed parts of section 2.2 besides

listening so patiently during my visits at General Electric. The remark following theorem 2.2 is due to

Dr. Andrew Odlyzko. Section 2.3 contains partially the findings of Prof. Gary Miller and he and Prof.

Hendrik Lenstra deserve some credit for theorem 2.6. I owe the topic of chapter 3 to Prof. George Col-

lins whose enthusiasm for my work was one of its greatest rewards. Prof. Hans Zassenhaus provided an

important manuscript in connection with algorithm 3.1. Some simplifying remarks in chapter 3.5 are

due to Prof. Hendrik Lenstra.

I also wish to acknowledge the support by the National Science Foundation and by the Depart-

ment of Energy. This thesis could not have been printed without the generosity of the General Electric

Research Laboratory in Schenectady, New York, or without the support of the Department for

Mathematical Sciences at Kent State University.

I must not begin before expressing my gratitude to my advisers Prof. Bobby Caviness and Prof. B.

David Saunders without whose friendship I could not have done it.

iv

ABSTRACT

The complexity of the Berlekamp-Hensel algorithm for factoring polynomials in one or more vari-

ables with integer coefficients can become exponential in the individual variable degrees of the input

polynomial due to the fact that, after factoring the projected polynomial and lifting its factors to

sufficiently large coefficients, one may need to combine exponentially many lifted factors to obtain the

true integer factors. In the univariate case, where the projection is taking the coefficients modulo a

prime number, we can find worst case polynomials by prescribing that their Galois groups consist only

of permutations with short cycles. Using the Chebotarev density theorem we then are able to construct

succinct certificates for our hard-to-factor polynomials. In the multivariate case the projection is evalua-

tion of selected variables at integral points. By computing the minimal polynomial of the approximation

for a root we are able to replace the factor combination process by solving a system of linear equations.

The growth analysis for the size of the rational numbers involved shows that, provided the number of

variables is fixed, our algorithm reduces the problem in polynomial time in the total degree and

coefficient length to the problem of factoring univariate polynomials, which has recently been solved in

polynomial time as well. Therefore our algorithm can factor multivariate polynomials with a fixed

number of variables in polynomial time in the total degrees and coefficient lengths, except for splitting a

possible constant factor into its prime divisors. The evaluation process also leads us to the study of the

Hilbert irreducibility theorem, an effective version of which provides us with an alternate polynomial

time reduction from multivariate to bivariate polynomial factorization and irreducibility testing.

v

1. Overview

1.1. Review of Earlier Developments and Our Results

The problem of factoring polynomials with integer coefficients has a long and distinguished his-

tory. D. Knuth traces the first attempts back to Isaac Newton’s Arithmetica Universalis (1707) and to

the astronomer Friedrich T. v. Schubert who in 1793 presented a finite-step algorithm to compute the

factors of a univariate polynomial with integer coefficients (cf. [Knuth 81, Sec. 4.6.2]). A notable cri-

terion for determining irreducibility was given by F. G. Eisenstein in 1850 [Eisenstein 1850, p. 166]. L.

Kronecker rediscovered Schubert’s method in 1882 and also gave algorithms for factoring polynomials

with two or more variables or with coefficients in algebraic extensions [Kronecker 1882, Sec. 4, pp. 10-

13]. Exactly one hundred years have passed since then, and though early computer programs relied on

Kronecker’s work [Johnson 66], modern polynomial factorization algorithms and their analysis depend

on major advances in mathematical research during this period of time.

When the long-known finite-step algorithms were first put on computers they turned out to be

highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and

with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few

minutes of computer time indicates how successfully this problem has been attacked during the past

fifteen years. However, until very recently, some rare polynomials still took an exponential number of

steps in the degree of the polynomial to be factored by these modern algorithms. It is the main theme

of this thesis to investigate these hard-to-factor polynomials and, in the multivariate case, to give a new

algorithm which does not suffer from this exponential worst-case complexity.

In 1967 E. Berlekamp devised an ingenious algorithm which factors univariate polynomials over

Zp , p a prime number, whose running time is of order O (n 3+prn 2) where n is the degree of the polyno-

mial and r the number of actual factors (cf. [Knuth 81, Sec. 4.6.2]). The incredible speed of this algo-

rithm suggested factoring integer polynomials by first factoring them modulo certain small primes and

then reconstructing the integer factors by some mean such as Chinese remaindering [Knuth 69, Sec.

- 1 -

2

4.6.2]. H. Zassenhaus discussed in his landmark 1969 paper [Zassenhaus 69] how to apply the "Hensel

lemma" to lift in k iterations a factorization modulo p to a factorization modulo p 2k

, provided that the

integral polynomial is squarefree and remains squarefree modulo p . Readers familiar with basic field

theory will know that if a polynomial over a field of characteristic 0 has repeated roots, then the greatest

common divisor (GCD) of the polynomial and its derivative is nontrivial. Hence casting out multiple

factors is essentially a polynomial GCD process, but we will come back to this problem in a later sec-

tion. Squarefreeness is preserved modulo all but a reasonable small number of primes. Given a bound

for the size of the coefficients of any possible polynomial factor, one then lifts the modular factorization

to a factorization modulo p 2k

such that p 2k

⁄2 supersedes this coefficient bound. At this point either fac-

tors with balanced residues modulo p 2k

are already the integral factors or one needs to multiply some

factors together to obtain a true factor over the integers. The slight complication arising from a leading

coefficient not equal to unity can be resolved in various easy ways.

D. Musser [Musser 71, Musser 76] and, using his ideas, P. Wang in collaboration with L. Roth-

schild [Wang and Rothschild 75], generalized the Hensel lemma to obtain factorization algorithms for

multivariate integral polynomials. Subsequently, P. Wang has incorporated various improvements to

these multivariate factorization algorithms [Wang 77, Wang 78, Wang 79b]. In 1973 J. Moses and D.

Yun found the Hensel construction suitable for multivariate GCD computations (now called the EZGCD

algorithm) [Moses and Yun 73], and D. Yun has used this algorithm for the squarefree decomposition

process of multivariate polynomials [Yun 76b]. In 1979 G. Collins published a thorough analysis of the

average time behavior for the univariate Berlekamp-Hensel algorithm [Collins 79], while in the same

year improved algorithms for squarefree factorization [Wang and Trager 79] and Chinese remaindering

on sparse multivariate polynomials appeared [Zippel 79].

To completely factor a univariate polynomial over the integers means, of course, to also factor the

common divisor of all its coefficients. This thesis does not discuss the topic of factorization of integers

and we will not consider this problem as a part of polynomial factorization. However, some comparis-

3

ons are in order. Factoring large random integers is much harder than factoring integral polynomials.

This was partially confirmed by a polynomial-time reduction from polynomial to integer factorization,

which is, however, subject to an old number theoretic conjecture [Adleman and Odlyzko 81]. The prob-

lem of finding polynomially long irreducibility proofs ("succinct certificates") was first solved for prime

numbers in 1975 [Pratt 75] and has recently also been achieved for densely encoded integral polynomi-

als [Cantor 81]. A polynomial-time irreducibility test for prime numbers depending on the validity of

the generalized Riemann hypothesis (GRH) was discovered in 1976 (cf. [Knuth 81, Sec. 4.5.4]). P.

Weinberger obtained the corresponding result for densely encoded integer polynomials [Weinberger 81,

Knuth 81, p. 632, Exercise 38]. In 1971 E. Berlekamp pointed out that the modular projection and lift-

ing algorithm may take an exponential number of trial factor combinations [Berlekamp 70]. It was not

until 1982 when A. Lenstra, H. Lenstra and L. Lovász overcame this problem by reconstructing the

integral factors from the lifted modular factors using a new integer lattice algorithm. Their algorithm

takes at worst polynomially many steps in the degree and coefficient size of the input polynomial [Lens-

tra et al. 82].

Little work has been done on the theoretical analysis of the multivariate versions of the

Berlekamp-Hensel algorithm. Similar to the univariate case, the steps involved may require an exponen-

tial number of trial factor combinations, though this problem may be probabilistically controllable by

virtue of the Hilbert Irreducibility Theorem. G. Viry has also shown how to replace the trial divisions

of multivariate polynomials by a simple degree test [Viry 80]. In chapter 3 we will prove that it is only

polynomially harder to factor densely encoded multivariate integer polynomials with a fixed number of

variables than integer polynomials with just one variable. Together with the recent work on univariate

factorization mentioned above, this implies that multivariate integer polynomials with a fixed number of

variables can be factored in time polynomial in their total degree and coefficient size.

We will discover a characterization for those univariate polynomials that are hard-to-factor by the

Berlekamp-Hensel algorithm as a property of their Galois groups. This property can then be most pre-

4

cisely expressed by the Chebotarev Density Theorem and its recently discovered effective versions. We

then can obtain an alternate construction of succinct certificates for our hard to factor polynomials. Our

algorithm can be also used to compute the Galois group of univariate integer polynomials though we

require the computation of a resolvent for their splitting fields, i.e. the minimal polynomial for one of its

primitive elements. Whether our technique is then more efficient than a simple substitution method is

yet to be investigated. We will present all of our results on univariate polynomials in chapter 2.

The next section of this chapter establishes our notation. Section 1.3 contains a detailed descrip-

tion of the univariate Berlekamp-Hensel algorithm which we will need as a reference in chapter 2. The

last section of this chapter gives an overview of conventional methods for factoring multivariate integer

polynomials, in particular of the Kronecker and multivariate Hensel algorithms which we will refer to in

chapter 3. The detailed organization of chapters 2 and 3 can be found in their corresponding introduc-

tions. We conclude with a list of open problems in chapter 4.

1.2. Notation

By Z we denote the integers, by Q the rationals and by C the complex numbers. Zp denotes the

prime residues modulo p . If D is an integral domain, D [x 1, . . . , xv] denotes the polynomials in

x 1, . . . , xv over D ; degx
1
(f) denotes the highest degree of x 1 in f ∈ D [x 1, . . . , xv], degx

1
,x

2
(f) the

highest total degree of monomials x 1 and x 2 in f , and deg(f) = degx
1
, . . . , x

v
(f) the total degree of f .

The coefficient of the highest power of xv in f is referred to as the leading coefficient of f in xv and

will be denoted by ldcfx
v
(f). We call f monic in xv if ldcfx

v
(f) is the unity of D . As is well-known,

D [x 1, . . . , xv] is a unique factorization domain (UFD) provided that D is a UFD. In this case the con-

tent of f ∈ D [x 1, . . . , xv] in xv , contx
v
(f), is the greatest common divisor (GCD) of all coefficients of

f (xv) as elements in D [x 1, . . . , xv −1]. The primitive part of f in xv is defined as

ppx
v
(f) = f ⁄contx

v
(f)

and we call f primitive in xv if f = ppx
v
(f). We also note that the total degree of any monomial in a

factor of f is less than or equal to the total degree of that monomial in f . The infinity norm of f ∈

Q [x 1, . . . , xv], the maximum of the absolute values of the rational coefficients of f , will be denoted

by  f  . The sum of the absolute values of the coefficients will be denoted by  f  1, the square norm

by  f  2.

By

m

n 
 we denote the binomial coefficient

m ! (n −m)!
n !_ _________.

- 6 -

1.3. The Berlekamp-Hensel Algorithm

Given a polynomial h (x) ∈ Z [x] we seek to compute its content and all its primitive irreducible

polynomial factors gi j (x) ∈ Z [x], that is

h (x) = cont(h)
i =1
Π

r 

j =1
Π
s

i

gi j (x)




i

with all gi j irreducible and pairwise distinct. The complete algorithm consists of three separate steps,

namely

Algorithm 1.1: [Factorization of h (x) ∈ Z [x]:]

(C) [Content computation:] The integer GCD of all coefficients of h constitutes the cont(h),

h ← h ⁄cont(h). [h is now a primitive polynomial.]

(S) [Squarefree decomposition of h :] Compute squarefree polynomials f i (x) ∈ Z [x], 1 ≤ i ≤ r ,

GCD(f j ,f k) = 1 for 1 ≤ j ≠ k ≤ r such that h (x) =
i =1
Π

r

(f i (x))i .

(F) [Factor the squarefree f i :] FOR i ← 1, . . . , r DO

Compute irreducible polynomials gi j (x) ∈ Z [x], 1 ≤ j ≤ si , such that f i (x) =
j =1
Π
s

i

gi j (x).

Step (C) is a repeated integer GCD computation and shall not be discussed further.

The computational aspects of step (S) were first investigated by E. Horowitz following an idea of

R. Tobey in 1969 (cf. [Horowitz 71]) whose algorithms were later improved by D. Musser [Musser 76],

D. Yun [Yun 76b] and P. Wang and B. Trager [Wang and Trager 79]. We shall briefly present D.

Yun’s algorithm:

Algorithm 1.2: [Squarefree decomposition of a primitive polynomial h :]

(S1) g (x) ← GCD(h (x), dh (x)⁄dx) where dh (x)⁄dx = h ′(x) is the derivative of h w.r.t. x .

- 7 -

8

c 1(x) ←
g (x);
h (x)_____ d 1(x) ←

g (x)
1_ ____

dx
dh (x)_ _____ −

dx

dc 1(x)_ _____.

[Assume that h =
i =1
Π

r

f i
i with the f i squarefree and pairwise relatively prime. Then

g =
i =2
Π

r

f i
i −1, c 1 =

i =1
Π

r

f i , g
h ′_ __ =

i =1
Σ
r 



i f i ′

j =1,j ≠i
Π

r

f j





which is relatively prime to g since GCD(f i ,f i ′) = 1 (The f i are squarefree!). Thus

d 1 =
i =2
Σ
r 



(i −1)f i ′

j =1,j ≠i
Π

r

f j




.]

(S2) FOR k ← 1,2, . . . UNTIL ck = 1 DO

[At this point

ck =
i =k
Π

r

f i , dk =
i =k +1
Σ
r 



(i −k)f i ′

j =k ,j ≠i
Π

r

f j




.]

f k (x) ← GCD(ck (x),dk (x)); ck +1(x) ←
f k (x)

ck (x)_ _____; dk +1(x) ←
f k (x)

dk (x)_ _____ −
dx

dck +1(x)_ _______.

The reader should be able to derive the correctness of this algorithm from the embedded comments. It

is important that the cofactor of h ′ in the GCD computation of step (S1) and that of dk in step (S2) are

relatively prime to the computed GCDs. This enables one to use, besides the modular GCD algorithm,

the EZGCD algorithm [Moses and Yun 73] whose general version needs the above algorithm if both

cofactors have a common divisor with the GCD. The relation between polynomial GCDs and squarefree

decompositions is even more explicit (cf. [Yun 77]).

Step (F) is the actual heart of the algorithm. As outlined in the introduction, various substeps are

needed for the Berlekamp-Hensel algorithm:

Algorithm 1.3: [Factorization of a primitive, squarefree polynomial f :]

(F1) [Choice of a modulus:] Find a prime number p which neither divides ldcf(f (x)) nor the resultant

of f (x) and df (x)⁄dx . The latter is equivalent to the condition that f (x) modulo p is squarefree.

9

By trying various primes in connection with the distinct factorization procedure we may also

attempt to minimize the number of modular factors in the next step.

(F2) [Modular factorization:] Factor f (x) modulo p completely by the Berlekamp algorithm [Knuth

81, Chap. 4.6.2], namely compute irreducible polynomials u 1(x), . . . , ur (x) ∈ Zp [x] such that

ldcf(u 1) ≡ ldcf(f) (modulo p), u 2, . . . , ur are monic and u 1(x) . . . ur (x) ≡ f (x) (modulo p).

(F3) [Factor coefficient bound:] Compute an integer B (f) such that all coefficients of any possible fac-

tor of f (x) in Z [x] are absolutely bounded by B (f) (see lemma 3.5a).

(F4) [Lift modular factors:] q ← p ;

FOR k ← 1,2, . . . UNTIL q ≥ 2 B (f) DO

q ← q 2; [At this point q = p 2k

.]

Compute polynomials ui
(k)(x) ∈ Zq [x] such that u 1

(k) . . . ur
(k) ≡ f (x) (modulo q),

ldcf(u 1
(k)) ≡ ldcf(f) (modulo q) and ui

(k) ≡ ui (modulo p) where the coefficients of ui
(k) are

interpreted as p -adic approximations.

(F5) [Form trial factor combinations:]

h (x) ← f (x); C ← {2, . . . , r }; s ← 0; j ← 1;

REPEAT t ← s ;

FOR m ← j , . . . , cardinality of C DO

FORALL subsets {i 1, . . . , im } of C DO

Test whether g (x) = pp 
ldcf(h) ui

1

(k) . . . ui
m

(k) (modulo p 2k

) 
 divides h , where

k is the number of iterations in (F4) and the modulus is balanced before taking

the primitive part over the integers. If so then set s ← s +1; gs (x) ← g (x);

h (x) ← h (x)⁄g (x); j ← m ; C ← C minus {i 1 , . . . , im }; and exit both FOR

10

loops.

END FORALL

END FOR

UNTIL t = s [No more factors discovered in the FOR loops]

s ← s +1; gs (x) ← h (x)

[All factors are computed as f (x) = g 1(x) . . . gs (x).]

We must scrutinize various steps further. By the choice of p in step (F1) f (x) = f (x) modulo p

is of the same degree as f (x) and the inverse of ldcf(f) exists in Zp . We factor the monic polynomial

ldcf(f)−1 f (x) first into distinct degree factors and then into irreducibles in step (F2). To satisfy the

condition on the ldcf(u 1) we multiply the monic u 1 by ldcf(f) in Zp . Step (F4) utilizes the "Hensel-

lemma" and various lifting techniques have been investigated [Zassenhaus 69, Musser 71, Wang 79a].

The following algorithm is due to P. Wang:

Algorithm 1.4: [Hensel Lifting Algorithm:]

[Given polynomials f (x) ∈ Z [x], q relatively prime to ldcf(f), u 1
* (x), . . . , ur

*(x) ∈ Zq [x] such that

ldcf(u 1) ≡ ldcf(f) (modulo q), u 2
* , . . . , ur

* monic and

u 1
* (x) . . . ur

*(x) ≡ f (x) (modulo q). (A)

Furthermore given polynomials v 1
* (x), . . . , vr

*(x) ∈ Zq [x] with deg(vi
*) < deg(ui

*) for 1 ≤ i ≤ r, and if

we set ûi
* =

j =1,j ≠i
Π

r

ui
* then

v 1
* (x)û1

*(x) + . . . + vr
*(x)ûr

*(x) ≡ 1 (modulo q).

The goal is to produce polynomials u 1
** (x), . . . , ur

**(x), v 1
** (x), . . . , vr

**(x) ∈ Zq2[x] which satisfy the

same conditions as the single-starred polynomials if we replace the modulus q by q 2.]

(H1) Replace ldcf(u 1
*) by ldcf(f) modulo q 2;

[Lift ui
* by computing u i

* ∈ Zq [x] such that ui
** = ui

*+qu i
* with deg(u i

*) < deg(ui
*) for i ≥ 1.]

11

t (x) ←




f (x)−
i =1
Π

r

ui
*(x)





modulo q 2;

[The above replacement guarantees deg(t) < deg(f). Also all coefficients of t are divisible by q

because of (A).]

t (x) ← t (x)⁄q ; [Integer division, hence t (x) ∈ Zq [x]. We need to determine u i
* with

u 1
* (x)û1

*(x) + . . . + u r
*(x)ûr

*(x) = t (x). (B)]

FOR i ← 1, . . . , r DO

u i
*(x) ← remainder(t (x)vi

*(x), ui
*(x)) in Zq [x]; ui

**(x) ← ui
*(x) + qu i

*(x).

[Obviously the polynomials tvi
* solve (B) but do not satisfy the degree constraint for the u i

*.

Hence the u i
* solve (B) modulo

i =1
Π

r

ui
* but since all degrees are less than deg(f) there must be

equality.]

(H2) [Lift vi
* by computing v i

* ∈ Zq [x] such that vi
** = vi

* + qv i
* and deg(v i

*) < deg(ui
*).]

b (x) ←







1 −

i =1
Σ
r

vi
*(x)ûi

*(x)




modulo q 2




⁄ q ;

[Again the division is integral and b (x) ∈ Zq [x] with deg(b) < deg(f).]

FOR i ← 1, . . . , r DO

v i
*(x) ← remainder(b (x)vi

*(x), ui
*(x)) in Zq [x];

vi
**(x) ← vi

*(x) + qv i
*(x).

In order to use the above algorithm within the loop of step (F4) we also need to initialize the

vi (x) in Zp with

1⁄
i =1
Π

r

ui (x) =
i =1
Σ
r

ui (x)

vi (x)_ ____ and deg(vi) < deg(ui).

To do this one can use the extended Euclidian algorithm r −1 times or use fast partial fraction decompo-

sition algorithms [Kung and Tong 77, Abdali et al. 77].

12

Step (H2) is not necessary if one only considers the first solution vi and corrects ui
* from modulus

q to modulus pq by calculating ûi
* in Zp [x]. This method is referred to as "linear lifting" whereas our

algorithm has quadratic p -adic convergence. We also lift all factors in parallel while earlier versions

proceeded with one factor and its cofactor at a time. It is not clear which technique is preferable (cf.

[Yun 76a, Zassenhaus 78]), though the parallel quadratic approach seems superior [Wang 79a]. In order

to prevent p 2k

from overshooting B (f) by too much one may calculate the last correction polynomials ûi
*

with a smaller modulus than q .

As we will show in section 2.2, in the worst case step (F5) is the dominant step in our algorithm.

Therefore one is advised to test whether the constant coefficient of g (x) divides that of f (x).

D. Musser has carefully analysed a variation of steps (F1) - (F5), the result of which is the follow-

ing [Musser 71]: Let f = g 1
. . . gs in Z [x], deg(g 1) ≤ deg(g 2) ≤ . . . ≤ deg(gs), and let

µ =







deg(f)⁄2
i =2, . . . , s

max {deg(gi −1),

deg(gi)⁄2 

}

if f is irreducible

if s >1

.

If f factors into r polynomials modulo p then

min(2r ,r µ) µn 2 (n +log(B (f)))2

dominates the complexity of the factorization problem. This bound depends intrinsically on r which is

one reason why one should attempt to minimize this number in step (F2). If one does not, the algorithm

still performs quite well – on the average. An n -th degree polynomial in Zp [x] has an average of

log(n) factors as p tends to infinity and 2r averages n +1 where r is the number of modular factors (cf.

[Knuth 81, Sec.4.6.2., Exercise 5]. However, almost all integer polynomials are irreducible (cf. [Knuth

81, Sec.4.6.2, Exercise 27]), and one may not expect almost all inputs to our algorithm to behave that

way since a user probably tries to factor polynomials which are expected to be composite. In this matter

G. Collins has shown, subject to two conjectures, that if we restrict our set to those polynomials which

factor over the integers into factors of degree d 1, d 2, . . . , ds for a given additive decomposition of n =

d 1 + ... + ds , the average number of trial combinations will be below n 2. This result only holds if one

13

processes combinations of m factors at a time as we did in step (F5) ("cardinality procedure"), because

if one chooses to test combinations of a possible total degree ("degree procedure") the average behavior

may be exponential in n [Collins 79].

The worst case complexity of the Berlekamp-Hensel algorithm is unfortunately exponential in n ,

the degree of f . This is because, as we will prove in detail in section 2.2, there exist irreducible integer

polynomials of arbitrarily large degree which factor over every prime into linear or quadratic factors.

This means that we must test at least 2n ⁄2−1−1 trial factor combinations to show that no integral factor

occurs. We will also show that the number of binary digits of the coefficients of those polynomials is

about their degree (cf. theorem 2.3) which makes the worst case of the Berlekamp-Hensel algorithm

truly exponential in its input size. Here the following remark is appropriate. We always assume that

our algorithm operates on densely encoded polynomials. If we allow sparse encoding schemes, various

primitive operations on the input polynomials such as GCD computations are NP-hard (cf. [Plaisted 78])

and the factorization problem actually requires exponential space. In order to substantiate the last claim

we consider the polynomial xn −1 whose sparse encoding requires O (log n) bits. However, following

earlier developments, R. Vaughan [Vaughan 75] has shown that for infinitely many n the cyclotomic

polynomials Ψn , which constitute irreducible factors of xn −1, have coefficients absolutely larger than

exp(n log 2⁄log log n).

One question about our algorithm remains to be answered. That is how the choice of various

primes in step (F1) can influence later steps, especially step (F5). It is clear that if a polynomial f fac-

tors modulo p 1 into all quadratic and modulo p 2 into all cubic factors, then the degrees of integral fac-

tors must be multiples of six. Indeed if the degree sets of factorizations modulo various primes are

completely incompatible we know the input polynomial to be irreducible without the need of steps (F2)

- (F5). For this situation D. Musser has developed an interesting model which, given a random irreduci-

ble polynomial f (x) ∈ Z [x] of degree n , shows how to derive the average number µ(n) of factoriza-

tions modulo distinct primes p 1, . . . , p µ(n) needed to prove f irreducible [Musser 78]. His approach is

14

based on the fact that the degrees d 1, . . . , dr of a factorization f ≡ g 1
. . . gr modulo p , di = deg(gi)

for 1 ≤ i ≤ r and p a random prime correspond to the cycle lengths of a random permutation

(1, . . . , d 1)(d 1+1, . . . , d 1+d 2) . . . (d 1+ . . . +dr −1+1, . . . , d 1+ . . . +dr)

of n elements. We will show in section 2.3 that this property remains valid for any given polynomial

provided that its Galois group is the full symmetric group. This result is in accordance with D.

Musser’s observation since almost all polynomials have the symmetric group as Galois group [Gallagher

72].

1.4. Factorization of Multivariate Integer Polynomials

We shall begin this chapter with Kronecker’s algorithm which, for certain coefficient domains

(such as C), is still the only one known.

Algorithm 1.5: [Kronecker Factorization of f (x 1, . . . , xv) ∈ D [x 1, . . . , xv] with D being a unique

factorization domain.]

(K1) [Compute degree bound:] Obtain an integer d larger than the degree of f in any single variable.

(K2) [Reduction:] f (y) ← Sd (f) = f

y ,yd , . . . , y dv −1 

.

(K3) [Factorization:] Factor f (y) into irreducibles, i.e., f (y) = g 1(y) . . . g s (y), g i (y) ∈ D[y] for 1 ≤ i

≤ s .

(K4) [Inverse reduction and trial division:] For all products g i
1
(y) . . . g i

m
(y) (similar to step (F5) in

algorithm 1.3) perform the following test:

gi
1
, . . . , i

m
(x 1, . . . , xv) ← Sd

−1(g i
1

. . . g i
m
)

where Sd
−1 is the inverse of Sd which is additive and

Sd
−1


λy

b
1
+db

2
+ . . . +dv −1b

v

 = λx 1

b
1 . . . xv

b
v

with 0 ≤ bi < d for 1 ≤ i ≤ v , λ ∈ Z .

Test whether gi
1
, . . . , i

m
divides f and if so remove this irreducible factor from f and proceed with

its co-factor.

The correctness of this algorithm follows easily from the fact that no variable in any factor of f

can occur with degree d or higher. The running time of the algorithm depends on of how fast the

univariate polynomial f (y) can be factored, the degree of which can be substantially large. It should be

clear that step (K4) can take time exponential in the degree of f , e.g., if D = C and f is irreducible.

Unfortunately this exponential worst case complexity remains true for D = Z as we will show in section

- 16 -

17

3.2. In this case, the Hensel lemma has produced a much more efficient approach. In the following we

will take a closer look at this algorithm.

The overall structure of the multivariate factorization algorithm is remarkably close to that of algo-

rithm 1.1. First we choose a main variable x , i.e., the input polynomial h ∈ Z [y 1, . . . , yv ,x]. The

content computation of step (C) now becomes a GCD computation in Z [y 1, . . . , yv]. The squarefree

decomposition performed in step (S) can also be achieved by algorithm 1.2 if we replace the derivatives

d⁄dx by partial derivatives ∂⁄∂x and the GCDs by multivariate polynomial GCDs. However, in this case

P. Wang’s and B. Trager’s algorithm becomes more efficient [Wang and Trager 79].

The idea of their algorithm is to find an evaluation point (b 1, . . . , bv) such that if

h (y 1, . . . , yv ,x) =
i =1
Π

r

f i (y 1, . . . , yv ,x)i

is the squarefree decomposition of h , and

h (b 1, . . . , bv ,x) = h (x) =
i =1
Π

r
f i (x)i

is that of h , then r = r and f i (b 1, . . . , bv ,x) = f i (x), 1 ≤ i ≤ r . Under these conditions

f r divides g =
(r −1)!

1_ _____


 ∂x

∂_ __




r −1

(h),

f r divides g =
(r −1)!

1_ _____


 dx

d_ __




r −1

(h)

and we can lift the equation

g (y 1, . . . , yv ,x) ≡ f r (x)


 f r (x)

g (x)_ _____




modulo (y 1−b 1, . . . , yv −bv)

to determine f r from the univariate square decomposition of h , provided g ⁄f r ≠ 1. Evaluation points

for which the above conditions do not hold are, as in the modular multivariate GCD algorithm, very

rare. (Cf. lemma 3.1.)

Step (F), the complete factorization of a squarefree polynomial f (y 1, . . . , yv , x), is again a major

challenge. As in the above squarefree decomposition algorithm we evaluate the minor variables yi at

18

integers bi , 1 ≤ i ≤ v , then factor the resulting univariate polynomial f (b 1, . . . , bv ,x) and finally

rebuild multivariate factor candidates by a Hensel lifting algorithm with respect to the ideal P generated

by {(y 1−b 1), . . . , (yv −bv)}. Instead of presenting a complete algorithm we shall work out a simple

example and refer the reader to the papers by P. Wang [Wang and Rothschild 75, Wang 77, 78, 79b]

and D. Musser [Musser 76] for the details.

Example 1.1: Factor

f (y ,z ,x) = x 3 + ((y +2)z + 2y + 1)x 2

+ ((y +2)z 2 + (y 2+2y +1)z + 2y 2 + y)x

+ (y +1)z 3 + (y +1)z 2 + (y 3+y 2)z + y 3 + y 2.

The polynomial is monic and squarefree.

Step F1: Choose an evaluation point which preserves degree and squarefreeness but contains as many

zero components as possible.

y =0, z =0: f (0,0,x) = x 3 + x 2 is not squarefree

y =1, z =0: f (1,0,x) = x 3 + 3x 2 + 3x + 2 is squarefree.

Translate variables for nonzero components

f (w +1,z ,x) = x 3+3x 2+3x +2+(2x 2+5x +5)w

+(2x +4)w 2+w 3+((3x 2+4x +2)+(x 2+4x +5)w

+(x +4)w 2+w 3)z +((3x +2)+(x +1)w)z 2+(2+w)z 3

By f i j (x) we denote the coefficient of w j z i .

Step F2: Factor f 00(x) = g 00(x)h 00(x) in Z [x]. We get

x 3 + 3x 2 + 3x + 2 = (x +2) (x 2 + x + 1).

Step F3: Compute highest degrees of w and z in factors of

f (w +1,z ,x) = g (w ,z ,x) h (w ,z ,x): degw (g ,h) ≤ 3, degz (g ,h) ≤ 2.

19

Step F4: Lift g 00 and h 00 to highest degrees in w and z . We set

g (w ,z ,x) = g 00(x) + g 01(x)w + g 02(x)w 2

+ . . . + (g 10(x) + g 11(x)w + . . .)z + . . .

and

h (w ,z ,x) = h 00(x) + h 01(x)w + h 02(x)w 2

+ . . . + (h 10(x) + h 11(x)w + . . .)z

+ (h 20(x) + h 21(x)w + . . .)z 2 + . . .

and compute g 01, h 01, g 02, h 02, . . . , g 10, h 10, g 11, h 11, . . . , g 20, h 20, . . . in that sequence. Since f is

monic deg(gi j) ≤ 1 and deg(hi j) ≤ 2 for i +j ≥ 1. Multiplying g times h with undetermined gi j , hi j we

get g 00h 01 + h 00g 01 = f 01 whose unique solution is

(x +2)(x +2) + (x 2+x +1).1 = 2x 2+5x +5,

by the extended Euclidean algorithm. In the next step we get

g 00h 02 + h 00g 02 = f 02−g 01h 01

which is solved by

(x +2).1 + (x 2+x +1).0 = 2x +4 − 1.(x +2).

Finally

g 00h 03 + h 00g 03 = f 03 − g 01h 02 − g 02h 01,

or

(x +2).0 + (x 2+x +1).0 = 1 − 1.1 − 0.(x +2).

This gives factor candidates for

f (w +1,0,x) = ((x +2)+1.w +0.w 2)((x 2+x +1)+(x +2)w +w 2)

and a trial division shows them to be true factors.

We now lift z :

g 00h 10 + h 00g 10 = f 10,

or

(x +2)x + (x 2+x +1).2 = 3x 2+4x +2;

20

g 00h 11 + h 00g 11 = f 11 − g 01h 10 − g 10h 01,

or

(x +2).0 + (x 2+x +1).1 = x 2+4x +5 − 1.x − 2(x +2);

g 00h 20 + h 00g 20 = f 20 − g 10h 10,

or

(x +2).1 + (x 2+x +1).0 = 3x +2−2x.

All other equations have 0 as their right-hand sides.

The factor candidates are

f (w +1,z ,x) = 
(x +2)+w +(2+w)z





(x 2+x +1)+(x +2)w +w 2+xz +z 2 



which are the actual factors. Setting w = y −1 we obtain

f (y ,z ,x) = 
x +yz +y +z +1





x 2+(y +z)x +y 2+z 2 

.

In factoring the above sample polynomial we followed the algorithm by P. Wang [Wang 78]. Our

construction is actually a linear lifting technique. There is also the possibility of quadratic lifting

[Musser 76], but in the multivariate case, the linear algorithm seems to be more efficient [Yun 76a]. If

more than two univariate factors are present, one can again lift each one iteratively or lift them in paral-

lel as we demonstrated for the univariate case.

Various complications have been identified with the multivariate Hensel algorithm.

a) The leading coefficient problem: In our example we dealt with a monic polynomial in which case

the leading coefficients of all factors are known. If a polynomial leading coefficient is present,

one can impose it on one factor as in the univariate case, but this leads most likely to dense factor

candidates. P. Wang describes an algorithm to predetermine the actual leading coefficients of the

factors, which avoids this intermediate expression growth [Wang 78, Sec.3]. However, in section

3.3 we will choose yet another method which is not very efficient, in practice, but which is

guaranteed to work in polynomial time.

21

b) The bad zero problem: In our example, y had to be evaluated at 1 in order to preserve squarefree-

ness. The change of variables yi = wi +bi for bi ≠ 0 can make the polynomial

f (w 1+b 1, . . . , wv +bv ,x) dense. P. Wang suggests to compute the coefficients f i
1

. . . i
v
(x) of

w 1
i

1 . . . wv
i

v by Taylor’s formula without performing the substitution

f i
1

. . . i
v
(x) =

i 1! . . . iv !
1_ _________



 ∂y 1

∂_ ___




i
1

. . .


 ∂yv

∂_ ___




i
v

f (y 1, . . . , yv ,x)


y

i
=b

i

See also R. Zippel’s work on preserving sparseness [Zippel 79].

c) The extraneous factors problem: This problem is the same as in the univariate case, namely that

f (b 1, . . . , bv ,x) has more factors than f (y 1, . . . , yv ,x) (in which case we call b 1, . . . , bv

"unlucky"). One immediate consequence may be that the correction coefficients gi
1

. . . i
v
(x),

hi
1

. . . i
v
(x) have non-integral coefficients. In order to avoid working with denominators one can

choose to work with coefficients modulo a prime which preserves the squarefreeness of

f (b 1, . . . , bv ,x), and as a first step lift the coefficients. A good factor coefficient bound is given

in lemma 3.3. The algorithm 3.1 of chapter 3 provides a solution for this problem if the number

of variables is fixed.

Various implementation issues can be found in [Moore and Norman 81]. A good set of polynomi-

als for benchmarking an actual implementation of the factorization algorithm can be found in [Claybrook

76].

Little is known about the average computing time of the multivariate Hensel algorithm. The worst

case complexity can be exponential in the degree of the main variable depending on what evaluation

points one chooses. In section 3.2 we will show how to construct irreducible polynomials for which

various evaluations yield all linear factors. However, unlike in the univariate case, it cannot happen that

an irreducible polynomial factors for all possible evaluations. Actually, quite the opposite is true due to

the following theorem.

22

Theorem 1.1 (Hilbert Irreducibility Theorem): Let f (y 1, . . . , yv ,x 1,...,xt) be irreducible in Z [y 1, . . . ,

yv , x 1, . . . , xt]. By U (N) we denote the number of v -tuples (b 1, . . . , bv) ∈ Z v such that  bi  ≤ N

for 1 ≤ i ≤ v and f (b 1, . . . , bv , x 1, . . . , xt) is reducible in Z [x 1, . . . , xt]. Then there exist con-

stants α and C (depending on f) such that U (N) ≤ C (2N +1)v −α and 0 < α < 1. (Cf. [Knobloch 55]).

Unfortunately, no polynomial upper bounds on the length of C seem to be known which would

make the theorem useful for "realistic" evaluations. We will formulate the open problem 2 in section 4

in this connection. In practice lucky evaluations seem quite frequent.

A special problem is to test a polynomial f (x 1, . . . , xv) ∈ Z [x 1, . . . , xv] for absolute irreduci-

bility, that is, to test f (x 1, . . . , xv) for irreducibility in C [x 1, . . . , xv]. The first criterion probably

goes back to E. Noether [Noether 22] which also implies that if f (x 1, . . . , xr) is absolutely irreducible,

then f (x 1, . . . , xr) remains irreducible modulo almost all prime numbers. Unfortunately, the first such

prime number may be very large. A more efficient test for absolute irreducibility can be found in

[Heintz and Sieveking 81].

2. Hard-to-Factor Polynomials and Galois Groups

2.1. Introduction and Review of the Galois Theory

In section 2.2 we will generalize a class of univariate polynomials with integral coefficients attri-

buted to H.P.F. Swinnerton-Dyer by E.R. Berlekamp [Berlekamp 70, p.733]. We use Galois theoretical

methods to prove their properties of interest. Some of these results were published earlier in [Kaltofen

et al. 81].

These polynomials are of particular interest for the Berlekamp-Hensel factorization algorithm 1.3,

which determines factors modulo p and lifts them to find the integral factors of a polynomial. Because

the polynomials in the class we will define are irreducible over the integers but have a large number of

factors modulo p for every prime p , the Berlekamp-Hensel algorithm behaves badly on them. In de-

termining their irreducibility in step (F5) algorithm 1.3 needs a number of operations that is exponential

in the degree and coefficient lengths of the polynomials.

As we will see in lemma 1.3 below, the degrees of modular factors of univariate polynomials are

closely related to the cycles of the permutations in their Galois groups. While we use this relation in an

elementary fashion in section 2.2, we will formulate it as the mathematically deep Chebotarev Density

Theorem in section 2.3. This new insight will also provide us with an alternate construction of succinct

certificates for normal polynomials and those whose Galois group is small (of polynomial cardinality in

their degrees). Our construction actually provides us with a deterministic algorithm for constructing the

Galois groups but its efficiency compared to standard techniques needs further investigation.

We will use some well-known properties of the cyclotomic polynomials in various places later and

shall mention them now: Let r be an integer with r ≥ 2 and let ζr be a primitive r -th root of unity.

There always exist φ(r) distinct primitive r -th roots of unity in an extension field of Q or Zq provided

that q is a prime number not dividing r . By φ we denote Euler’s totient function. These are the

powers of ζr whose exponents are relatively prime to r . Then

- 24 -

25

Ψr (x) =

GCD(i ,r)=1
i =1
Π

r

(x −ζr
i) =

d  r
Π(xd −1)µ(r ⁄d)

denotes the r -th cyclotomic polynomial which has all integer coefficients (or their residues modulo q if

the ground field is Zq). By d  r we mean that d is a divisor of r and µ denotes the M"obius function:

µ(n) = (−1)m if n is squarefree and has m distinct prime divisors, µ(1) = 1, and otherwise µ(n) = 0.

(Cf. [van der Waerden 53, p.112].)

If ζr = exp(2πi ⁄r) (i.e. the ground field is Q) then Ψr is irreducible over Z [van der Waerden 53,

p.162].

Lemma 2.1: Let q be a prime number and let m and r be positive integers such that r is relatively

prime to q . Then

Ψrqm (x) ≡ Ψr (x)φ(qm) (mod q).

Proof: First we notice that for any integral polynomial f and any integer i ≥ 0, f (xqi

) ≡ f (x)qi

(mod q). Then by using the formulas for the cyclotomic polynomials and the M"obius function given

above the stated congruence can be easily shown.

By the Galois group of a polynomial we mean the automorphism group of its splitting field over

the field of its coefficients. Then the Galois group of Ψr over Q is isomorphic to Ur under multiplica-

tion modulo r [van der Waerden 53, p.162]. Ur denotes the set of integral residues modulo r which are

relatively prime to r .

The next two lemmas will help explain why the polynomials of section 2.2 split into so many fac-

tors modulo any prime number. First we show what happens to the Galois group when an integral poly-

nomial is projected onto a polynomial over a residue field.

Lemma 2.2: Let f be a monic separable polynomial in Z [x] and let f ∈ Zq [x] be its natural projec-

tion modulo a prime number q . If f is separable (over Zq) the Galois group of f over Zq is a sub-

group (as a permutation group on the suitably arranged roots) of the Galois group of f over Q . (Cf.

26

[van der Waerden 53, p.190].)

Lemma 2.3: Let f ∈ Zq [x] with q prime. Assume that all elements of the Galois group of f (as per-

mutations on the distinct roots of f) are written as products of disjoint cycles. Then f does not contain

an irreducible factor with degree greater than the length of the longest cycle.

Proof: The statement follows immediately from the statement made about the generating element of the

Galois group of f in [van der Waerden 53, p.191].

We now summarize some properties of Galois fields. Let GF(q n) be the splitting field of xqn

−x

as a polynomial in x with coefficients in Zq , q being a prime number. Then GF(q n) is a finite field

with q n elements of characteristic q whose multiplicative group is cyclic. All fields with q n elements

are isomorphic to GF(q n) and hence it is called the Galois field with q n elements. The degree

[GF (q n):Zq] is n and GF(q n) has exactly one subfield with q m elements, GF(q m), provided that m

divides n . The automorphism group on GF(q n) is isomorphic to Zn under addition and one of its gen-

erators maps each element α of GF(q n) into αq (the so called Frobenius automorphism) [van der Waer-

den 53, p.115].

Let f be an irreducible polynomial of degree n with coefficients in Zq , q being prime, and let α

be a root of f . Since Zq (α) is isomorphic to Zq [x]⁄(f (x)), the residues modulo f , Zq (α) contains q n

elements and thus α ∈ GF (q n). The remaining roots of f are αq , . . . , αqn −1

because of the structure

of the Galois group mentioned above.

2.2. Univariate Polynomials That Are Hard to Factor

Let n be a positive integer and let r be an integer with r ≥ 2. By ζr we denote exp(2πi ⁄r), the

first primitive r -th root of unity. Let p 1, . . . , pn be n distinct positive prime numbers. By

f r ;p
1
, . . . , p

n
(x) we denote the monic univariate polynomial in x whose roots are

ζr
i

1 p 1
1⁄r + . . . + ζr

i
n pn

1⁄r

with 1 ≤ i 1, . . . , in ≤ r.

All f r ;p
1
, . . . , p

n
have integral coefficients and are irreducible polynomials of degree r n over the in-

tegers. If r is a prime number, the following will be shown: If the coefficients of f r ;p
1
, . . . , p

n
are pro-

jected into a field of residues modulo any prime number q , Zq , the image polynomials f r ;p
1
, . . . , p

n

(mod q) factor into irreducible polynomials over Zq which have degree at most r .

If r = 2 this construction gives a slightly simpler version of the Swinnerton-Dyer polynomials

which treat √ −1 as an additional prime number. But our Galois theoretical proofs can be easily extended

to yield this special case.

The condition of r being a prime number is not crucial for the unpleasant running time behavior

for the factorization of these polynomials. For composite r the degrees of the irreducible factors in the

modular domain are then bounded by r 2 (we will actually prove a somewhat better bound).

A modified version of these polynomials is also presented because of its closely related properties:

By f r ;p
1
, . . . , p

n

* we denote the polynomial whose roots are

ζr
i

0 + ζr
i

1 p 1
1⁄r + . . . + ζr

i
n pn

1⁄r

where 1 ≤ i 0, i 1, . . . , in ≤ r and GCD(i 0,r) = 1.

Again all f r ;p
1
, . . . , p

n

* are integer polynomials which factor modulo any prime q into polynomials

whose degrees are bounded as for f r ;p
1
, . . . , p

n
. If r is 2, 4, 6 or an odd integer, f r ;p

1
, . . . , p

n

* is also irre-

ducible over the integers. Otherwise these polynomials may be reducible but we can guarantee that all

- 28 -

29

factors over the integers are of degree at least 2r n .

If n = 0, f r ;∅
* are the cyclotomic polynomials Ψr (x). We will show that for certain composite r

the maximum degree of factors in any residue field implies a super-polynomial running time for the

Berlekamp-Hensel factorization algorithm. This fact is discussed in [Musser 75, p.302]. D. Knuth

[Knuth 81, p.437] uses Berlekamp’s algorithm to prove the modular factorization property for Ψ8.

We need some number theoretic facts which we shall establish now. Let r be an integer with

r ≥ 2. As above, by Ur we denote the set of residues modulo r which are relatively prime to r . This

set forms a group under multiplication modulo r and there exists a minimal non-negative integer λ(r)

such that for each s ∈ Ur : s λ(r) ≡ 1 (mod r). We call λ(r) the minimum universal exponent modulo r .

It is known (cf. [Knuth 81, p.19]) that

λ(2) = 1, λ(4) = 2, λ(2α) = 2α−2 for α ≥ 3

λ

2

α
0q 1

α
1 . . . qn

α
n

 = LCM


λ(2

α
0),φ(q 1

α
1), . . . , φ(qn

α
n)




where the qi are distinct odd prime numbers, φ is Euler’s totient function and LCM means the least

common multiple. Let pi be the i -th consecutive prime number. As a consequence of Tchebycheff’s

theorem pi < 2i for all i > 1 [Hardy and Wright 79, Theorem 418, p.343]. This enables us to prove the

following:

Lemma 2.4: Let j be an integer with j ≥ 2. Then there are infinitely many positive integers m

(namely the product of the first k odd prime numbers with k sufficiently large) such that

λ(m)
φ(m)_ ____ > log2(φ(m))j .

Proof: Let m = p 2
. . . pk . Then

φ(m) = (p 2−1) . . . (pk −1) < 2k (k +1)⁄2−1

by the above estimate for pi . Therefore log2(φ(m))j < k 3j . Also

λ(m) = LCM(p 2−1, . . . , pk −1) < 2(p 2−1)⁄2 . . . (pk −1)⁄2 = 22−k φ(m).

Hence φ(m)⁄λ(m) > 2k −2 > k 3j for k chosen large enough. Therefore for all sufficiently large k :

30

φ(m)⁄λ(m) > log2(φ(m))j .

In the proof of theorem 2.2 below we will make use of the fact that for every prime number r and

for all s ∈ Ur −{1}:
s −1

s r −1−1_ _____ is a multiple of r . This follows from the Fermat theorem (a φ(b) ≡ 1

(mod b) for (a ,b) = 1) and the fact that r is a prime number. In order to treat composite r we general-

ize this matter:

Lemma 2.5: Let r be a positive composite integer. By η(r) we denote the minimum exponent such

that for each s ∈ Ur −{1}:
s −1

s η(r)−1_ ______ is divisible by r . Then η(r) ≤ r λ(r). In fact, η(r) ≤ d λ(r) where

d = LCM({(s −1,r)  s ∈ Ur −{1}}).

Proof: Since for any s , GCD(s −1,r) divides r so must d and therefore d ≤ r . We claim that

(s d λ(r)−1)⁄(s −1) is a multiple of r : To prove this we first factor s d λ(r)−1 as

(s λ(r)−1) (s (d −1)λ(r)+s (d −2)λ(r)+ . . . +1).

Now the left factor is a multiple of r . It is therefore sufficient to show that the right factor is a multiple

of d since that means it can absorb any factor of r in s −1 (by definition of d). But

s k λ(r) ≡ (s λ(r))k ≡ 1 (mod d) for 0 ≤ k ≤ d −1

since d divides r and thus

(s (d −1)λ(r)+ . . . +1) ≡ d. 1 ≡ 0 (mod d),

as required. Therefore η(r) ≤ d λ(r) ≤ r λ(r).

Let f and g be two monic polynomials whose coefficients lie in some integral domain R . Let αi ,

1 ≤ i ≤ deg(f) and βj , 1 ≤ j ≤ deg(g) denote their roots respectively. Since the polynomial

i =1
Π

deg(f)

j =1
Π

deg(g)

(x −αi −βj)

is symmetric in both the αi and the βj it follows from the fundamental theorem of symmetric functions

[van der Waerden 53, p.79] that its coefficients also lie in R . There is a resultant method which makes

it feasible to actually compute this polynomial:

31

Lemma 2.6: Let R be an integral domain and let f and g be monic polynomials in R [x]. Then the

resultant

(−1)deg(f) deg(g) resy (f (x −y),g (y))

is a monic polynomial in R [x] of degree deg(f) deg(g) whose roots are αi +βj where αi (1 ≤ i ≤

deg(f)) are the roots of f and βj (1 ≤ j ≤ deg(g)) are the roots of g . (Cf. [Loos 82].)

Now we mention a slight generalization of Eisenstein’s irreducibility criterion, which can be used

to show the irreducibility of some but not all of our polynomials.

Lemma 2.7: Let f (x) = a 0+a 1x + . . . +an xn ∈ Z [x]. If there exists a prime number p and an

exponent i relatively prime to n such that p i  a 0, p i  a 1, . . . , p i  an −1, p / an , p i +1 / a 0 then f

is irreducible over Z .

(Cf. [K"onigsberger 1895].)

Notice that the condition GCD(i ,n) = 1 in the above lemma is also necessary, because

x 4+4x 3+8x 2+8x +4 = (x 2+2x +2)2 yields a counterexample if this is not the case.

The next two lemmas constitute the key for our irreducibility proofs. By [K :F] we denote the de-

gree of a field K over a subfield F and by F (θ1, . . . , θn) we denote the field F extended by the ele-

ments θ1, . . . , θn .

Lemma 2.8: Let r be an integer with r ≥ 2, ζr a primitive r -th root of unity, and let p 1, . . . , pn be

distinct positive primes:

a) [Q (p 1
1⁄r , . . . , pn

1⁄r):Q] = r n .

b) If r ≥ 3 then 2r n ≤ [Q (ζr ,p 1
1⁄r , . . . , pn

1⁄r):Q] ≤ φ(r) r n .

c) If r is odd or 2, 4, or 6 then [Q (ζr ,p 1
1⁄r , . . . , pn

1⁄r):Q] = φ(r) r n .

Proof: Part a) is proven in [Besicovitch 40]. Part b) follows immediately from part a) and the fact that

for r ≥ 3 every ζr is a non-real number of algebraic degree φ(r) over Q . Part c) is proven for odd r in

32

[Richards 74] which is also a special case of [Caviness 68, Theorem 10, p.50]. If r = 2 part c) is actu-

ally the same as part a) because ζ2 = -1. For r = 4 or 6 we combine part b) and the fact that both φ(4)

and φ(6) are 2.

Notice that part c) may not hold for even r ≥ 8 depending on what primes p 1, . . . , pn are

chosen. Counterexamples may be constructed using the fact that √ 2 ∈ Q (ζ8) or √ 5 ∈ Q (ζ10).

Lemma 2.9: Let r be an integer ≥ 2, ζr a primitive r -th root of unity, and let p 1, . . . , pn be distinct

prime numbers. Then pn
1⁄r is not an element of the field Q (ζr , p 1

1⁄r , . . . , pn −1
1⁄r).

Proof: If r is 2 the fact follows from part a) of lemma 2.8. By Fk we denote the field

Q (ζr ,p 1
1⁄r , . . . , pk

1⁄r) with 1 ≤ k ≤ n . Now assume that r ≥ 3 and pn
1⁄r ∈ Fn −1 which implies that Fn

= Fn −1. Applying part b) of lemma 2.8 we get 2r n ≤ [Fn :Q] = [Fn −1:Q] ≤ φ(r)r n −1, which is impossi-

ble.

The following lemma will enable us to give an alternate proof of theorem 2.2:

Lemma 2.10: Let m ∈ Zq , q being prime, and let r be an integer greater than 1.

a) A necessary and sufficient condition for the existence of an r -th root of m in Zq (i.e. a residue b

such that b r ≡ m (mod q)) is that r is either relatively prime to q −1 or m (q −1)⁄d ≡ 1 (mod q)

where d = GCD(q −1,r). (Cf. [van der Waerden 53, p.118, Exercise 2].)

b) The polynomial xr −m in Zq [x] has at least one root α such that α ∈ GF(q d) and d divides r .

Proof: a) Let g be a primitive root of Zq i.e. a generating element of Zq −{1} with multiplication. Then

g , g 2, . . . , g q −1=1 are distinct residues modulo q . If GCD(r ,q −1)=1 then g r , g 2r , . . . , g (q −1)r =1 are

also distinct residues and therefore exactly one element is equal to m . If b is an r -th root of m then by

Lagrange’s theorem

b (q −1)r ⁄d ≡ m (q −1)⁄d ≡ 1 (mod q) where d = GCD(q −1,r).

We finally prove that if m (q −1)⁄d ≡ 1 (mod q) then m ≡ g jr (mod q) for some integer j ≥ 1. Assume m

33

≡ g i (mod q) and d does not divide i . Then q −1 does not divide i (q −1)⁄d and therefore

m (q −1)⁄d ≡ g i (q −1)⁄d ≡/ 1 (mod q).

Hence m ≡ g kd (mod q) with k ≥ 1. Since GCD(r ⁄d ,q −1) = 1 there exists a j ≡ k (r ⁄d)−1 (mod q −1)

and therefore m ≡ g kd ≡ g jr (mod q). (Notice that this proof works also if we replace Zq by GF(q n).)

b) We use induction on r : For r = 1 the statement is trivial. Assume that r > 1. We now distinguish

two cases:

Case 1: There is a factor r 1 > 1 of r such that an r 1-th root m 1 of m exists in Zq . By part a) we

already know that this is always true if r / q −1. Let r 2 = r ⁄r 1. Then

xr −m ≡ x
r

1
r

2−m 1
r

1 ≡ (x
r

2−m 1)(x
(r

1
−1)r

2+x
(r

1
−2)r

2m 1+ . . . +m 1
r

1
−1

) (mod q).

Applying the induction hypothesis to x
r

2−m 1 yields the statement for r .

Case 2: r divides q −1. Let α be a root of xr −m and let ζr be a primitive r -th root of unity both of

which lie in some Galois field. Let h be the minimal polynomial of α over Zq whose constant coeffi-

cient be denoted by h 0. Since h (x) divides xr −m ≡ (x −α)(x −ζr α) . . . (x −ζr
r −1α), it follows that h 0 =

ζr
tαs with s = deg(h) and t some positive integer. Therefore h 0

r = m s . If d = GCD(s ,r) we can find

suitable integers u , v such that us + vr = d . Then m d = m us m vr = h 0
urm vr = (h 0

um v)r which implies

that m d possesses an r -th root in Zq . From part a) we conclude that m d (q −1)⁄r ≡ 1 (mod q) and further

that there exists an r ⁄d -th root of m . If s < r then r ⁄d > 1 and we can apply case 1. Otherwise xr −m

is already irreducible.

Case 2 of the above proof yields an interesting side result: Let q be a prime and r an integer

dividing q −1. Then xr −m is irreducible over Zq if m (q −1)⁄d ≡/ 1 (mod q) for all divisors d of r . As we

showed in part a) of the above lemma this is true for all m of the form g i where g is a primitive root of

Zq and GCD(i ,r)=1. Hence by picking a random residue m the probability that xr −m does not factor

in Zq [x] is φ(r)⁄r . Choosing an r -th degree polynomial randomly only yields a probability of 1⁄r

[Rabin 80]. Moreover it follows from theorem 328 in [Hardy and Wright 79, p.267] that

34

φ(r)⁄r > 0.56⁄log log r for almost all r . Therefore in searching for irreducible polynomials in Zq [x] of

degree r , r a divisor of q −1, we will succeed considerably sooner by choosing the above polynomials

than entirely random ones.

Theorem 2.1: Let r be an integer with r ≥ 2 and let p 1, . . . , pn be distinct prime numbers. Then

f r ;p
1
, . . . , p

n
and f r ;p

1
, . . . , p

n

* have integer coefficients and the following irreducibility conditions hold:

a) f r ;p
1
, . . . , p

n
is irreducible over the integers and each irreducible factor of f r ;p

1
, . . . , p

n

* over the inte-

gers with r ≥ 3 has degree at least 2r n .

b) If r = 2, 4, 6 or odd then f r ;p
1
, . . . , p

n

* is irreducible.

Proof: Using lemma 2.6 inductively we see that the coefficients of f r ;p
1
, . . . , p

n
and f r ;p

1
, . . . , p

n

* are inte-

gers and that their degrees are r n and φ(r)r n respectively. (Notice that Ψr has integer coefficients as

mentioned before.) First we prove by induction that p 1
1⁄r + . . . + pn

1⁄r is a primitive element of

Q (p 1
1⁄r , . . . , pn

1⁄r). We make use of the construction of a primitive element given in [van der Waer-

den 53, p.126]: Let α1 = p 1
1⁄r + . . . + pn −1

1⁄r and α2, . . . , αrn −1 be the remaining roots of f r ;p
1
, . . . , p

n −1
.

By the induction hypothesis Q (α1) = Q (p 1
1⁄r , . . . , pn −1

1⁄r). The minimal polynomial of α1 is of degree

[Q (α1):Q] which is r n −1 by lemma 2.8. Therefore f r ;p
1
, . . . , p

n −1
is this minimal polynomial. Let

β1 = pn
1⁄r , β2, . . . , βr be the roots of xr −pn which is irreducible by Eisenstein’s criterion (lemma 2.7).

Then α1+β1 is a primitive element of

Q (α1,β1) = Q (p 1
1⁄r , . . . , pn

1⁄r)

provided that α1+β1 ≠ αi +βj for 1 ≤ i ≤ r n −1 and 1 < j ≤ r . For the sake of contradiction assume that

this condition cannot be achieved, namely there exist an i and a j > 1 such that α1−αi = β1−βj . Since

βj = ζr
k pn

1⁄r for some k ≥ 1 it follows that α1−αi = pn
1⁄r (1−ζr

k) and therefore pn
1⁄r = (α1−αi)⁄(1−ζr

k)

which is an element of Q (ζr , p 1
1⁄r , . . . , pn −1

1⁄r), in contradiction to lemma 2.9. Noticing that Ψr is ir-

reducible we can prove in exactly the same way that ζr + p 1
1⁄r + . . . + pn

1⁄r is a primitive element of

Q (ζr , p 1
1⁄r , . . . , pn

1⁄r). (However, the αi will be the roots of an irreducible factor of f r ;p
1
, . . . , p

n −1

* .)

35

We now conclude that the minimal polynomials of these primitive elements are of the same degree as

the field extensions obtained by adjoining them to the rationals which we know by lemma 2.8, part a)

and c). Therefore f r ;p
1
, . . . , p

n
and, in the case that r = 2, 4, 6 or an odd integer, f r ;p

1
, . . . , p

n

* are these

minimal polynomials and hence must be irreducible. All irreducible factors of f r ;p
1
, . . . , p

n

* have degree

at least 2r n because all roots are primitive elements by the argument above and the lower bound of the

corresponding field extension is known from lemma 2.8b).

Theorem 2.2: Let r be an integer with r ≥ 2 and let p 1, . . . , pn be prime numbers. For any prime

number q the following factorization properties hold for the projected polynomials f r ;p
1
, . . . , p

n
(mod q)

and f r ;p
1
, . . . , p

n

* (mod q):

a) The maximum degree of any irreducible factor of both polynomials over the residue field modulo

q is at most r λ(r). Special case: If r is a prime number the maximum degree is r .

b) If n = 0 then the maximum degree of an irreducible factor of f r ;∅
* (mod q) = Ψr (mod q) is λ(r).

Proof: a) We first show that the length of the longest cycle in any permutation of the Galois group of

f r ;p
1
, . . . , p

n
or f r ;p

1
, . . . , p

n

* is at most max(r ,η(r)), where η(r) is as defined in lemma 2.5. Let σ be an

automorphism on Q (ζr , p 1
1⁄r , . . . , pn

1⁄r). As such it has to map the roots of the polynomials Ψr and

xr −pi into roots of the same polynomials. In particular σ(ζr) = ζr
s

σ where ζr is a primitive r -th root of

unity and s σ is relatively prime to r . Also σ(pi
1⁄r) = ζr

m
i pi

1⁄r , where the mi depend also on σ (1 ≤ i ≤

n). (Notice that ζr generates all distinct r -th roots of unity.) We now distinguish two cases:

Case 1: s σ = 1. Applying σ r times we get σ(r) (pi
1⁄r) = pi

1⁄r for all 1 ≤ i ≤ n and therefore σ(r) maps

each root of f r ;p
1
, . . . , p

n
and f r ;p

1
, . . . , p

n

* onto itself which is to say that the permutation corresponding to

σ has cycles of length at most r .

Case 2: s σ > 1. By lemma 2.5 we know that both

s σ
η(r) ≡ 1 (mod r) and

s σ−1

s σ
η(r) −1_ ______ ≡ 0 (mod r).

36

A short computation shows that then

σ(η(r))(ζr) = ζr and σ(η(r))(pi
1⁄r) = pi

1⁄r

for all 1 ≤ i ≤ n . Therefore the cycle lengths of the permutation corresponding to σ are at most η(r).

Cases 1 and 2 together prove the statement made initially. If the image polynomials are separable we

are finished by virtue of the lemmas 2.2, 2.3 and 2.5. But we can repeat the above arguments for auto-

morphisms on the splitting field of f r ;p
1
, . . . , p

n
(mod q) itself because as we mentioned before the

properties of r -th roots of unity carry over for ground fields of characteristic q , provided that q does not

divide r . Finally let q m be the highest power of q dividing r . By using the identity introduced in the

proof of lemma 2.1 and by using lemma 2.1 itself we can determine the multiplicities of the roots of

Ψr (mod q) and xr −pi (mod q) (which lie in some Galois field). Therefore

f r ;p
1
, . . . , p

n
≡ 


f r ⁄qm ;p

1
, . . . , p

n




qmn

(mod q)

and

f r ;p
1
, . . . , p

n

* ≡ 
f r ⁄qm ;p

1
, . . . , p

n

* 


φ(qm)qmn

(mod q).

It follows from the formula for λ given at the beginning of this section that λ(r ⁄q m) divides λ(r). Then

by lemma 2.5 and the already proven theorem for the case that q does not divide r we conclude that the

maximum degree in this case is r ⁄q m λ(r ⁄q m) < r λ(r). If r is a prime number the above proof together

with the remark made above lemma 2.5 actually gives the degree bound r .

b) If Ψr (mod q) is separable we know its Galois group to be a subgroup of Ur under multiplication

modulo r . (This by lemma 2.2 but one may verify it directly.) The definition of λ and lemma 2.3 then

lead to the statement. If Ψr (mod q) is inseparable q necessarily divides r. Again putting together the

above, lemma 2.1 and the fact that λ(r ⁄q m) divides λ(r) proves the theorem for this case.

In special cases the bound r λ(r) is actually too pessimistic: If the image polynomial is separable

or more generally if q does not divide r we have actually proven that the bound is max(r ,η(r)) which

may be considerably smaller than r λ(r). One can show that this is generally true by proving that η(d)

37

is not larger than η(r) for any divisor d of r . By lemma 2.10a) we also know that each pi possesses an

r -th root in Zq if r is relatively prime to q −1. Then the maximum degree over Zq can be bounded by

λ(r) instead. The second case of lemma 2.10a) applies as well.

We now present a second proof of theorem 2 expanding ideas from [Berlekamp 70, p.734] with

the help of lemma 2.10b). However, this method does not introduce the function η and therefore in

view of the preceeding remarks is somewhat weaker.

Alternate Proof of Theorem 2.2: If q divides r we must apply the same reduction as in the last part of

the previous proof. Now assume that q / r . We will show part b) first:

b) Let α be a root of an irreducible factor g of Ψr (mod q). Then g is separable and the remaining

roots are αq , αq2

, . . . , αqdeg(g)−1

. However q λ(r) ≡ 1 (mod r) and also αr = 1 which implies αqλ(r)

= α.

Therefore deg(g) ≤ λ(r).

a) By lemma 2.10 b) and the observation about the subfields of a Galois field we know that at least one

root of each xr −pi , 1 ≤ i ≤ n lies in GF(q r). From part b) above we conclude that all r -th roots of

unity are in a GF(q s) with s ≤ λ(r). Therefore all roots of xr −pi and Ψr lie in GF(q rs) and hence any

sum of them does also. If f r ;p
1
, . . . , p

n
(mod q) or f r ;p

1
, . . . , p

n

* (mod q) had an irreducible factor g of de-

gree greater than rs then one of its roots would generate GF(q deg(g)). But we know that this root lies in

GF(q rs). Therefore deg(g) ≤ rs ≤ r λ(r).

One may use lemma 2.6 in connection with a method to compute cyclotomic polynomials [Knuth

81, Sec.4.6.2, Exercise 32] to actually generate sample polynomials.

Example 2.1: n =0:

f 8;0
* (x) = Ψ8(x) = x 4+1, λ(x) = 2. (1)

f 12;0
* (x) = Ψ12(x) = x 4−x 2+1, λ(12) = 2. (2)

f 15;0
* (x) = Ψ15(x) = x 8−x 7+x 5−x 4+x 3−x +1, λ(15) = 4. (3)

n =1:

38

f 3;2
* (x) = x 6+3x 5+6x 4+3x 3+9x +9. (4)

f 8;2
* (x) = (x 16+4x 12−16x 11+80x 9+2x 8+160x 7

+128x 6−160x 5+28x 4−48x 3+128x 2−16x +1) (5)

(x 16+4x 12+16x 11−80x 9+2x 8−160x 7

+128x 6+160x 5+28x 4+48x 3+128x 2+16x +1).

n =2:

f 2;2,3(x) = x 4−10x 2+1. (6)

f 3;2,3(x) = x 9−15x 6−87x 3−125. (7)

f 4;2,3(x) = x 16−20x 12+666x 8−3860x 4+1. (8)

f 5;2,3(x) = x 25−25x 20−3500x 15−57500x 10+21875x 5−3125. (9)

f 3;2,3
* (x) = x 18+9x 17+45x 16+126x 15+189x 14+27x 13−540x 12

−1215x 11+1377x 10+15444x 9+46899x 8+90153x 7 (10)

+133893x 6+125388x 5+29160x 4−32076x 3+26244x 2

−8748x +2916.

n =3:

f 2;2,3,5 = x 8−40x 6+352x 4−960x 2+576. (11)

f 2;−1,2,3 = x 8−16x 6+88x 4+192x 2+144. (12)

Example 2.1 illustrates very well our results: All but polynomial (5) are irreducible over the integers.

Since √ 2 ∈ Q (ζ8) we also know that (5) must be composite. Notice here that lemma 2.7 cannot be used

to show the irreducibility of (4), (9), (11) and (12). All the polynomials (1)-(12) factor in any modular

field into polynomials of smaller degrees and make excellent test cases for implementations of the Berle-

kamp-Hensel factorization algorithm. E.g. polynomial (10) factors

mod 7: (x 3+x 2+4x +3)(x 3+2x 2+5x +5)(x 3+2x 2+4x +2)

(x 3+x 2+3x +5)(x 3+2x 2+2x +3)(x 3+x 2+x +2)

mod 17: (x 2+12x +16)(x 2+16x +7)(x 2+9x +13)(x 2+9x +9)

(x 2+16x +16)(x 2+12x +9)(x 2+5x +7)(x 2+16x +1)(x +8)2

mod 103: (x 3+9x 2+27x +25)(x 3+62x 2+11x +28)(x 3+73x 2+94x +28)

(x 3+39x 2+95x +32)(x 3+92x 2+6x +25)(x 3+43x 2+67x +32)

mod 1979: (x 2+1823x +1632)(x 2+85x +6)(x 2+828x +749)

(x 2+1069x +6)(x 2+1069x +749)(x 2+1069x +1632)

(x 2+1069x +878)(x 2+85x +1744)(x 2+828x +1744)

39

The variation of the maximum degree bound for different primes will be explained in section 2.3.

The Berlekamp-Hensel factorization algorithm contains the following "bottleneck" [Knuth 81,

p.434]: If f is a polynomial of degree k and splits in a chosen residue field into j irreducible factors

then one must perform at least 2j −1−1 trial divisions to prove its irreducibility over the integers in step

(F5) of algorithm 1.3. In the case of f r ;p
1
, . . . , p

n
, k = r n and j ≥ r n −1⁄λ(r) and hence at least

2rn −1⁄λ(r)−1−1 steps are executed. Fixing r gives an O (2k) lower timing bound for these inputs. We will

show below that the lengths of the coefficients are bounded by O (k log log(k)) and thus the worst case

time complexity of the Berlekamp-Hensel algorithm is indeed an exponential function of the degree and

coefficient lengths of its inputs. Since the degrees of all irreducible factors of f r ;p
1
, . . . , p

n
(mod q) are

independent of n the modifications of this algorithm suggested in [Musser 78] do not eliminate the

exponential running time behavior.

The cyclotomic polynomials Ψm with m chosen as in lemma 2.4 are significant because even if

Ψm (mod q) is not squarefree then the multiplicities of its factors are prime divisors of m , which are a

small numbers compared to deg(Ψm) = φ(m). The number of irreducible modular factors causes a

super-polynomial running time for the Berlekamp-Hensel algorithm due to lemma 2.4.

Finally we establish certain bounds for the coefficients of our polynomials when the primes pi are

as small as possible. For a polynomial f , let  f  1 denote the sum of the absolute values of the coeffi-

cients of f .

Theorem 2.3: Let r be an integer ≥ 2 and let p 1, . . . , pn be the first n primes.

a) log( f  1) = O (deg(f) log log(deg(f))) for f = f r ;p
1
, . . . , p

n
and for f = f r ;p

1
, . . . , p

n

* .

b) log2( Ψm  1) ≤ φ(m) for m ≥ 1.

Proof: Given f (x) = a 0 + a 1x + . . . + ak −1x
k −1 + xk ∈ Z [x], let B denote the maximum of the abso-

lute values of the roots of f . Then, since the coefficients are the elementary symmetric functions of the

40

roots, it follows that ai ≤ 
i
k 

 B k −i for 0 ≤ i ≤ k . Therefore  f  1 ≤ (B +1)k .

a) For f = f r ;p
1
, . . . , p

n
the maximum absolute value of the roots is B = p 1

1⁄r + . . . + pn
1⁄r and for

f * = f r ;p
1
, . . . , p

n

* it is B * = 1+B . Using the prime number distribution law [Hardy and Wright 79,

Theorem 8, p.10] we know that pi is of order O (i log(i)), so that B and B * are of order O (n 2). Since

r is fixed n is of order O (log deg(f)) and O (log deg(f *)). Taking the logarithm of the previous in-

equality for the norm immediately establishes part a).

b) Every root of Ψm has absolute value 1 and hence  Ψm  1 ≤ (1+1)φ(m).

2.3. Computation of Galois Groups

In this section, we will exploit the Chebotarev Density Theorem for the explicit construction of

the Galois groups of univariate integer polynomials. In order to formulate our results, we need a con-

structive definition of the Frobenius element. This requires some fundamental results of the theory of

algebraic integers which we shall present now. The reader can find the corresponding proofs in most

any book on algebraic number theory, e.g. [Narkiewicz 74, Chap.2 and Chap.8].

Let f be a monic irreducible polynomial over Z , such that f is also normal, i.e., any root of f

generates the complete splitting field of f . Let α be a root of f . If K is an algebraic number field then

all elements, whose minimal polynomials are monic, form a subring of K , the ring of algebraic integers

of K denoted by RK . Let n = deg(f) and hence [Q (α):Q] = n . There exist algebraic integers b 1, . . . ,

bn ∈ RQ (α) such that {b 1, . . . , bn } generates RQ (α) over Z . We call {b 1, . . . , bn } an integral basis of

RQ (α). We shall use two notations for the Galois group of Q (α). GQ (α) denotes the group of all auto-

morphisms of Q (α), Gf the group of all corresponding permutations of roots of f . The trace of an ele-

ment x ∈ Q (α) is defined as

TQ (α)(x) =
σ∈G

Q (α)

Σ σ(x),

which is a rational number. The discriminant of the field Q (α) is defined by

DQ (α) = det [TQ (α)(bi bj)]i ,j =1, . . . , n

which is independent of the choice for the integral basis {bi }. By 1⁄m RQ (α), m ∈ Z , we denote those

algebraic numbers, which when multiplied by m become algebraic integers. Let ∆f denote the discrim-

inant of f , i.e., ∆f = res(f ,f ′).

Lemma 2.11. If f ∈ Z [x] is monic, normal and irreducible with the root α then ∆f = m 2 DQ (α), where

m is the index of the Z -module Z [α] generated by {1, α, . . . , αn −1} in RQ (α). Furthermore, RQ (α) ⊆

1⁄m Z [α] ⊆ 1⁄∆f Z [α].

Proof: The equation ∆f = m 2 DQ (α) is a special case of [Narkiewicz 74, Proposition 2.6]. There it is

- 44 -

45

proven that for an integral basis {bi } of RQ (α) the set {c 1, . . . , cn } with

ci =
k =1
Σ
i

dik bk (dik ∈ Z), (A)

under the condition that ci ∈ Z [α] and dii positive and as small as possible, generates Z [α] over Z .

Also m =
i =1
Π

n

dii which, by Cramer’s rule applied to (A), yields bi ∈ 1⁄m Z [α]. Since {bi } forms an

integral basis, we obtain RQ (α) ⊆ 1⁄m Z [α].

A prime number p which does not divide ∆f is called unramified. By f p we mean f taking each

coefficient modulo p ; f p ∈ Zp [x]. We shall now focus on the prime ideals in RQ (α). The following

lemma contains a classical result by E. Kummer.

Lemma 2.12: Let f ∈ Z [x] be monic, normal and irreducible with the root α and let p be an

unramified prime. Furthermore, let f p ≡ f 1
. . . f r modulo p with f i monic and (f i)p irreducible in

GF(p)[x].

a) The degrees of all f i are equal, i.e.

deg f 1 = . . . = deg f r = s.

b) The only prime ideals in RQ (α) containing pZ are

Pi = pRQ (α) + f i (α)RQ (α),

which are also maximal.

Proof: a) Let α1, α2, . . . , αn be the roots of f . By lemma 2.11, there exist polynomials

gi ∈ 1⁄m Z [x] such that gi (α) = αi , 2 ≤ i ≤ n . Now let αp be a root of (f i)p . Since p does not

divide m , all other roots of f p can be computed by (gi)p (αp). Therefore, the splitting field of f p is

GF(p s) and deg(f i)p = s .

b) Assume P ⊇ pZ is a prime ideal in RQ (α). Since f 1(α) . . . f r (α) ∈ pZ [α] ⊆ P , at least one

f i (α) ∈ P . Therefore, Pi ⊆ P for some i ∈ {1, . . . , r }.

46

Let y ∈ P . By lemma 2.11 we can write y = g (α) with g (x) ∈ 1⁄m Z [x]. Let g = m (m −1 mod p)g .

We show first that if (f i)p divides g p then y ∈ Pi . Then we prove that if (f i)p does not divide g p then

P = RQ (α), which also establishes the maximality of Pi , and finally that Pi is prime.

First assume that g = q f i + r with q , r ∈ Z [x], r p =0. Then (g − q f i)(α) = pr (α) ∈ RQ (α) with

r (x) ∈ 1⁄m Z [x]. We have to show that r (α) ∈ RQ (α). Let pr (α1), . . . , pr (αk) be the conjugates of

pr (α). Then
i =1
Π

k

(x −pr (αk)) ∈ Z [x] and since p does not divide m , we conclude that also

i =1
Π

k

(x −r (αk)) ∈ Z [x], i.e., r (α) ∈ RQ (α). Therefore

y = g (α) = q (α)f i (α) + pr (α) ∈ Pi .

Now assume that (f i)p does not divide g p . Then, since (f i)p is irreducible, the resultant

R = res(f i ,g) ≠ 0 mod p , but R ∈ P (g (α) ∈ P) and therefore P = RQ (α).

We proceed to show that 1 ∈ ⁄ Pi . Assume it were, i.e., there exist y 1 = g 1(α), y 2 = g 2(α) ∈ RQ (α) such

that py 1 + f i (α)y 2 = 1. Then (f i)p (g 2)p ≡ 1 mod f p which is impossible since (f i)p divides f p .

Finally, we establish the primality of Pi . Let y 1 = g 1(α), y 2 = g 2(α) ∈ RQ (α) s.t. y 1y 2 ∈ Pi . Then

(g 1g 2 )(α) ∈ Pi and therefore (f i)p divides (g 1g 2 )p . Since (f i)p is irreducible, (f i)p divides either one of

the polynomials (g 1)p or (g 2)p , say the first one. From the above it follows then that y 1 ∈ Pi .

Lemma 2.12 actually shows that the fields RQ (α) mod Pi , GF(p)[x] mod (f i)p , and GF(p s) are

isomorphic. From lemma 2.2 and the remarks on Galois fields in section 2.1 we deduce that the Galois

group Gf
p

is a cyclic subgroup of Gf with one distinguished generator, isomorphic to the Frobenius

automorphism β → βp for all β ∈ GF(p s). Let f be a monic integer polynomial of degree n , not

necessarily irreducible, whose splitting field is Q (α). Assume further that f p is squarefree. We now

identify the Frobenius automorphism under the permutations of Gf . Let

f (x) ≡ (x −g 1(α))(x −g 2(α)) . . . (x −gn
(α)) mod f (α) (2.1)

with gk ∈ 1⁄m Z [α], and let

47

hk ,i = (gk)p mod (f i)p , 1 ≤ k ≤ n .

If αi is a root of (f i)p , then the elements hk ,i (αi) are all roots of f p . Let

f 1
. . . f r

≡ f mod p

be a factorization of f into irreducibles with deg(f i) = s i . Let hk
j
,i (αi) be a root of (f j)p and let hk (t),i

denote hk ,i
t mod (f i)p . Notice that if t is a power of p the index k (t) is uniquely determined because

f p does not possess multiple roots. Then the permutation


k 1,k 1

(p) , . . . , k 1
(p

s


1
−1

) 
 . . . 

kr
,kr

(p), . . . , kr
(p

s


r


−1

) 
 (2.2)

is the image of the Frobenius automorphism in Gf using the root enumeration of (2.1).

At this point we shall be more precise in what we mean by root enumeration. Until now there

was no need in explicitly stating what algebraic structure Q (α) had. However, in the previous paragraph

it is important to set Q (α) to Q [x]⁄(f (x)) and α to the projection of x in that domain. We then can

make the factorization (2.1) canonical by imposing the condition deg(gk) < n =deg(f). In order to find

a proper embedding of Gf p
into Gf we now can use any irreducible factor f i of f mod p . The splitting

field of f p is then

Q [x]⁄(f (x))


⁄(p ,f i (x)) and the natural projection maps canonical roots of f onto

unique roots of f p since the later polynomial is squarefree. Notice that our permutation (2.2) not only

depends on f i but also on the initial resolvent f .

We call the image of the permutation (2.2) in GQ (α) the Frobenius element of Pi in Q (α) and

denote it by


 Pi

Q (α)⁄Q_ ______



. The Frobenius element generates exactly those automorphisms in Q (α) which

map elements of Pi into Pi , the so-called decomposition group of Pi in Q (α). Given f and the factori-

zation (2.1) we have described an algorithm of how to identify Frobenius elements by permutations in

Gf .

The Frobenius element depends on the prime ideal Pi . For a given automorphism σ ∈ GQ (α) we

define the conjugate class of σ, C σ = {τ σ τ−1  τ ∈ GQ (α)}. Notice that the corresponding permuta-

tions of a conjugate class possess the same cycle structure. The group GQ (α) can be partitioned into

48

finitely many such classes.

Lemma 2.13.: The set







 Pi

Q (α)⁄Q_ ______




 i =1, . . . , r




forms a complete conjugate class of GQ (α), denoted by FQ (α)(p). (Cf. [Narkiewicz 74, Proposition 7.12

and Theorem 4.2].)

The question arises whether any conjugate class of GQ (α) can be realized by FQ (α)(p), letting p

range over all unramified prime numbers for f . The first positive answer goes back to L. Dirichlet for

the special case of f being the m -th cyclotomic polynomial Ψm . This case is equivalent to the problem

whether there are infinitely many primes in an arithmetic progression. In 1896, G. Frobenius showed

that certain unions of conjugate classes will always be realized by Frobenius elements, and in 1926 N.

Chebotarev proved his classical theorem.

Theorem 2.4 (Chebotarev Density Theorem):

Let C be a conjugate class of Gf and let card(S) denote the cardinality of the set S . If

NC (x) = card { p  p prime, p ≤ x s.t. FQ (α)(p) = C }

then

NC (x) =


 card(Gf)

card(C)_ _______ + ε(x)


 log(x)

x_ _____ .

where
x →∞
lim ε(x) = 0. (Cf. [Chebotarev 26] or [Narkiewicz 74, Theorem 7.10].)

The nature of the error term ε(x) in theorem 2.4 has been quite successfully analyzed in the past

decade.

Theorem 2.5. Let NC (x) be as in theorem 2.4.

a) There exist absolute constant b 1 and b 2 such that NC

(b 1DQ (α))

b
2

 ≥ 1. (Cf. [Lagarias et al. 79].)

49

b) Assume that the Generalized Riemann Hypothesis (GRH) holds. Then NC

70 log(DQ (α))

2 
 ≥ 1.

(Cf. [Lagarias and Odlyzko 77] and [Oesterlé 79].)

Theorem 2.5 and lemma 2.13 gives us a handle how to compute the complete Galois group of f .

After factoring f according to (2.1), we calculate all Frobenius elements for the prime ideals P 1, . . . ,

Pr
p

over pZ , p unramified and p less then the bounds in theorem 2.5, by the procedure discussed above.

We will eventually find n distinct permutations constituting Gf . Until now we always assumed f , a

resolvent for Q (α), to be irreducible. We shall now show how to establish this fact in non-deterministic

polynomial time in n , the degree of f , and log( f ). Though this result has been superseded by the

results in [Cantor 81] and [Lenstra et al. 82], we believe that its proof reveals valuable new insight.

Algorithm 2.1: [Succinct Certificates for normal irreducible polynomials]

[For a given monic polynomial f [x] ∈ Z [x] of degree n this algorithm verifies f to be normal and

irreducible.]

(F) Guess a factorization

(x −α) (x −g 2(α)) . . . (x −gn (α)) ≡ f (x) mod f (α)

with gi (α) ∈ 1⁄m Z [α], m 2 a factor of ∆f , deg(gi) < n , and the numerators of the coefficients of

gi absolutely smaller than the respective coefficient bound [Weinberger and Rothschild 76, Lemma

8.3].

(N) For all i with 2 ≤ i ≤ n verify that gi
(k)(α) mod f (α) ∈ {α, g 2(α) , . . . , gn (α)}, for 2 ≤ k ≤ n ,

and that

gi
(n)(α) ≡ α mod f (α)

where gi
(n) denotes gi (gi

. . . (gi)) with n −1 substitutions.

(P) Guess a number c ≤ n and integers p λ, 1 ≤ λ ≤ c , not larger than b 1∆f
b

2, b 1 and b 2 from theorem

2.5a) such that the following conditions are verifiable.

50

We show that all p λ are prime numbers. For this step we use the prime certificates by [Pratt 75].

We also prove that all f mod p λ are squarefree.

For all p λ we perform the following computation:

We factor f into irreducibles mod p λ, i.e.

f 1
. . . f rλ

≡ f mod p λ.

The factors f i can be tested for irreducibility by the distinct degree factorization [Knuth 81,

Sec.4.6.2]. The proof of lemma 2.12 shows that all f i have the same degree s λ = n ⁄r λ. For each

f i we now construct the permutation σλ,i corresponding to the Frobenius element determined by

f i according to the algorithm following the proof of lemma 2.12. Notice that the irreducible fac-

tor of f belonging to f i is not needed in this construction. In order to compute hk ,i
p t

mod (f i)pλ

we use binary exponentiation [Knuth 81, Sec.4.6.3].

(C) We verify that

card({σλ,i  1 ≤ λ ≤ c , 1 ≤ i ≤ r λ}) = n.

Theorem 2.6: Algorithm 2.1 certifies f to be normal and irreducible in non-deterministic polynomial

time in deg(f) and log( f ).

Proof: It is easily established that algorithm 2.1 works in non-deterministic polynomial time. If the

input polynomial f is indeed irreducible and normal we can find the described certificate by lemma 2.13

and theorem 2.5. The condition in step (N) is then satisfied because there exists a root α which can be

mapped to any gi (α) by some automorphism on Q (α), whose order is divisible by n .

Now let us assume that f is not irreducible. Steps (F) and (N) guarantee that f is at least normal, i.e.

any root generates the complete splitting field of f . To prove this we need to express every root gj (α)

as a polynomial of gi (α), e.g.

gj (α) = gj (gi
(n −1))(gi (α)).

51

Therefore, f = f 1
. . . f t with f 1, . . . , f t irreducible and having the same splitting field. As we pro-

cess different primes p λ our algorithm computes the Frobenius elements of Gf using the distinct resol-

vents f 1, . . . , f t . For each resolvent f i we get at most the complete Galois group of Gf using the

root enumeration of step (F) w.r.t. that resolvent. Hence, for each f i we get at most n ⁄t −1 permutations

not equal to the identity. Therefore, for all resolvents we can get at most n −t distinct permutations

unequal to the identity. Since t > 1 our algorithm can produce at most n −1 distinct permutations in

step (P) and the test in step (C) will always fail.

Once we can certify normal polynomials irreducible it is an easy generalization to certify a poly-

nomial f of degree n with small Galois group irreducible. Here small shall mean of polynomial cardi-

nality in n . We shall prove f irreducible by presenting its Galois group. First we guess a normal

irreducible polynomial f whose splitting field contains that of f . In order to show that log( f ) can

be chosen polynomial in n and log( f ) we consider the construction of a primitive element for the

splitting field of f [van der Waerden 53, p.126]. If α1, . . . , αn
are the roots of f then we can select

integers b 2, . . . , bn
sufficiently small such that the roots of f are of the form αi

1
+ b 2αi

2
+ . . . +

bn
αi

n
. We now factor f according to (2.1) and compute Frobenius elements as described above. We

actually obtain the permutations corresponding to the automorphisms restricted to the smaller splitting

field. If a transitive set of permutations is obtained our input polynomial f is certified to be irreducible.

In view of theorem 2.5b) one may consider to use our algorithm deterministically. We require the

computation of a resolvent f as well as the factorization (2.1). For small Galois groups both tasks can

be achieved in polynomial time using the algorithms in [Trager 76] in connection with the polynomial

time factorization algorithm for univariate integer polynomials. However, once we have a resolvent f

we can obtain its Galois group by first factoring

f (x) ≡ (x −α)(x −g 2(α)) . . . (x −gn (α)) mod f (α)

and then calculating the permutation σi corresponding to the automorphism α → gi (α) by the substitu-

tions

52

gk (gi (α)) mod f (α) = gk
i
(α), 2 ≤ k ≤ n

implying that σi (k) = ki . This approach avoids the necessity for the GRH though the algorithm using

the identification of Frobenius elements may be more efficient, in practice.

It is interesting to ask how quickly one can obtain a generating set for the Galois group Gf of an

arbitrary integer polynomial f . One can easily show that every finite group G can be generated by at

most 
log2(card(G)) 

 elements which implies that a small generating set S for Gf exists. Once such a

set is known various questions about the group such as solvability can be answered in time polynomial

in card(S). The open problem 4 in chapter 4 asks to compute S in time polynomial in deg(f) and

log( f ).

We conclude this section with an example for which the calculations were carried out on

[Macsyma 77].

Example 2.2:

f (x) = x 6 + 3x 5 + 6x 4 + 3x 3 + 9x + 9.

Then

f (x) = (x −α) (x −g 2(α)) (x −g 3(α)) (x −g 4(α)) (x −g 5(α)) (x −g 6(α))

with

g 2(α) =
3
1_ _ (α5 + 2α4 + 4α3 + 6),

g 3(α) =
9
1_ _ (4α5 + 6α4 + 12α3 − 12α2 + 9α + 27),

g 4(α) = −
9
1_ _ (α5 − 12α2 + 9),

g 5(α) = −
9
1_ _ (α5 + 3α4 + 6α3 + 6α2 + 9α + 18),

g 6(α) = −
9
1_ _ (5α5 + 9α4 + 18α3 − 6α2 + 9α + 45).

p = 5:

f p ≡ f 1 f 2 f 3 mod 5 with

f 1 ≡ x 2 + 2, f 2 ≡ x 2 − x + 1, and f 3 ≡ x 2 − x + 2.

53

h 1,1(α1) = α1, h 1(5),1(α1) = − α1 = h 3,1(α1);

h 2,1(α1) = 2α1 − 2, h 2(5),1(α1) = − 2α1 − 2 = h 6,1(α1);

h 4,1(α1) = − α1 − 2, h 4(5),1(α1) = α1 − 2 = h 5,1(α1).



 P 1

Q (α)⁄Q_ ______




= (1 3) (2 6) (3 4).

h 1,2(α2) = α2, h 1(5),2(α2) = − α2 + 1 = h 2,1(α2);

h 3,2(α2) = − 2α2 − 1, h 3(5),2(α2) = 2α2 + 2 = h 4,2(α2);

h 5,2(α2) = α2 + 2, h 5(5),2(α2) = − α2 − 2 = h 6,2(α2).



 P 2

Q (α)⁄Q_ ______




= (1 2) (3 4) (5 6).

h 1,3(α3) = α3, h 1(5),3(α3) = − α3 + 1 = h 5,3(α3);

h 2,3(α3) = − 2α3 + 1, h 2(5),3(α3) = 2α3 − 1 = h 4,3(α3);

h 3,3(α3) = 2α3 + 2, h 3(5),3(α3) = −α3 + 1 = h 5,3(α3).



 P 3

Q (α)⁄Q_ ______




= (1 5) (2 4) (3 6).

p =7:

f p ≡ f 1 f 2 mod 7 with

f 1 ≡ x 3 + x 2 − 2x − 3 and f 2 ≡ x 3 + 2x 2 − x − 3.

h 1,1(α1) = α1, h 1(7),1(α1) = 2α1 − 2 = h 4,1(α1),

h 4(7),1(α1) = − 3α1 + 1 = h 6,1(α1);

h 2,1(α1) = 2α1, h 2(7),1(α1) = − 3α1 + 3 = h 5,1(α1),

h 5(7),1(α1) = α1 + 2 = h 3,1(α1).



 P 4

Q (α)⁄Q_ ______




= (1 4 6) (2 5 3).

h 1,2(α2) = α2, h 1(7),2(α2) = 2α2 + 3 = h 6,2(α2),

h 6(7),2(α2) = − 3α2 + 2 = h 4,2(α2);

h 2,2(α2) = −3α2, h 2(7),2(α2) = α2 − 2 = h 3,2(α2),

h 3(7),2(α2) = 2α2 + 1 = h 5,2(α2).



 P 5

Q (α)⁄Q_ ______




= (1 6 4) (2 3 5).

p =31:

54

f ≡ (x −14) (x −12) (x −9) (x −1) (x +2) (x +6) mod 31.



 P 6

Q (α)⁄Q_ ______




= (1) (2) (3) (4) (5) (6).

The Galois group of f has 3 conjugate classes,

C 1 = {(1) (2) (3) (4) (5) (6)},

C 2 = {(1 3) (2 6) (3 4), (1 2) (3 4) (5 6), (1 5) (2 4) (3 6)}

C 3 = {(1 4 6) (2 5 3), (1 6 4) (2 3 5)}

The group is the symmetric group on 3 elements.

Note added on November 17, 1997: In Step (N) the computation of gi
(n) may cause exponential

growth in the coefficient length. However, if f is normal, each gi
(k) must be found among the roots of

f .

3. Polynomial Time Reductions from Multivariate to

Univariate Integer Polynomial Factorization

3.1. Introduction

Both the classical Kronecker algorithm (algorithm 1.5) and the modern multivariate Hensel algo-

rithm of section 1.4 solve the problem of factoring multivariate polynomials with integer coefficients by

reduction to factorization of univariate polynomials and reconstruction of the multivariate factors from

the univariate ones. However, as we will see in section 3.2, the running time of both methods suffers

from the fact that, in rare cases, an exponential number of factor candidates obtained from the univariate

factorization may have to be tested to determine the true factors. In this chapter we will present a new

algorithm which does not require exponential time in its worst case. But before we can state our result

precisely, we need to clarify what we mean by input size. We will assume that our input polynomials

are densely encoded, that is all coefficients including zeros are listed. Hence, the size of a polynomial

with v variables, given that the absolutely largest coefficient has l digits and the highest degree of any

variable is n , is of order O (ln v).

Let v , the number of variables, be a fixed integer. We will show that the problem of determining

all irreducible factors of v -variate polynomials is polynomial time Turing-reducible to completely factor-

ing univariate polynomials. Recently, A. Lenstra, H. Lenstra, and L. Lovász [Lenstra et al. 82] have

shown that factoring univariate polynomials is achievable in polynomial time. Their algorithm excludes

the full factorization of a possible common integer content, which all coefficients of the polynomial to

be factored might have. Therefore, our result implies the following theorem. Factoring an integer poly-

nomial with a fixed number of variables into irreducibles, except for the constant factors, can be accom-

plished in time polynomial in the total degree and the size of its coefficients.

In [Kaltofen 82] we have already established a polynomial time reduction from multivariate to

bivariate polynomial factorization. However, our new algorithm is less complex, though still exponen-

- 56 -

57

tial in the number of variables. On the other hand, the results in [Kaltofen 82] imply a polynomial time

reduction for irreducibility testing, which our new algorithm does not provide. Therefore, we will

include this older irreducibility test in section 3.5.

If one does not fix the number of variables, our definition of input size may not be appropriate

since the input size then grows exponentially with the number of variables. In this case, sparsity con-

cepts are definitely needed (cf. [Zippel 79]), but little is known about even the space complexity under

these conditions. In section 4 open problem 1 corresponds to this question.

3.2. Exponential Cases for the Kronecker and Hensel Algorithms

We only consider bivariate polynomials though the constructions easily generalize. First, we dis-

cuss some exponential cases for the Kronecker algorithm 1.5. This algorithm transforms the bivariate

polynomial f (z ,x) into f (y) = f (yd ,y), d = max(degz (f),degx (f))+1. It requires time exponential in

the degree of f in the case where f is irreducible, but f splits into linear factors. It is easy to construct

such f ’s, as we do below, by working backward from f (y).

Example 3.1:

f (y) = (y −4)(y −3)(y −2)(y −1)(y +1)(y +2)(y +3)(y +4)

= y 8 − 30y 6 + 273y 4 − 820y 2 + 576.

Set d =3: f 1(z ,x) = z 2x 2−30z 2+273xz −820x 2+576 which is irreducible. In step (K4), algorithm 1.4

needs 127 trial combinations to determine irreducibility.

Set d =5: f 2(z ,x) = x 3z −30xz +273x 4−820x 2+576 which is irreducible because degz (f)=1.

This condition can always be enforced by choosing d large enough and yields exponential cases of arbi-

trarily high degree.

Example 3.2. Let n = (
i =2
Π

k

pi)−2 with pi the i -th prime number. Let f 3(z ,x) = xn − z 2, which is irredu-

cible by lemma 2.7, since n is odd. We obtain f 3(y) = yn (1−yn +2) where 1−yn +2 factors into 2k −1

cyclotomic polynomials. Since n is of order O (2k log(k)) the number of possible factor candidates cannot

be polynomial in n .

The abundance of univariate factors disappears as soon as we choose a slightly different evalua-

tion. For example,

f 1(3x 6,x) = 9x 8−270x 6+819x 4−820x 2+576

and

f 2(2x 5,x) = 2x 8−60x 6+273x 4−820x 2+576

- % -

59

are both irreducible. We have used such evaluations in [Kaltofen 82] and, as we will see by theorem

3.3, it is highly probable that substituting 2xd or 3xd for z in f (z ,x) already preserves the irreducibility

of f . However, to prove that a multiplier of polynomial length definitely works is a much harder task,

and we have only succeeded in showing this for the multivariate to bivariate reduction.

To construct an irreducible polynomial f (y 1, . . . , yv ,x) such that f (0, . . . , 0,x) has all linear fac-

tors is quite easy. The following example demonstrates the construction of a polynomial which has all

linear factors for various evaluation points.

Example 3.3. Let f (y ,x) have degy (f) ≤ 3 and

f (−1,x) = (x −2)(x −1)(x +1)(x +2) = x 4−5x 2+4,

f (0,x) = (x −1)x (x +1)(x +2) = x 4+2x 3−x 2−2x ,

f (1,x) = (x −2)(x −1)x (x +1) = x 4−2x 3−x 2+2x ,

and f (2,x) = x 4+2. By interpolation f (y ,x) ∈ Q [y ,x] is determined uniquely, namely

f (y ,x) = x 4 + (2y 3−3y 2−3y +2)x 3 + (
6
5_ _ y 3−2y 2+

6
7_ _ y −1)x 2

+ (−2y 3+3y 2+3y −2)x −
3
1_ _ y 3+2y 2−

3
5_ _ y.

We can also remove the rational denominators, namely

f (y ,x) = 64f (y ,
6
x_ _)

= x 4 + (12y 3−18y 2−18y +12)x 3 + (30y 3−72y 2+42y −36)x 2

+ (−432y 3+648y 2+648y −432)x − 432y 3+2592y 2−2160y.

Since f (2,x) is irreducible, so is f (y ,x), but

f (−1,x) = (x −12)(x −6)(x +6)(x +12),

f (0,x) = (x −6)x (x +6)(x +12),

f (1,x) = (x −12)(x −6)x (x +6).

The above construction obviously generalizes for arbitrarily high degrees but the number of

unlucky evaluation points (i.e. those integers b for which f (b ,x) splits into linear factors) is bounded by

the degree in y . The Hilbert Irreducibility Theorem states that for any irreducible polynomial

60

f (y ,x) ∈ Z [y ,x] there exists an integer b such that f (b ,x) remains irreducible. It can be shown that

the ratio of unlucky points to the size of the interval, from which the points are taken, tends to zero as

the size of the interval goes to infinity (theorem 1.1). The reader is referred to Appendix B for a

bibliography on the Hilbert Irreducibility Theorem. Unfortunately, we do not understand the distribution

of unlucky evaluation points of small size. In this connection, we state open problem 2 in section 4.

3.3 The Reduction Algorithm

In this section, we shall discuss the proposed algorithm in detail. This algorithm uses ideas from

an algorithm for univariate factorization proposed by [Zassenhaus 81]. After the algorithm we give a

correctness proof using the theory of subresultants. Its complexity analysis is deferred to the next sec-

tion. We wish to emphasize that the following version can be improved significantly by performing

various steps at once. However, we are most interested in the theoretical result, namely that the algo-

rithm works in polynomial time, and we have not yet investigated the conditions under which a highly

tuned version of this algorithm might out-perform the Hensel algorithm in practice. (Cf. open problem 2

in section 4.)

Algorithm 3.1:

[Given f (z 1, . . . , zv ,x) ∈ Z [z 1, . . . , zv ,x], this algorithm constructs one irreducible factor

g (z 1, . . . , zv ,x) ∈ Z [z 1, . . . , zv ,x] of f .]

(I) [Precondition f :]

IF cont(f) or pp(f) is univariate THEN factor it by a univariate factorization algorithm and return

one irreducible factor, ELSE

(I1) Determine a primitive squarefree factor s (z 1, . . . , zv ,x) of f by a multivariate version of algo-

rithm 1.2 or Wang and Trager’s algorithm as described in section 1.4.

(I2) [Make s monic in x :] n ← degx (s); c (z 1, . . . , zv) ← ldcfx (s);

s (z 1, . . . , zv ,x) ← c (z 1, . . . , zv)n −1 s



z 1, . . . , zv ,

c (z 1, . . . , zv)
x____________




.

[Notice that s is monic in x , an irreducible factor of which can be back-transformed to an irredu-

cible factor of s (see step (E2)).]

(I3) [Find good integral evaluation points w 1, . . . , wv such that s (w 1, . . . , wv , x) is squarefree.]

FORALL integers wi with  wi  ≤


 2

(2n −1)_ ______ degz
i
(s)




, 1 ≤ i ≤ v , DO

- 61 -

62

Test whether s (w 1, . . . , wv ,x) is squarefree. If so, exit loop.

f (y 1, . . . , yv ,x) ← s (y 1+w 1, . . . , yv +wv ,x).

(F) [Factor f (0, . . . , 0,x):]

Compute an irreducible factor t (x) of f (0, . . . , 0,x); m ← deg(t).

[Let β be a root of t . In the following, we will perform computations in Q (β), whose elements are

represented as polynomials in Q [β] modulo t .]

(N) [Newton iteration. For purposes of later analysis, we emulate the Newton iteration by a Hensel

lifting algorithm. We adopt the following vector notation: k
˜

≡ (k 1, . . . , kv), 0
˜

≡ (0, . . . , 0), y
˜
k

˜ ≡

y 1
k

1 . . . yv
k

v , k
˜

± k
˜
′ ≡ (k 1±k 1′, . . . , kv ±kv ′), k

˜
≤ k

˜
′ if, for all i , ki ≤ ki ′,  k

˜
 ≡ k 1+ . . . +kv , if k

˜
≥ 0

˜
,

and −∞ otherwise.

Let J be the ideal in Q (β)[y 1, . . . , yv] generated by {y 1, . . . , yv }. The goal is to construct

αj (y 1, . . . , yv) =
i =0
Σ

j

 k
˜
 =i
Σ ak

˜
(β) y

˜
k

˜

for j = 1,2, . . . such that

f (y 1, . . . , yv ,αj (y 1, . . . , yv)) ≡ 0 mod J j +1.]

Rewrite f (y 1, . . . , yv ,x) = Σk
˜
≥0
˜

f k
˜
(x) y

˜
k

˜.

[Since f is monic and degx (f) = n , deg(f k) < n for  k
˜
 ≥ 1.]

(N1) [Initialize for Hensel lifting:]

g 0
˜
(x) ← x −β; h 0

˜
(x) ← f 0

˜
(x)⁄g 0

˜
(x) ∈ Q (β)[x].

(N2) [Bound for approximation:]

d ← degy
1
, . . . , y

v
(f); K ← d (2n −1).

FORALL k
˜

≥ 0
˜

with 1 ≤  k
˜
 ≤ K DO steps (N3) and (N4). [The k

˜
must be generated in an order

such that  k
˜
 is non-decreasing.]

(N3) IF  k
˜
 = 1 THEN bk

˜
(x) ← f k

˜
(x) ELSE

63

bk
˜
(x) ← f k

˜
(x) −

0
˜
≤s
˜
≤k
˜
,1≤  s

˜
 ≤  k

˜
 −1

Σ gs
˜
(x)hk

˜
−s
˜
(x).

(N4) [Solve g 0
˜
(x)hk

˜
(x) + h 0

˜
(x)gk

˜
(x) = bk

˜
(x) with gk

˜
(x), hk

˜
(x) ∈ Q (β)[x], deg(gk

˜
) = 0, deg(hk

˜
) = n −2.]

ak
˜

← gk
˜
(x) ← bk

˜
(β) ⁄ f 0

˜
′(β);

hk
˜
(x) ← 

bk
˜
(x)−h 0

˜
(x)gk

˜
(x) 

 ⁄ g 0
˜
(x).

(N5) αK ← β + Σ0≤  k
˜
 ≤K ak

˜
y
˜
k

˜;

FOR i ← 0, . . . , n −1 DO αK
(i) ← αK

i mod JK +1.

(L) [Find minimal polynomial for αK :]

FOR I ← m , . . . , n −1 DO

Try to solve the equation

αK
(I) +

i =0
Σ
I −1

ui (y 1, . . . , yv)αK
(i) ≡ 0 mod JK +1 (3.1)

with undetermined coefficients for ui (y 1, . . . , yv) ∈ Q [y 1, . . . , yv] such that

degy
1
, . . . , y

v
(ui) ≤ d . [There are I


 d
v +d 

 unknowns in m

 K
v +K 

 linear equations. (Cf.

lemma 3.4.)]

If there exists a solution, set

g (y 1, . . . , yv ,x) ← x I +
i =0
Σ
I −1

ui (y 1, . . . , yv)x i and GOTO (E).

[We will prove that g is an irreducible factor of f .]

g ← f . [In this case f is irreducible.]

(E) [Recover non-monic factor g (z 1, . . . , zv ,x):]

(E1) g (z 1, . . . , zv ,x) ← g (z 1−w 1, . . . , zv −wv ,x).

(E2) g (z 1, . . . , zv ,x) ← ppx (g (z 1, . . . , zv ,c (z 1, . . . , zv)x)).

We shall now prove the correctness of the above algorithm. Obviously, if g (y 1, . . . , yv , x)

64

divides f then g (z 1, . . . , zv , x) divides s (z 1, . . . , zv , x). The proof for the correctness of the

transformations in the steps (I2) and (E2) is quite easy and can be found in [Knuth 81, p.438, Exercise

18]. We first must show that step (I3) will yield good evaluation points.

Lemma 3.1: Let s (z 1, . . . , zv ,x) ∈ Z [z 1, . . . , zv ,x] be monic of degree n in x and squarefree. Then

there exist integers wi with  wi  ≤


 2

(2n −1)_ ______ degz
i
(s)




, 1 ≤ i ≤ v , such that s (w 1, . . . , wv ,x) is

squarefree in Z [x].

Proof: Let n = degx (s), di = degz
i
(s) for 1 ≤ i ≤ v. Since s is squarefree, its discriminant

∆(z 1, . . . , zv) = resx (s ,∂s ⁄∂x) ≠ 0

[van der Waerden 53, p.86]. Since ∆ is the given resultant, it follows that degz
i
(∆) ≤ (2n −1)di for

1 ≤ i ≤ v. If we write ∆(z 1, . . . , zv) as a polynomial in Z [z 2, . . . , zv] with coefficients in Z [z 1], not

all these coefficients can be zero. Let u (z 1) be one particular non-vanishing coefficient. Since deg(u)

≤ (2n −1)d 1 there exists an integer w 1 with  w 1 ≤


 2

(2n −1)_ ______ d 1





and u (w 1) ≠ 0. Therefore

∆(w 1,z 2, . . . , zv) ≠ 0 and the lemma now follows by induction on the number of variables.

Next, we must demonstrate that the steps (N3) and (N4) actually produce a root αj (y 1, . . . , yv).

Step (N1) sets up the basis for the Hensel lifting of the equation

g 0
˜
(x) h 0

˜
(x) ≡ f (y 1, . . . , yv ,x) mod J.

If we have computed the sequences of polynomials {gs
˜
(x)} and {hs

˜
(x)}, 0

˜
≤ k

˜
, 1 ≤  s

˜
 ≤  k

˜
 −1, then in

step (N4) we want to compute gk
˜
(x) and hk

˜
(x) ∈ Q (β)[x] such that



 k

˜
≥0
˜

Σ gk
˜
(x) y

˜
k

˜






 k

˜
≥0
˜

Σ hk
˜
(x) y

˜
k

˜




=
k

˜
≥0
˜

Σf k
˜
(x)y

˜
k

˜

which implies that hk
˜

and gk
˜

must satisfy

g 0
˜
(x)hk

˜
(x) + h 0

˜
(x)gk

˜
(x) = bk

˜
(x). (3.2)

Note that g 0
˜
(β) = 0 and h 0

˜
(β) = f 0

˜
′(β). The second equation follows from the fact that if β, β2, . . . , βn

are all roots of f 0
˜
(x) then h 0

˜
(x) =

i =2
Π

n

(x −βi) and h 0
˜
(β) =

i =2
Π

n

(β−βi) = f 0
˜
′(β). Therefore the unique solution

65

of (3.2) with deg(gk
˜
) = 0 is ak = bk

˜
(β)⁄f 0

˜
′(β). If we now solve (3.2) for hk

˜
(x) we get

hk
˜
(x) = (bk

˜
(x)−h 0

˜
(x)gk

˜
(x))⁄g 0

˜
(x)

which is a polynomial in x since bk
˜
(β) − h 0

˜
(β)ak

˜
= 0, and is of degree at most n −2. As we will see in

section 3.4, the solution for (3.2) with deg(gk
˜
) < deg(g 0

˜
) and deg(hk

˜
) < deg(h 0

˜
) is uniquely determined by a

linear system in n unknowns, whose coefficient matrix is the resultant of g 0
˜
(x) and h 0

˜
(x), which in our

case happens to be equal to f 0
˜
′(β).

We now know that

f (y 1, . . . , yv ,αK (y 1, . . . , yv)) ≡ 0 mod JK +1

because




x −

0≤  k
˜
 ≤K

Σ ak
˜

y
˜
k

˜






0≤  k

˜
 ≤K

Σ hk
˜
(x) y

˜
k

˜




≡ f (y 1, . . . , yv ,x) mod JK +1.

The polynomial g (y 1, . . . , yv ,x) is constructed in step (L) such that

g (y 1, . . . , yv ,αK (y 1, . . . , yv)) ≡ 0 mod JK +1

We will now prove that g must divide f . Our argument will show that if g does not divide f , then

(3.1) has a solution for I < deg(g). One main condition for this to be true is that our approximation is

of order K , as determined in step (N2). First, we must prove a simple lemma.

Lemma 3.2: Let g (y 1, . . . , yv ,x) divide f (y 1, . . . , yv ,x) in Z [y 1, . . . , yv ,x] and assume that

g (0, . . . , 0, β) = 0 in Q (β). Then

g (y 1, . . . , yv ,αj (y 1, . . . , yv)) ≡ 0 mod J j +1

for all j ≥ 1 with αj (y 1, . . . , yv) as computed in steps (N3)-(N5).

Proof: The reason is simply that since x − αj (y 1, . . . , yv) divides f (y 1, . . . , yv ,x) mod J j +1 and β is a

root of single multiplicity x − αj (y 1, . . . , yv) must also divide g (y 1, . . . , yv ,x) mod J j +1. This argu-

ment can be made formal but we shall provide a more indirect proof. Let p be the first index such that

g (y 1, . . . , yv ,αp (y 1, . . . , yv)) ≠ 0 mod Jp +1.

Because p is the first index

66

g (y 1, . . . , yv ,αp (y 1, . . . , yv)) ≡
 k
˜
 =p
Σ γk

˜
y
˜
k

˜ mod Jp +1

with at least one γk
˜

≠ 0. Let h be the cofactor of g , i.e. f = g h . Since β is a single root,

r = h (0, . . . , 0,β) ≠ 0. Therefore

g (y 1, . . . , yv ,αp (y 1, . . . , yv)) h (y 1, . . . , yv ,αp (y 1, . . . , yv))

≡
 k
˜
 =p
Σ γk

˜
r y

˜
k

˜ ≠ 0 mod Jp +1

in contradiction to αp (y 1, . . . , yv) being the p -th approximation of a root of f .

Theorem 3.1: If step (L) finds a solution for (3.1) then g (y 1, . . . , yv ,x) derived from it is irreducible

and divides f (y 1, . . . , yv ,x). Hence, the first solution for (3.1), if any, must be integral.

Proof: Let

D (y 1, . . . , yv ,x) = GCD(f (y 1, . . . , yv ,x), g (y 1, . . . , yv ,x))

and let I = degx (g), j = degx (D). By Sj (y 1, . . . , yv ,x) we denote the j -th subresultant of f and g as

polynomials in x with coefficients in Z [y 1, . . . , yv] (cf. [Brown, Traub 71, Section 5]). There exist

polynomials Uj (y 1, . . . , yv ,x), Vj (y 1, . . . , yv ,x) ∈ Z [y 1, . . . , yv ,x] such that Uj f + Vj g = Sj . There-

fore, D divides Sj and since D is monic ldcfx (Sj) D = Sj . Since ldcfx (Sj) is a subdeterminant of the

resultant of f and g w.r.t. x , its total degree in y 1, . . . , yv can be bounded by

degy
1
, . . . , y

v
(ldcfx (Sj)) ≤ (I +n)d ≤ K.

However,

(Uj f + Vj g)(y 1, . . . , yv ,αK (y 1, . . . , yv))

≡ ldcfx (Sj) D (y 1, . . . , yv ,αK (y 1, . . . , yv)) ≡ 0 mod JK +1

and therefore D (0, . . . , 0,β) = 0. By lemma 3.2 it follows that

D (y 1, . . . , yv ,αK (y 1, . . . , yv)) ≡ 0 mod JK +1 and from the minimality of I in (3.1), we conclude that g

is irreducible and g = D which divides f .

This concludes the correctness proof for our algorithm. In the case that v = 1 the bound K of

step (N2) can be improved to d (2n −1)⁄m (cf. [Lenstra et al. 82, Proposition 2.7]). However, this

improvement seems not to carry over for the general case, the reason being that Q (y 1, . . . , yv) is not a

67

Euclidean domain. An example executed on [Macsyma 77] can be found in Appendix A.

3.4 Complexity Analysis of the Reduction Algorithm

The goal of this section is to prove that algorithm 3.1 takes, for a fixed number of variables v ,

polynomially many steps in deg(f) log( f ), provided that we can factor f 0
˜

in time polynomial in

deg(f 0
˜
) log( f 0

˜
). We wish to emphasize again that our main interest is in a polynomial time upper

bound, but that we are not concerned about the best we could do by either fine tuning our algorithm or

by determining sharper upper bounds. We also do not consider the influence of the underlying data

structure used to represent the multivariate polynomials on our algorithm performance. In the analysis

below we formulate the asymptotic complexity as a function in the total degree rather than the max-

imum degree of individual variables. Since the number of variables is fixed both notions for the degree

are codominant.

Step (I): To obtain a squarefree factor s of f , we make use of squarefree decomposition algorithms all

of which employ polynomial GCD computations. All of the GCD algorithms such as the primitive

remainder, subresultant or the modular algorithm [Brown 71], or the EZGCD algorithm [Moses and Yun

76], take for a fixed number of variables polynomially many steps in the maximum degree of the input

polynomials and the size of their coefficients. That this time bound extends to the squarefree factoriza-

tion process is shown, e.g., in [Yun 77]. Of course, deg(s) ≤ deg(f) in step (I1), and a good bound for

 s  can be determined by the following lemma.

Lemma 3.3: Let g 1, . . . , gm ∈ C [x 1, . . . , xv], let f = g 1
. . . gm and let nj = degx

j
(f), n =

j =1
Σ
v

nj .

Then

i =1
Π
m

 gi  ≤ 2n  f 
j =1
Π

v 

 2

nj +1_ ____




1⁄2

≤ en  f 

with e < √ 6 ∼∼ 2.44949. (Cf. [Gel’fond 60, pp.135-139].)

Therefore  s  ≤ e (v +1)deg(f) f  . That the steps (I2) and (I3) take polynomial time is quite easily

established. As a matter of fact, some of the GCD algorithms used for the squarefree decomposition of

- 69 -

70

f in step (I1) already provide the points w 1, . . . , wv of step (I3) as a by-product. Step (I2) substan-

tially, but yet polynomially, increases deg(s) and log( s ). (E.g.

deg(s) ≤ n deg(s) and  s  ≤ (deg(s)+1)v n  s  n ;

cf. lemma 3.4 and lemma 3.7.) Step (I3) again may increase  f  but Taylor’s formula of section 1.4,

p.21, provides a quick polynomial size estimate. (E.g.

 f  ≤ v deg(s)deg(s)v deg(s)2deg(s) s  ;

cf. lemma 3.1 and lemma 3.4.) We will not present the explicit polynomial time bound for step (I)

because the following bounds for the steps (F), (N) and (L) clearly dominate the worst case complexity

of step (I).

Step (F): As A. Lenstra, H. Lenstra and L. Lovász have recently shown, t (x) can be computed in at

most O

deg(f 0

˜
)12 + deg(f 0

˜
)9log( f 0

˜
 2)

3 
 steps [Lenstra et al. 82].

Step (N): We first count the number of additions, subtractions and multiplications over Q (β) (which we

shall call ASM ops) needed for this step. Then we bound the absolute value of all elements of Q (β)

which appear as intermediate results. Finally, we bound the size of all computed rational numerators

and denominators, and then we count the number of rational operations. The most difficult task will be

to compute size bounds.

We can ignore the time it takes to retrieve the polynomials f k
˜
(x) as well as the execution time for

step (N1). In order to count the number of times steps (N3) and (N4) are performed we need a lemma.

Lemma 3.4: There exist

 v −1
v +j −1 

 < (j +1)v −1 different v -dimensional integer vectors k
˜

with k
˜

≥ 0
˜

and

 k
˜
 = j . The number of vectors with  k

˜
 ≤ j is


 v
v +j 

 < (j +1)v .

Proof: One chooses from v components j times allowing repetition. For  k
˜
 ≤ j one introduces an

additional dummy component.

71

Therefore, steps (N3) and (N4) are executed less than (K +1)v times. Step (N3) takes O (K v n)

ASM ops in Q (β). Clearly this bound dominates the complexity of step (N4). Hence αK can be calcu-

lated in O (K 2v n) ASM ops.

We now proceed to compute an upper bound B 1 for all absolute values of the coefficients of αK

in Q (β). We actually use a slightly more general approach which we will also use in section 3.5.

Lemma 3.5: Let f (x) = g (x) h (x) be a non-trivial factorization of f (x) ∈ Z [x], monic, squarefree of

degree n in C [x].

a) Then both  g  ,  h  ≤ 2n  f  2 ≤ √ n +1 2n  f  and if β is any root of f ,  β  ≤ 2 f  .

b) If M is any (n −1) by (n −1) submatrix of the Sylvester matrix of f and g , then

 det(M) ≤ T (f) = 
n 2n  f 




n −1

.

c) The resultant of f and g is bounded by 1⁄S (f) ≤  res(g ,h) ≤ 2T (f) with

S (f) = (4 f )(n −1)(n −2)⁄2.

Proof: a) The bound for  f  and  g  is the Landau-Mignotte bound translated to maximum norms

[Mignotte 74]. Assume f (x) = xn + an −1x
n −1 + . . . + a 0 and let β ∈ C with  β  ≥ 2 f  . Then

 an −1βn −1+ . . . +a 0 ≤  f 
 β  −1
 β  n −1_ ________ <  β  n

because  f  ≥ 1. Therefore f (β) ≠ 0.

b) By part a), we know that each entry in the Sylvester matrix of f and g is bounded by

√ n +1 2n  f  . Hadamard’s determinant inequality [Knuth 81, Sec.4.6.1, Exercise 15] then gives the

bound.

c) Let g (x) = (x −β1) . . . (x −βk) and h (x) = (x −βk +1) . . . (x −βn). Then

res(g , h)=
i =1, . . . , k ;j =k +1, . . . , n

Π (βi −βj)

and the discriminant of f , ∆ = Πi ≠j (βi −βj), is an integer not equal 0 [van der Waerden 53, pp.87-89].

72

From a) we conclude that  βi −βj  ≤ 4 f  for 1 ≤ i < j ≤ n . Therefore

1 ≤ √ ∆  = 
1≤i <j ≤k

Π  βi −βj  


 res(f ,g) 
k +1≤i <j ≤n

Π  βi −βj  


≤  res(f ,g) (4 f )(n −1)(n −2)⁄2

because k (k −1) + (n −k)(n −k −1) ≤ (n −1)(n −2) for 1 ≤ k ≤ n −1. The upper bound follows from b) and

the fact that f is monic.

The following lemma estimates the size of a general version of the Catalan numbers.

Lemma 3.6: Let dk
˜

= 1 for all v -dimensional vectors k
˜

with  k
˜
 = 1 and let

dk
˜

=
0
˜
≤s
˜
≤k
˜
,1≤  s

˜
 ≤  k

˜
 −1

Σ ds
˜

dk
˜
−s
˜

for k
˜

≥ 0
˜
,  k

˜
 ≥ 2.

Then

dk
˜

=
 k

˜


1_ ____ 
  k

˜
 −1

2 k
˜
 −2 

 k 1! . . . kv !

 k
˜
 !_ _________ < (4v) k

˜
 .

Proof: Let G (y 1, . . . , yv) = Σ k
˜
 ≥1dk

˜
y
˜
k

˜ be the generating function for dk
˜
. Then

G (y 1, . . . , yv)2 = G (y 1, . . . , yv) − (y 1+ . . . +yv)

and thus

G (y 1, . . . , yv) =
2
1_ _ 

1−√ 1−4(y 1+ . . . +yv)

 =

i =1
Σ
∞

i
1_ _ 

 i −1
2i −2 

(y 1+ . . . +yv)i

which yields our formula. Since
k 1! . . . kv !

 k
˜
 !_ _________ is a multinomial coefficient, it is less than v  k

˜
 . Similarly

the given binomial coefficient is less than 22 k
˜
 .

We are now in the position to formulate and prove the main theorem on the coefficient growth for

the Hensel lifting algorithm. This theorem also resolves the growth problem left open by [Kung and

Traub 78] who considered the Newton iteration for the case that v = 1.

Theorem 3.2: Let f (y 1, . . . , yv ,x) ∈ Z [y 1, . . . , yv ,x] be monic of degree n in x , such that

f 0
˜
(x) = f (0, . . . , 0,x) is squarefree. Let β be an algebraic integer generating a subfield of the splitting

field for f 0
˜
. By Z [β] we denote the ring generated by Z and {β} whose elements are polynomials in β

73

with integer coefficients of degree [Q (β):Q]−1. Let g 0
˜
(x) h 0

˜
(x) = f 0

˜
(x) be a non-trivial factorization of

f 0
˜

in (Z [β])[x]. Then there exist unique polynomials gk
˜
(x), hk

˜
(x) ∈ Q (β)[x] with k

˜
≥ 0

˜
,  k

˜
 ≥ 1 and

deg(gk
˜
) < deg(g 0

˜
), deg(hk

˜
) < deg(h 0

˜
) such that

f (y 1, . . . , yv ,x) = 

 k

˜
≥0
˜

Σ gk
˜
(x) y

˜
k

˜






 k

˜
≥0
˜

Σ hk
˜
(x) y

˜
k

˜



.

Furthermore, let

res(g 0
˜
,h 0

˜
)

1_ _______ =
R
1_ _ r (β) with R ∈ Z , r (β) ∈ Z [β],

and let S (f 0
˜
) and T (f 0

˜
) be as defined in lemma 3.5. Finally, let N (f) = max(n 2, n  f ), and let dk

˜
be

as defined in lemma 3.6. Then for all k
˜

≥ 0
˜

with  k
˜
 ≥ 1

R 2 k
˜
 −1 gk

˜
(x), R 2 k

˜
 −1 hk

˜
(x) ∈ (Z [β])[x]

and, independently of which root β of f 0
˜

we choose,

 gk
˜
 ,  hk

˜
 ≤ dk

˜


N (f) S (f 0

˜
) T (f 0

˜
) 


2 k
˜
 −1

.

Proof: The existence and uniqueness of gk
˜

and hk
˜

follows from the fact that (3.2) has a unique solution

with the given degree constraints, bk
˜

being computed as in step (N3). Now let

Ck
˜

= max( gk
˜
 ,  hk

˜
 ,  f ) and let Dk

˜
=  bk

˜
 . Since deg(gs

˜
) < deg(g 0

˜
) and deg(hk

˜
−s
˜
) < deg(h 0

˜
) we con-

clude that

 gs
˜

hk
˜
−s
˜
 ≤ (n −1)  gs

˜
  hk

˜
−s
˜
 ≤ (n −1) Cs

˜
Ck

˜
−s
˜
.

By definition Cs
˜

≥  f  and thus we obtain from (N3)

Dk
˜

≤ n
0
˜
≤s
˜
≤k
˜
,1≤  s

˜
 ≤  k

˜
 −1

Σ Cs
˜

Ck
˜
−s
˜
. (A)

If we solve (3.2) by undetermined coefficients for gk
˜

and hk
˜

we encounter the Sylvester matrix of g 0
˜

and

h 0
˜
, A (g 0

˜
,h 0

˜
), as the coefficient matrix, namely

(hk
˜

→
, gk

˜

→
) A (g 0

˜
,h 0

˜
) = bk

˜

→
. (B)

By p→ we mean the coefficient vector (pm , . . . , p 0) of the polynomial p (x) = pm xm + . . . + p 0. Using

Cramer’s rule for (B) and the fact that

 det(A (g 0
˜
,h 0

˜
))

1_ _____________ =
 res(g 0

˜
,h 0

˜
)

1_ __________ ≤ S (f 0
˜
)

74

(by lemma 3.5b), we get the estimate

Ck
˜

≤ max( f  , nDk
˜

S (f 0
˜
) T (f 0

˜
)). (C)

Our claims now follow by induction on  k
˜
 .

Case  k
˜
 = 1: Since bk

˜
= f k

˜
∈ Z [x], Cramer’s rule applied to (B) yields R gk

˜
, R hk

˜
∈ (Z [β])[x].

(Notice that β is an algebraic integer.) Also Dk
˜

≤  f  and hence by (C)

Ck
˜

≤ max( f  ,n  f  S (f 0
˜
) T (f 0

˜
)) ≤ dk

˜
N (f) S (f 0

˜
) T (f 0

˜
).

Case  k
˜
 > 1: By hypothesis and from (N3) we obtain R 2 k

˜
 −2 bk

˜
∈ (Z [β])[x]. Cramer’s rule applied

to (B) then yields R 2 k
˜
 −1 gk

˜
, R 2 k

˜
 −1 hk

˜
∈ (Z [β])[x]. From (A) with the hypothesis we also get

bk
˜

≤ n
0
˜
≤s
˜
≤k
˜
,1≤  s

˜
 ≤  k

˜
 −1

Σ Cs
˜

Ck
˜
−s
˜

≤ n (N (f) S (f 0
˜
) T (f 0

˜
))2 k

˜
 −2 

0
˜
≤s
˜
≤k
˜
,1≤  s

˜
 ≤  k

˜
 −1

Σ ds
˜

dk
˜
−s
˜



= n (N (f) S (f 0
˜
) T (f 0

˜
))2 k

˜
 −2dk

˜
.

By (C) we finally obtain

Ck
˜

≤ max( f  , n Dk
˜
S (f 0

˜
) T (f 0

˜
))

≤ dk
˜ N (f)

n 2
_ ____ (N (f) S (f 0

˜
) T (f 0

˜
))2 k

˜
 −1

≤ dk
˜
(N (f) S (f 0

˜
) T (f 0

˜
))2 k

˜
 −1.

Since the polynomials gk
˜

and hk
˜

are unique we can conclude from theorem 3.2

 ak
˜
 ≤ dk

˜


N (f) S (f 0

˜
) T (f 0

˜
) 


2 k
˜
 −1

for 1 ≤  k
˜
 ≤ K.

From the lemmas 3.5 and 3.6 we obtain

 αK  ≤ B 1(f) = (4v)K 
n 2 f  (4 f )n2⁄2 2n2

(n  f )n 


2K −1

< (4v)K (2n  f )2Kn 2

, (3.3)

assuming that n ≥ 4. Obviously, log(B 1(f)) is polynomial in deg(f) and log( f ).

We now demonstrate for the polynomials g 0
˜

= x −β and h 0
˜

as computed in step (N1), that

res(g 0
˜
,h 0

˜
)

R_ _______ ∈ Z [β], with R = res(t (x),f 0
˜
′(x)),

75

where t is the minimal polynomial of β. Let β2, . . . , βn be the roots of h 0
˜
. Then

res(g 0
˜
,h 0

˜
) =

i =2
Π

n

(β−βi) = f 0
˜
′(β).

There exist polynomials A (x) and B (x) ∈ Z [x] such that At + B f 0
˜
′ = R . Thus R ⁄f 0

˜
′(β) = B (β) ∈

Z [β], which we wanted to show. Now let m = deg(t). By lemma 3.5a)  t  ≤ √ n +1 2n  f 0
˜
 , and

using Hadamard’s determinant inequality for the resultant res(t ,f 0
˜
′(x)) we obtain

 R  ≤ 
√ (m +1)(n +1) 2n  f 0

˜





n −1 
√ n n  f 0

˜





m

<

(n +1) 2n  f 0

˜





m +n
< (2n  f )n3⁄2, (3.4)

for n ≥ 4. Again, we note that log( R ) is bounded by a polynomial in deg(f) and log( f ).

From theorem 3.2 we can also conclude that

R 2 k
˜
 −1ak

˜
∈ Z [β] for 1 ≤  k

˜
 ≤ K. (3.5)

We now extend our estimates to the powers of αK mod JK +1 as well as count the ASM ops for step

(N5).

Lemma 3.7: Let a 0
˜

= β and let αK
(i) = Σ0

˜
≤  k

˜
 ≤K ak

˜

(i) y
˜
k

˜ for 2 ≤ i ≤ n −1, then

 ak
˜

(i)  ≤ (K +1)v (i −1)B 1(f)i and R 2 k
˜
 −1ak

˜

(i) ∈ Z [β],

with R as defined above. All αK
(i), 2 ≤ i ≤ n −1, can be computed in O (K 2v n) ASM ops.

Proof: It is easy to show that

ak
˜

(i +1) =
0≤s

˜
≤k
˜

Σ as
˜

(i) ak
˜
−s
˜
, 0 ≤  k

˜
 ≤ K , i ≥ 1,

where there are less than ( k
˜
 +1)v ≤ (K +1)v terms under the right hand sum. The lemma now follows

by induction on i .

Therefore we get from (3.3) for all 0 ≤ i ≤ K and for n ≥ 4

 αK
(i) ≤ B 2(f) = ((K +1)v B 1(f))n −1 < 23v nK (2n  f )2K (n3−n 2). (3.6)

Lemma 3.7 also establishes that the common denominator of any rational coefficient computed

throughout step (N) is R 2K −1. We are now in the position of estimating the size of any numerator of the

76

rational coefficients of αK
(i), 1 ≤ i ≤ n −1. To do this, we shall state a well-known lemma.

Lemma 3.8: Let β be any root of t (x) ∈ Z [x], monic, squarefree of degree m . Let A be a real upper

bound for the absolute value of any conjugate of β. Assume that



 i =0
Σ

m −1

ci βi




≤ C with ci ∈ Z.

Furthermore, let D be the absolute value of the discriminant of t . Then

 ci  ≤
√D

C m ! A m (m −1)⁄2
_ _____________, 0 ≤ i < m.

(Cf. [Weinberger and Rothschild 76, Lemma 8.3].)

In our case, we can choose A = 2 f 0
˜
 by lemma 3.5a), C = B 2(f) R 2K −1, and D ≥ 1. There-

fore, if we bring all rationals computed in step (N) to the common denominator R 2K −1, we have shown

that the absolute values of the numerators are bounded by

B 3(f ,m) = R 2K −1 B 2(f) m ! (2 f 0
˜
)m (m −1)⁄2 < 23vnK (2n  f )3Kn 3

, (3.7)

using (3.4), (3.6) and n ≥ 4. Though this bound is quite large, it is of length polynomial in deg(f) and

log( f ). This bound also implies, that all ASM ops are computable in time polynomial in deg(f)

and log( f ). Addition and subtraction in Q (β) means adding or subtracting the numerators of poly-

nomials in Q [β] of degree m −1, after eventually multiplying them with a power of R to produce a com-

mon denominator. Multiplication in Q (β) is multiplication of m −1 degree polynomials in Q [β] fol-

lowed by a remainder computation w.r.t. t (β). Again a common denominator can be extracted a priori.

Any AMS op takes at most O (m 2) integral operations.

Step (L): Let ui (y 1, . . . , yv) = Σ0≤  k
˜
 ≤d ui ,k

˜
y
˜
k

˜ and let

αK
(i) =

0≤  k
˜
 ≤K

Σ


 j =0
Σ

m −1

ak
˜
,j
(i) βj





y
˜
k

˜.

Then (3.1) can be written as

ak
˜
,j
(I) +

i =0
Σ
I −1

0≤  s
˜
 ≤d

Σ ak
˜
−s
˜
,j

(i) ui ,s
˜

= 0 (3.8)

for 0 ≤  k
˜
 ≤ K , j = 0, . . . , m −1. By lemma 3.4, it follows that (3.8) consists of

77

p = m

 K
v +K 

 < m (K +1)v equations in q = I

 d
v +d 

 < (n −1)(d +1)v unknowns. Applying Gaussian

elimination to (3.8) takes O (pq 2) rational operations. It is easy to show that this is the dominant opera-

tion count, which, expressed in input terms, is

O (m n v +3 d 3v). (3.9)

From the previous analysis, we know that all ak
˜
,j
(i) can be brought to the common denominator R 2K −1 and

their numerators, num(ak
˜
,j
(i)), then satisfy  num(ak

˜
,j
(i)) ≤ B 3(f ,m). As can be shown with little effort,

all intermediate rationals computed during the Gaussian elimination process are fractions of subdeter-

minants of the coefficient matrix for (3.8) extended by the vector of constants [Gantmacher 58, Chap.2].

It is not necessary to calculate the GCD of the numerator and denominator of a newly obtained rational

since, as can also be shown, the denominator of the row used for the elimination in subsequent rows

divides the numerators and denominators in these rows after the elimination step. Thus Hadamard’s

determinant inequality produces a bound for the size of any intermediately computed integer which is

polynomial in deg(f) log( f ). E.g. one such bound is

B 4(f ,m) = 
√ q B 3(f ,m)




q

whose logarithm is by (3.7) of order

log(B 4(f ,m)) = O (d v +2 vn 4 log(4n  f )), (3.10)

assuming that d ≥ n . Hence, step (L) also takes at most polynomial time in deg(f) and log( f ).

Notice that (3.9) and (3.10) give a very crude bound for the complexity of the steps (N) and (L). Since

we know that any solution of (3.8) must be integral of quite a small size, due to lemma 3.3, a Chinese

remaindering algorithm could be used to solve (3.8) [McClellan 73] and we believe that this approach

will be much more efficient, in practice.

Step (E): Step (E1) is the counterpart of the transformation of step (I3). Step (E2) is similar to step (I2),

but also involves a content computation. Both steps can obviously be performed in time polynomial in

deg(g) and log( g ).

3.5. Multivariate Irreducibility Testing

As we have seen in section 3.3, in order to establish the irreducibility of the polynomial f by

algorithm 3.1 we need to factor f 0
˜
. Reducibility of f 0

˜
does, of course, not imply reducibility of f . The

following theorem partially fills this gap by constructing from a polynomial f (y 1, . . . , yv ,x), monic in

x such that f (0, . . . , 0,x) is squarefree, a polynomial g (y 1,x) in time polynomial in deg(f) and

log( f ), such that g is irreducible if and only if f is irreducible. Unfortunately, our approach does

not allow us to eliminate y 1. We could include this as an open problem, but in view of the polynomial

time algorithm for univariate factorization a solution appears to be not so significant.

In the next theorem we will need the algebraic closure of polynomial domains and we shall intro-

duce the theory now. Let K be a field of characteristic 0, K  its algebraic closure. By K (t)* we denote

the fractional power series domain in t over K  , any element of which is of the form Σi ≥−k ai t i ⁄q with

k , q ∈ Z , q ≥ 1 and ai ∈ K  for i ≥ −k . It is a classical result in complex analysis that every algebraic

function admits a fractional power series expansion which converges in a neighborhood of zero. We

state this theorem in its algebraic version as a lemma.

Lemma 3.9 (Puiseux’s Theorem): K [t]  , the algebraic closure of K [t], can be embedded into K (t)* .

(Cf. [van der Waerden 39, pp. 50-54] or [Walker 50, pp. 97-106].)

We write K (t 1, . . . , tv)* for (. . . (K (t 1)
*)(t 2)

* . . .)(tv)* and notice that K (t 1, . . . , tv)* con-

tains the algebraic closure of K [t 1, . . . , tv].

Theorem 3.3: Let f (y 1, . . . , yv ,x) ∈ Z [y 1, . . . , yv ,x] be monic of degree n in x such that

f 0
˜

= f (0, . . . , 0,x) is squarefree. Let T (f 0
˜
) be as in lemma 3.5, and let N (f) be as in theorem 3.2.

Furthermore, assume that f (y 1, . . . , yv ,x) is irreducible. Let d = degy
1
,y

2
(f) and M = degy

3
, . . . , y

v
(f).

Then for any integer c with

 c  ≥ B 5(f) = 2 (4v)2d +M (2 N (f) T (f 0
˜
)2)4d +2M −1

f (y 1,cy1,y 3, . . . , yv ,x) is irreducible in Z [y 1,y 3, . . . , yv ,x].

- 80 -

81

Proof: By lemma 3.9 and the subsequent remark the polynomial

gc (y 1,y 3, . . . , x) = f (y 1,cy1,y 3, . . . , x) has n roots in Q (y 1,y 3, . . . , yv)* and f (y 1,y 2, . . . , yv ,x) has

n roots in Q (y 1,y 2, . . . , yv)* . Each of the roots of gc corresponds to a root of f with y 2 = cy1. Hence

each factor of gc (y 1, y 3, . . . , x) ∈ Q (y 1, y 3, . . . , yv)* [x] corresponds to a factor of f (y 1, y 2, . . . ,

x) ∈ Q (y 1, y 2, . . . , yv)* [x] with y 2=cy1.
We will show that for an integer c of the stated size no

factor derived from f in such a way can be an integral polynomial dividing gc . For simplicity we

write y
˜

for the variables y 1, y 2 and x
˜

for the variables y 3, . . . , yv , x and again use our vector notation

but now all vectors have either 2 or v −1 components. Our plan is the following: We first show that any

candidate factor h (y 1, y 2, . . . , x) of f (y 1, y 2, . . . , x) ∈ Q (y 1, . . . , yv)* [x] contains at least one

monomial bm
˜
,p
˜

y
˜
p
˜ x
˜
m
˜ with bm

˜
,p
˜

≠ 0 and d <  p
˜
 ≤ 2d . From it we get a monomial t (c) y 1

 p
˜
 x
˜
m
˜ in h (y 1,cy1,x

˜
)

where t (c) is a non-zero polynomial in c . Since degy
1
(gc) ≤ d , no polynomial factor of gc has a degree

in y 1 higher than d . By choosing c larger than the absolute value of any root of t (c) we force

degy
1
(h (y 1,cy1, . . . , x)) ≥  p

˜
 > d

and hence h (y 1,cy1, . . . , x) cannot be a polynomial dividing gc (y 1,y 3, . . . , x). Let

h (y 1, . . . , yv ,x) =
k

˜
≥0
˜

Σ
i
˜
≥0
˜

Σ bk
˜
,i
˜

y
˜
i
˜ x
˜
k

˜

be the product of a subset of the linear factors of f (x) with the constant coefficients in Q (y 1, . . . , yv)*

and let

h (y 1, . . . , yv ,x) =
k

˜
≥0
˜

Σ
i
˜
≥0
˜

Σ b k
˜
,i
˜

y
˜
i
˜ x
˜
k

˜

be its cofactor, i.e. f = hh . We first can assume that

h (0,0,y 3, . . . , x) =
k

˜
≥0
˜

Σ bk
˜
,0
˜

x
˜
k

˜ ∈ Z [y 3, . . . , x].

Otherwise h (y 1,cy1,y 3, . . . , x) could not be an integer polynomial for any choice of c . Similarly we

can also assume that bk
˜
,i
˜
, b k

˜
,i
˜

are zero for all i
˜

and k
˜

with  k
˜
−1 > M , where  k

˜
−1 is the vector derived

from k
˜

by removing its last component.@ Otherwise, even if h (y 1,cy1,y 3, . . . , x) were an integer

Prof. H. Lenstra points out that, by using the uniqueness of the Hensel lifting procedure (theorem 3.2), the need for Puiseux
theorem can be completely avoided to establish this correspondence.
@ This argument if false. See SIAM J. Comput., vol. 14, no. 2, p. 485 (1995) for the correct argument (note added November 17,
1997).

82

polynomial, it could not divide gc because its or its cofactor’s degree in y 3, . . . , yv were to high.

Now there must exist at least one bk
˜
,i
˜

or b k
˜
,i
˜

with

d <  i
˜
 ≤ 2d and


bk

˜
,i
˜

≠ 0 or b k
˜
,i
˜

≠ 0

.

To see this, assume the contrary. Then



0≤  k

˜
 ≤M ,0≤  i

˜
 ≤d

Σ bk
˜
,i
˜

y
˜
i
˜ x
˜
k

˜






0≤  k

˜
 ≤M ,0≤  i

˜
 ≤d

Σ b k
˜
,i
˜

y
˜
i
˜ x
˜
k

˜




= f (y 1, . . . , yv ,x)

since no term r y
˜
i
˜ x
˜
k

˜, r a nonzero rational, with d <  i
˜
 ≤ 2d in the left product could be canceled by

higher terms in the product of the complete expansion of h and h . (Notice that f does not contain a

monomial in y 1, y 2 of degree larger than d .) But this contradicts the fact that f is irreducible. Without

loss of generality we now can assume the existence of m
˜
, p
˜

such that

bm
˜
,p
˜

≠ 0 with 0 ≤  m
˜
−1 ≤ M and d <  p

˜
 ≤ 2d.

We collect all non-zero bm
˜
,j
˜

with j 1 + j 2 = p 1 + p 2. Let q
˜

be that of all vectors j
˜

whose second component

is largest. Then the following inequalities hold

q 2 ≤ q 1 + q 2 ≤ 2d and d < j 1 + j 2 ≤ 2d. (A)

We now consider the coefficient t (c) of y 1
p

1
+p

2 x
˜
m
˜ in g (y 1,cy1,y 3, . . . , x), namely

t (c) = bm
˜
,q
˜
c

q
2+ . . . +bm

˜
,j
˜
c

j
2+ . . . +bm

˜
,(p

1
+p

2
,0).

By lemma 3.5a) the absolute value of any root of t (c) is bounded by 2  t ⁄ldcf(t) . We now apply

theorem 3.2 with β = 1, g 0
˜
(x) = h (0, . . . , 0,x) and h 0

˜
(x) = h (0, . . . , 0,x). Notice, that if R = res(g 0

˜
,h 0

˜
)

then 1⁄  R  ≤ 1 and hence we can set S (f 0
˜
) = 1. Therefore R 2( m

˜
−1 +  q

˜
)−1 bm

˜
,q
˜

∈ Z and

 m
˜
−1 +  q

˜
 ≤ M +2d by (A). Since bm

˜
,q
˜

≠ 0 it follows that



 bm

˜
,q
˜

1_ __




≤ R 2M +4d −1 ≤ (2 T (f 0
˜
))2M +4d −1,

the last inequality by lemma 3.5c). Also by theorem 3.2, lemma 3.6 and (A)

 bm
˜
,j
˜
 ≤ (4v) m

˜
−1 +  j

˜
 (N (f)T (f 0

˜
))2(m

˜
+j
˜
)−1 ≤ (4v)M +2d (N (f)T (f 0

˜
))2M +4d −1.

Therefore

83

2  t ⁄ldcf(t) ≤ 2 (4v)2d +M (2 N (f) T (f 0
˜
)2)4d +2M −1. (B)

Thus, for any integer c absolutely larger than the right-hand side of (B) we know that t (c) ≠ 0, and

therefore h (y 1,cy1,y 3, . . . , x) contains a non-zero monomial t (c)y 1
p

1
+p

2 x
˜
m
˜ and cannot be a polynomial

factor of gc (y 1,y 3, . . . , x), as argued above. Our given bound then obviously works for any factor can-

didate h .

Our irreducibility test can now be constructed easily by induction. We compute the bounds

c 1, . . . , cv −1 such that for the sequence of polynomials f 1 = f ,

f 2(y 1,y 3, . . . , x) = f 1(y 1,c 1y 1,y 3, . . . , x),

f 3(y 1,y 4, . . . , x) = f 2(y 1,c 2y 1,y 4, . . . , x), . . . ,

f v (y 1,x) = f v −1(y 1,cv −2y 1,x), g = f v ,

we have ci = B 5(f i). Since v is assumed to be fixed and since B 5(f i) is of size polynomial in deg(f i)

and log( f i ), g can be constructed in time polynomial in deg(f) and log( f ). By theorem 3.3, g

is irreducible if f is irreducible. On the other hand, if f = f 1f 2 then

g (y 1,x) = f 1(y 1,c 1y 1, . . . , cv −1y 1,x) f 2(y 1,c 1y 1, . . . , cv −1y 1,x).

One can prove theorem 3.3 for the more general substitution y 2 = c y 1
s , s being an arbitrary posi-

tive integer. Since the bound B 5(f) grows monotonicly in  f  we can, in the case that f is reducible,

find a bound for c using lemma 3.3 such that the given substitution maps all irreducible factors of f

into irreducible polynomials in one less variable. Together with a Kronecker style algorithm this then

leads to a different polynomial time reduction from multivariate to bivariate polynomial factorization. In

the case of v = 2 the complete proof is given in [Kaltofen 82], which, following the lines of the proof

for theorem 3.3, is readily extended to any fixed v . Instead of using Kronecker’s algorithm one can also

apply the multivariate Hensel lifting algorithm (see section 1.4) with the coefficients in Q (y 1). Since

our evaluation guarantees that no extraneous factors can occur all computed coefficients actually lie in

Z [y 1].

The type of substitution y 2 = c y 1
s is derived from a version of the Hilbert Irreducibility Theorem

[Franz 31] and theorem 3.3 can be regarded as its effective counterpart. For the classical Hilbert

84

Irreducibility Theorem, no such an effective formulation seems to be known. (See open problem 2 in

section 4.)

4. Conclusion

We have discussed the phenomenon of extraneous factors during the uni- and multivariate Hensel

algorithm which can cause in both cases exponential running time in the degree of the polynomial to be

factored. Two classical theorems are central for the analysis of this problem. The Chebotarev Density

Theorem in the univariate and the Hilbert Irreducibility Theorem in the multivariate case. An effective

version of the first provided us with an algorithm for the determination of Galois groups, an effective

version of the second provided a reduction algorithm from multivariate to bivariate irreducibility testing.

We also have shown how to overcome the extraneous factor problem in the multivariate case by approx-

imating a root and then determining its minimal polynomial, which lead us to solving a system of linear

equations. We conclude this thesis with a list of open problems.

Problem 1: Does there exist a polynomial p (d ,v) and an infinite sequence of polynomials

f (x 1, . . . , xv) ∈ Z [x 1, . . . , xv] with the following property: If d is the maximum of the degrees in the

individual variables then any f contains less than p (d ,v) monomials with non-zero coefficients; more-

over, there does not exist a polynomial q (d ,v) such that any factor of f contains less than q (d ,v)

monomials with non-zero coefficients? In simple words, are there sparse polynomials with dense factors?

Problem 2: Does there exist an infinite sequence of irreducible polynomials f (y ,x) ∈ Z [y ,x], n =

deg(f), such that for no polynomial p (n) any polynomial f (i ,x) is irreducible for an integer i with

 i  < p (n)? This problem asks whether there is an effective version of the Hilbert Irreducibility

Theorem.

Problem 3: Devise an algorithm which, for a fixed number v , computes irreducible factors of

f (x 1, . . . , xv) ∈ Zp [x 1, . . . , xv] in time polynomial in p deg(f). Algorithm 3.1 partially solves this

problem provided that we can find good evaluation points in step (I3). Can one determine irreducibility

of f in deterministic or probabilistic time polynomial in log(p) deg(f)?

Problem 4: Given a monic irreducible polynomial f ∈ Z [x], n = deg(f), construct a generating set for

- 85 -

86

the Galois group of f in time polynomial in n log( f ). Notice that such a set contains at most

log2(n !) = O (n log(n)) elements.

Da steh’ ich nun, ich armer Tor,
und bin so klug als wie zuvor.

J. W. v. Goethe - Faust

(Here I stand with all my lore,
poor fool, no wiser than before.)

REFERENCES

[Abdali et al. 77]

Abdali, S. K., Caviness, B. F., Pridor, A.: Modular Polynomial Arithmetic in Partial Fraction
Decomposition. Proc. MACSYMA Users’ Conf. 77. Washington, D.C.: NASA 1977, 253-261.

[Adleman and Odlyzko 81]

Adleman, L. M., Odlyzko, A. M.: Irreducibility Testing and Factorization of Polynomials. Proc.
22nd Symp. Foundations Comp. Sci. IEEE, 409-418 (1981).

[Berlekamp 70]

Berlekamp, E. R.: Factoring Polynomials over Large Finite Fields. Math. Comp. 24, 713-735
(1970).

[Besicovitch 40]

Besicovitch, A. S.: On the Linear Independence of Fractional Powers of the Integers. J. London
Math. Soc. 15, 1-3 (1940).

[Cantor 81]

Cantor, D. G.: Irreducible Polynomials with Integral Coefficients Have Succinct Certificates. J. of
Algorithms 2, 385-392 (1981).

[Caviness 68]

Caviness, B. F.: On Canonical Forms and Simplification. Ph.D. thesis, Carnegie-Mellon Univ.,
1968.

[Chebotarev 26]

Chebotarev,N. G.: Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer
gegebenen Substitutionsklasse geh"oren. Math. Ann. 95, 191-228 (1926).

[Claybrook 76]

Claybrook, B. G.: Factorization of Multivariate Polynomials over the Integers. ACM SIGSAM
Bulletin 10, 13 (Feb. 1976).

[Collins 79]

Collins, G. E.: Factoring Univariate Polynomials in Polynomial Average Time. Springer Lecture
Notes in Comp. Sci. 72, 317-329 (1979).

[Eisenstein 1850]

Eisenstein, F. G.: "Uber die Irreductibilit"at und einige andere Eigenschaften der Gleichung, von
welcher die Theilung der ganzen Lemniscate abh"angt. J. f. d. reine u. angew. Math. 39, 160-179
(1850).

[Franz 31]

Franz, W.: Untersuchungen zum Hilbertschen Irreduzibilit"atssatz. Math. Zeitschr. 33, 275-293
(1931).

- 87 -

88

[Gallagher 72]

Gallagher, P. X.: Probabilistic Galois Theory. AMS Proc. Symp. in Pure Math., Analytic Number
Theory, 91-102 (1972).

[Gantmacher 59]

Gantmacher, F. R.: Matrix Theory, vol. 1. New York: Chelsea 1959.

[Gel’fond 60]

Gel’fond, A. O.: Transcendental and Algebraic Numbers. New York: Dover Publ. 1960.

[Hardy and Wright 79]

Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford: Oxford Univ.
Press 1979.

[Heintz and Sieveking 81]

Heintz, J., Sieveking, M.: Absolute Primality of Polynomials is Decidable in Random Polynomial
Time in the Number of Variables. Springer Lecture Notes Comp. Sci. 115, 16-28 (1981).

[Horowitz 71]

Horowitz, E.: Algorithms for Partial Fraction Decomposition and Rational Function Integration. In
Petrick, S. (ed.): Proc. 2nd Symp. on Symbolic and Algebraic Manipulation. ACM, 441-457
(1971).

[Johnson 66]

Johnson, S. C.: Tricks for Improving Kronecker’s Method. Bell Laboratories Report 1966.

[Kaltofen 82]

Kaltofen, E.: A Polynomial Reduction from Multivariate to Bivariate Integer Polynomial Factori-
zation. ACM Proc. Symp on Theory Comp. 1982, 261-266.

[Kaltofen et al. 81]

Kaltofen, E., Musser, D. R., Saunders, B. D.: A Generalized Class of Polynomials that Are Hard
to Factor. In Wang, P. (ed.): Proc. ACM Symp. on Symbolic and Algebraic Comp. 1981. ACM,
188-194.

[Knobloch 55]

Knobloch, H.-W.: Zum Hilbertschen Irreduzibilit"atssatz. Abh. math. Sem. d. Univ. Hamburg 19,
176-190 (1955).

[Knuth 69]

Knuth, D. E.: The Art of Computer Programming, vol.2, Seminumerical Algorithms. Reading,
MA: Addison Wesley 1969.

89

[Knuth 81]

Knuth, D. E.: The Art of Computer Programming, vol.2, Seminumerical Algorithms, 2nd ed.
Reading, MA: Addison Wesley 1981.

[K"onigsberger 1895]

K"onigsberger, L.: "Uber den Eisensteinschen Satz von der Irreductibilit"at algebraischer
Gleichungen. J. f. reine angew. Math. 115, 53-78 (1895).

[Kronecker 1882]

Kronecker, L.: Grundz"uge einer arithmetischen Theorie der algebraischen Gr"ossen. J. f. d. reine u.
angew. Math. 92, 1-122 (1882).

[Kung and Tong 77]

Kung, H. T., Tong, D. M.: Fast Algorithms for Partial Fraction Decomposition. SIAM J. Comp. 6,
582-593 (1977).

[Kung and Traub 78]

Kung, H. T., Traub, J. F.: All Algebraic Functions Can Be Computed Fast. J. ACM 25, 245-260
(1978).

[Lagarias and Odlyzko 77]

Lagarias, J. C., Odlyzko, A. M.: Effective Versions of the Chebotarev Density Theorem. In
Fr"ohlich A. (ed.): Algebraic Number Fields (L-Functions and Galois Properties). New York:
Academic Press 1977.

[Lagarias et al. 79]

Lagarias, J. C., Montgomery, H. L., Odlyzko, A. M.: A Bound for the Least Prime Ideal in the
Chebotarev Density Theorem. Inventiones Math. 54, 271-296 (1979).

[Lenstra et al. 82]

Lenstra, A. K., Lenstra, H. W., Lovász, L.: Factoring Polynomials with Rational Coefficients.
Report 82-05. Amsterdam: Mathematisch Instituut 1982.

[Loos 82]

Loos, R.: Computing in Algebraic Extensions. Computing Supplement 4. Vienna: Springer Verlag
1982.

[Macsyma 77]

MACSYMA Reference Manual. Version 9, Cambridge MA: M.I.T. 1977.

[McClellan 73]

McClellan, M. T.: The Exact Solution of Systems of Linear Equations with Polynomial
Coefficients. J. ACM 20, 563-588 (1973).

90

[Mignotte 74]

Mignotte, M.: An Inequality about Factors of Polynomials. Math. Comp. 28, 1153-1157 (1974).

[Moore and Norman 81]

Moore, P. M. A., Norman, A. C.: Implementing a Polynomial Factorization Problem. In Wang, P.
(ed.): Proc. ACM Symp. on Symbolic and Algebraic Comp. 1981. ACM, 109-116.

[Moses and Yun 73]

Moses, J., Yun, D. Y. Y.: The EZGCD Algorithm. Proc. 1973 ACM National Conf., 159-166.

[Musser 71]

Musser, D. R.: Algorithms for Polynomial Factorization. Ph.D. thesis and TR 134, Univ. of
Wisconsin 1971.

[Musser 76]

Musser, D. R.: Multivariate Polynomial Factorization. J. ACM 22, 291-308 (1976).

[Musser 78]

Musser, D. R.: On the Efficiency of a Polynomial Irreducibility Test. J. ACM 25, 271-282 (1978).

[Narkiewicz 74]

Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Warsaw: Polish Science
Publ. 1974.

[Noether 22]

Noether, E.: Ein algebraisches Kriterium f"ur absolute Irreduzibilit"at. Math. Ann. 85, 26-33 (1922).

[Oesterlé 79]

Oesterlé, J.: Versions Effectives du Théorème de Chebotarev sous L’Hypothèse de Riemann
Généralisée. Soc. Math. France Asterisque 61, 165-167 (1979).

[Plaisted 78]

Plaisted, D. A.: Some Polynomial and Integer Divisibility Problems are NP-Hard. SIAM J. Comp.
7, 458-464 (1978).

[Pratt 75]

Pratt, V. R.: Every Prime Has a Succinct Certificate. SIAM J. Comp. 4, 214-220 (1975).

[Rabin 80]

Rabin, M. O.: Probabilistic Algorithms in Finite Fields. SIAM J. Comp. 9, 273-280 (1980).

[Richards 74]

Richards, I.: An Application of Galois Theory to Elementary Arithmetic. Adv. in Math. 13,
268-273 (1974).

91

[Trager 76]

Trager, B. M.: Algebraic Factoring and Rational Function Integration. In Jenks, R. (ed.): Proc.
ACM Symp. on Symbolic and Algebraic Comp. 1976. ACM, 219-226.

[van der Waerden 39]

van der Waerden, B. L.: Einf"uhrung in die algebraische Geometrie. Berlin: Springer Verlag 1939.

[van der Waerden 53]

van der Waerden, B. L.: Modern Algebra, vol.1. Engl. transl. by F. Blum. New York: Ungar Publ.
1953.

[Vaughan 75]

Vaughan, R. C.: Bounds for the Coefficients of Cyclotomic Polynomials. Michigan Math. J. 21,
289-295 (1975).

[Viry 80]

Viry, G.: Factorisation des Polynômes a Plusieurs Variables. RAIRO Informatique Théorique 14,
209-223 (1980).

[Walker 50]

Walker, J. R.: Algebraic Curves. New York: Dover Publ. 1950.

[Wang 77]

Wang, P. S.: Preserving Sparseness in Multivariate Polynomial Factorization. Proc. MACSYMA
Users’ Conf. 77. Washington, D.C.: NASA 1977, 55-61.

[Wang 78]

Wang, P. S.: An Improved Multivariate Polynomial Factoring Algorithm. Math. Comp. 32,
1215-1231 (1978).

[Wang 79a]

Wang, P. S.: Parallel p-adic Constructions in the Univariate Polynomial Factoring Algorithm. In
Lewis, V. (ed.): Proc. MACSYMA Users’ Conf. 79. Cambridge, MA: MIT 1979, 310-318.

[Wang 79b]

Wang, P. S.: Analysis of the p-adic Construction of Multivariate Correction Coeficients in Polyno-
mial Factorization: Iteration vs. Recursion. Springer Lecture Notes in Comp. Sci. 72, 291-300
(1979).

[Wang and Rothschild 75]

Wang, P. S., Rothschild, L. P.: Factoring Multivariate Polynomials over the Integers. Math. Comp.
29, 935-950 (1975).

92

[Wang and Trager 79]

Wang, P. S., Trager, B. M.: New Algorithms for Polynomial Square-free Decomposition over the
Integers. SIAM J. Comp. 8, 300-305 (1979).

[Weinberger 81]

Weinberger, P. J.: Finding the Number of Factors of a Polynomial. 1981, manuscript.

[Weinberger and Rothschild 76]

Weinberger, P. J., Rothschild, L. P.: Factoring Polynomials over Algebraic Number Fields. ACM
Trans. Math. Software 2, 335-350 (1976).

[Yun 76a]

Yun, D. Y. Y.: Hensel Meets Newton - Algebraic Construction in an Analytic setting. Analytic
Computational Complexity. Traub J. ed. NY: Academic Press 1976.

[Yun 76b]

Yun, D. Y. Y.: On Squarefree Decomposition Algorithms. In Jenks, R. (ed.): Proc. ACM Symp.
on Symbolic and Algebraic Comp. 1976. ACM, 26-35.

[Yun 77]

Yun, D. Y. Y.: On the Equivalence of Polynomial GCD and Squarefree Factorization Problems.
Proc. MACSYMA Users’ Conf. 77. Washington, D.C.: NASA 1977, 65-70.

[Zassenhaus 69]

Zassenhaus, H.: On Hensel Factorization I. J. Number Theory 1, 291-311 (1969).

[Zassenhaus 78]

Zassenhaus, H.: A Remark on the Hensel Factorization Method. Math. Comp. 32, 287-292 (1978).

[Zassenhaus 81]

Zassenhaus, H.: Polynomial Time Factoring of Integral Polynomials. ACM SIGSAM Bulletin 15,
6-7, (May 1981).

[Zippel 79]

Zippel, R. E.: Probabilistic Algorithms for Sparse Polynomials. Ph.D. thesis, MIT 1979.

APPENDIX A

Vaxima 1.50
Sat Mar 6 01:41:14 1982

(c2) /* Sample run of algorithm 3.1: */

/* Inhibit garbage collection message. */

gcprint:false$

(c3) /* The following bi-variate polynomial is squarefree and
monic in x as well as 0 is already a useable evaluation
point for y. Therefore, step (I) is not needed. */

f:x↑6+x↑5+(2*y+4)*x↑4+(y+3)*x↑3+(y↑2+3*y+5)*x↑2+(2-y)*x-y↑2+y+2;
2 2 2 4 3 6

(d3) x (y + 3 y + 5) - y + x (2 y + 4) + x (y + 3) + y + x (2 - y) + x

5
+ x + 2

(c4) /* Step (F): */

factor(subst(0,y,f));
2 2 2

(d4) (x + 1) (x + 2) (x + x + 1)

(c5) /* We choose β=%i, the imaginary unit. */

/* Step (N): */

/* Step (N1): */

g[0]:x-%i;
(d5) x - %i

(c6) h[0]:quotient(subst(0,y,f),g[0]);
5 4 3 2

(d6) x + (%i + 1) x + (%i + 3) x + (3 %i + 2) x + (2 %i + 2) x + 2 %i

(c7) /* Step (N2). We actually choose K smaller than described,
though this does not influence the outcome of latter steps */

K:5;
(d7) 5

(c8) /* Precompute inverse of f’(0,%i)=h[0](%i). */
r:ratsimp(1/subst(%i,x,h[0]));

- 94 -

95

1
(d8) - -

2

(c9) /* Computation of g[j] and h[j] using b[j]: */

for j:1 thru K do (
display(f[j]:ratcoeff(f,y,j)),
/* Step (N2): */
if j=0

then display(b[j]:f[j])
else display(b[j]:ratsimp(f[j]-sum(g[s]*h[j-s],s,1,j-1))),

display(g[j]:ratsimp(subst(%i,x,b[j])*r)),
display(h[j]:quotient(b[j]-h[0]*g[j],g[0]))
);

4 3 2
f = 2 x + x + 3 x - x + 1
1

4 3 2
b = 2 x + x + 3 x - x + 1
1

g = %i
1

4 3 2
h = - %i x + (4 - %i) x + (%i + 3) x + (%i + 5) x + 3 %i
1

2
f = x - 1
2

4 3 2
b = - x + (- 4 %i - 1) x + (2 - 3 %i) x + (1 - 5 %i) x + 2
2

5 %i
g = - ----
2 2

4 3 2
5 %i x + (5 %i - 12) x + (- 5 %i - 12) x + (- 8 %i - 6) x - 6 %i

h = ---
2 2

f = 0
3

96

4 3 2
- 10 x + (- 32 %i - 10) x + (10 - 27 %i) x + (13 - 31 %i) x + 21

b = - ---
3 2

25 %i
g = -----
3 2

h =
3

4 3 2
25 %i x + (25 %i - 60) x + (- 17 %i - 60) x + (- 37 %i - 48) x - 29 %i

- ---
2

f = 0
4

b =
4

4 3 2
- 125 x + (- 380 %i - 125) x + (109 - 330 %i) x + (164 - 376 %i) x + 238

4

619 %i
g = - ------
4 8

4 3 2
h = (619 %i x + (619 %i - 1488) x + (- 391 %i - 1488) x
4

+ (- 910 %i - 1248) x - 762 %i)/8

f = 0
5

4 3 2
b = - (- 1738 x + (- 5164 %i - 1738) x + (1430 - 4545 %i) x
5

+ (2299 - 5123 %i) x + 3209)/8

4291 %i
g = -------
5 8

97

4 3 2
h = - (4291 %i x + (4291 %i - 10320) x + (- 2611 %i - 10320) x
5

+ (- 6283 %i - 8832) x - 5373 %i)/8

(d9) done

(c10) /* Assign K-th order approximation of root of f. */

a[K]:%i+sum(-g[j]*y↑j,j,1,K);
5 4 3 2

4291 %i y 619 %i y 25 %i y 5 %i y
(d10) - ---------- + --------- - -------- + ------- - %i y + %i

8 8 2 2

(c11) /* This command verifies our approximation as it was proven. */

remainder(subst(a[K],x,f),y↑(K+2));
6

63729 %i y
(d11) -----------

8

(c12) /* Compute powers of a[K] mod y↑(K+1). */

asquare[K]:remainder(a[K]↑2,y↑(K+1));
5 4 3 2

(d12) 1290 y - 186 y + 30 y - 6 y + 2 y - 1

(c13) acube[K]:remainder(a[K]*asquare[K],y↑(K+1));
5 4 3 2

18537 %i y - 2667 %i y + 428 %i y - 84 %i y + 24 %i y - 8 %i
(d13) --

8

(c14) afourth[K]:remainder(a[K]*acube[K],y↑(K+1));
5 4 3 2

(d14) - 3684 y + 528 y - 84 y + 16 y - 4 y + 1

(c15) /* Set up undetermined polynomials of possible factor. */

u[0]:w0+v0*y+u0*y↑2;
2

(d15) u0 y + v0 y + w0

(c16) u[1]:w1+v1*y+u1*y↑2;
2

(d16) u1 y + v1 y + w1

(c17) u[2]:w2+v2*y+u2*y↑2;

98

2
(d17) u2 y + v2 y + w2

(c18) u[3]:w3+v3*y+u3*y↑2;
2

(d18) u3 y + v3 y + w3

(c19) /* Compute equation (3.1) for I=2. */

L2:remainder(asquare[K]+u[1]*a[K]+u[0],y↑(K+1));
5

(d19) - ((4291 %i w1 - 619 %i v1 + 100 %i u1 - 10320) y

4
+ (- 619 %i w1 + 100 %i v1 - 20 %i u1 + 1488) y

3
+ (100 %i w1 - 20 %i v1 + 8 %i u1 - 240) y

2
+ (- 20 %i w1 + 8 %i v1 - 8 %i u1 - 8 u0 + 48) y

+ (8 %i w1 - 8 %i v1 - 8 v0 - 16) y - 8 %i w1 - 8 w0 + 8)/8

(c20) t2:[]$

(c21) /* Retrieve linear equations for the coefficients. */

for i:0 thru K do
for j:0 thru 1 do (

display(s2[i,j]:ratcoeff(ratcoeff(L2,y,i),%i,j)),
t2:cons(s2[i,j],t2)
);

s2 = w0 - 1
0, 0

s2 = w1
0, 1

s2 = v0 + 2
1, 0

s2 = v1 - w1
1, 1

s2 = u0 - 6
2, 0

5 w1 - 2 v1 + 2 u1
s2 = ------------------

2, 1 2

99

s2 = 30
3, 0

25 w1 - 5 v1 + 2 u1
s2 = - -------------------

3, 1 2

s2 = - 186
4, 0

619 w1 - 100 v1 + 20 u1
s2 = -----------------------

4, 1 8

s2 = 1290
5, 0

4291 w1 - 619 v1 + 100 u1
s2 = - -------------------------

5, 1 8

(d21) done

(c22) /* Try to solve the system. */

errcatch(linsolve(t2,
[w0,v0,u0,w1,v1,u1]));

Dependent equations eliminated: (1 5 7)
Inconsistent equations: (2 4 6)

(d22) []

(c23) /* Compute equation (3.1) for I=3. */

L3:remainder(acube[K]+u[2]*asquare[K]+u[1]*a[K]+u[0],y↑(K+1));
(d23) ((10320 w2 - 4291 %i w1 - 1488 v2 + 619 %i v1 + 240 u2 - 100 %i u1

5
+ 18537 %i) y + (- 1488 w2 + 619 %i w1 + 240 v2 - 100 %i v1 - 48 u2

4
+ 20 %i u1 - 2667 %i) y + (240 w2 - 100 %i w1 - 48 v2 + 20 %i v1 + 16 u2

3
- 8 %i u1 + 428 %i) y + (- 48 w2 + 20 %i w1 + 16 v2 - 8 %i v1 - 8 u2

2
+ 8 %i u1 + 8 u0 - 84 %i) y + (16 w2 - 8 %i w1 - 8 v2 + 8 %i v1 + 8 v0

+ 24 %i) y - 8 w2 + 8 %i w1 + 8 w0 - 8 %i)/8

100

(c24) t3:[]$

(c25) /* Retrieve linear equations for the coefficients. */

for i:0 thru K do
for j:0 thru 1 do (

display(s3[i,j]:ratcoeff(ratcoeff(L3,y,i),%i,j)),
t3:cons(s3[i,j],t3)
);

s3 = w0 - w2
0, 0

s3 = w1 - 1
0, 1

s3 = 2 w2 - v2 + v0
1, 0

s3 = - w1 + v1 + 3
1, 1

s3 = - 6 w2 + 2 v2 - u2 + u0
2, 0

5 w1 - 2 v1 + 2 u1 - 21
s3 = -----------------------

2, 1 2

s3 = 30 w2 - 6 v2 + 2 u2
3, 0

25 w1 - 5 v1 + 2 u1 - 107
s3 = - -------------------------

3, 1 2

s3 = - 186 w2 + 30 v2 - 6 u2
4, 0

619 w1 - 100 v1 + 20 u1 - 2667
s3 = ------------------------------

4, 1 8

s3 = 1290 w2 - 186 v2 + 30 u2
5, 0

4291 w1 - 619 v1 + 100 u1 - 18537
s3 = - ---------------------------------

5, 1 8

(d25) done

101

(c26) /* Try to solve the system. */

errcatch(linsolve(t3,
[w0,v0,u0,w1,v1,u1,w2,v2,u2]));

Inconsistent equations: (5 7 1)

(d26) []

(c27) /* Compute equation (3.1) for I=4. */

L4:remainder(afourth[K]+u[3]*acube[K]+u[2]*asquare[K]+u[1]*a[K]+u[0],y↑(K+1));
(d27) ((18537 %i w3 + 10320 w2 - 4291 %i w1 - 2667 %i v3 - 1488 v2 + 619 %i v1

5
+ 428 %i u3 + 240 u2 - 100 %i u1 - 29472) y

+ (- 2667 %i w3 - 1488 w2 + 619 %i w1 + 428 %i v3 + 240 v2 - 100 %i v1

4
- 84 %i u3 - 48 u2 + 20 %i u1 + 4224) y

+ (428 %i w3 + 240 w2 - 100 %i w1 - 84 %i v3 - 48 v2 + 20 %i v1 + 24 %i u3

3
+ 16 u2 - 8 %i u1 - 672) y + (- 84 %i w3 - 48 w2 + 20 %i w1 + 24 %i v3

2
+ 16 v2 - 8 %i v1 - 8 %i u3 - 8 u2 + 8 %i u1 + 8 u0 + 128) y

+ (24 %i w3 + 16 w2 - 8 %i w1 - 8 %i v3 - 8 v2 + 8 %i v1 + 8 v0 - 32) y

- 8 %i w3 - 8 w2 + 8 %i w1 + 8 w0 + 8)/8

(c28) t4:[]$

(c29) /* Retrieve linear equations for the coefficients. */

for i:0 thru K do
for j:0 thru 1 do (

display(s4[i,j]:ratcoeff(ratcoeff(L4,y,i),%i,j)),
t4:cons(s4[i,j],t4)
);

s4 = - w2 + w0 + 1
0, 0

s4 = w1 - w3
0, 1

s4 = 2 w2 - v2 + v0 - 4
1, 0

102

s4 = 3 w3 - w1 - v3 + v1
1, 1

s4 = - 6 w2 + 2 v2 - u2 + u0 + 16
2, 0

21 w3 - 5 w1 - 6 v3 + 2 v1 + 2 u3 - 2 u1
s4 = - --

2, 1 2

s4 = 30 w2 - 6 v2 + 2 u2 - 84
3, 0

107 w3 - 25 w1 - 21 v3 + 5 v1 + 6 u3 - 2 u1
s4 = ---

3, 1 2

s4 = - 186 w2 + 30 v2 - 6 u2 + 528
4, 0

2667 w3 - 619 w1 - 428 v3 + 100 v1 + 84 u3 - 20 u1
s4 = - --

4, 1 8

s4 = 1290 w2 - 186 v2 + 30 u2 - 3684
5, 0

18537 w3 - 4291 w1 - 2667 v3 + 619 v1 + 428 u3 - 100 u1
s4 = ---

5, 1 8

(d29) done

(c30) /* Try to solve the system. */

linsolve(t4,
[w0,v0,u0,w1,v1,u1,w2,v2,u2,w3,v3,u3]);

Solution

(e30) w1 = 0

(e31) v1 = 0

(e32) w0 = 2

(e33) u2 = 0

(e34) w2 = 3

(e35) v2 = 1

103

(e36) u0 = 0

(e37) v0 = - 1

(e38) u1 = 0

(e39) w3 = 0

(e40) v3 = 0

(e41) u3 = 0
(d41) [e30, e31, e32, e33, e34, e35, e36, e37, e38, e39, e40, e41]

(c42) /* Substitute solution into factor. */

g:ev(x↑4+u[3]*x↑3+u[2]*x↑2+u[1]*x+u[0],%);
2 4

(d42) x (y + 3) - y + x + 2

(c43) /* Test whether it divides f as was proven. */

remainder(f,g);
(d43) 0

(c44) /* Finally we demonstrate what happens if K is too small (4). */

a[4]:remainder(a[K],y↑5);
4 3 2

619 %i y - 100 %i y + 20 %i y - 8 %i y + 8 %i
(d44) --

8

(c45) asquare[4]:remainder(asquare[K],y↑5);
4 3 2

(d45) - 186 y + 30 y - 6 y + 2 y - 1

(c46) acube[4]:remainder(acube[K],y↑5);
4 3 2

2667 %i y - 428 %i y + 84 %i y - 24 %i y + 8 %i
(d46) - --

8

(c47) afourth[4]:remainder(afourth[K],y↑5);
4 3 2

(d47) 528 y - 84 y + 16 y - 4 y + 1

(c48) /* Compute equation (3.1) for I=4. */

L4:remainder(afourth[4]+u[3]*acube[4]+u[2]*asquare[4]+u[1]*a[4]+u[0],y↑5);

(d48) - ((2667 %i w3 + 1488 w2 - 619 %i w1 - 428 %i v3 - 240 v2 + 100 %i v1

104

4
+ 84 %i u3 + 48 u2 - 20 %i u1 - 4224) y

+ (- 428 %i w3 - 240 w2 + 100 %i w1 + 84 %i v3 + 48 v2 - 20 %i v1 - 24 %i u3

3
- 16 u2 + 8 %i u1 + 672) y + (84 %i w3 + 48 w2 - 20 %i w1 - 24 %i v3 - 16 v2

2
+ 8 %i v1 + 8 %i u3 + 8 u2 - 8 %i u1 - 8 u0 - 128) y

+ (- 24 %i w3 - 16 w2 + 8 %i w1 + 8 %i v3 + 8 v2 - 8 %i v1 - 8 v0 + 32) y

+ 8 %i w3 + 8 w2 - 8 %i w1 - 8 w0 - 8)/8

(c49) t4:[]$

(c50) /* Retrieve linear equations for the coefficients. */

for i:0 thru 4 do
for j:0 thru 1 do (

display(s4[i,j]:ratcoeff(ratcoeff(L4,y,i),%i,j)),
t4:cons(s4[i,j],t4)
);

s4 = - w2 + w0 + 1
0, 0

s4 = w1 - w3
0, 1

s4 = 2 w2 - v2 + v0 - 4
1, 0

s4 = 3 w3 - w1 - v3 + v1
1, 1

s4 = - 6 w2 + 2 v2 - u2 + u0 + 16
2, 0

21 w3 - 5 w1 - 6 v3 + 2 v1 + 2 u3 - 2 u1
s4 = - --

2, 1 2

s4 = 30 w2 - 6 v2 + 2 u2 - 84
3, 0

107 w3 - 25 w1 - 21 v3 + 5 v1 + 6 u3 - 2 u1
s4 = ---

3, 1 2

105

s4 = - 186 w2 + 30 v2 - 6 u2 + 528
4, 0

2667 w3 - 619 w1 - 428 v3 + 100 v1 + 84 u3 - 20 u1
s4 = - --

4, 1 8

(d50) done

(c51) /* Try to solve the system. */

linsolve(t4,
[w0,v0,u0,w1,v1,u1,w2,v2,u2,w3,v3,u3]);

Solution

u3
(e51) w1 = --

9

2 u3
(e52) v1 = ----

3

v2 + 15
(e53) w0 = -------

8

9 v2 - 9
(e54) u2 = --------

8

v2 + 23
(e55) w2 = -------

8

v2 - 1
(e56) u0 = - ------

8

3 v2 - 7
(e57) v0 = --------

4

u3
(e58) u1 = - --

9

u3
(e59) w3 = --

9

106

8 u3
(e60) v3 = ----

9

(d60) [e51, e52, e53, e54, e55, e56, e57, e58, e59, e60]

(c61) /* We now specialize u3=0 and v2=0 in the above solution. */

g:ev(ev(x↑4+u[3]*x↑3+u[2]*x↑2+u[1]*x+u[0],%),u3=0,v2=0);
2 2

y 2 23 9 y 7 y 4 15
(d61) -- + x (-- - ----) - --- + x + --

8 8 8 4 8

(c62) /* g does not divide f, however */

resultant(f,g,x);

/user/vaxima/rat/result being loaded.
[fasl /user/vaxima/rat/result.o]

10 6 5 4 3 2
(d62) 5184 y (81 y + 324 y - 135 y - 806 y + 865 y - 98 y + 169)

(c63) /* which is divisible by y↑4 explaining the problem. */

APPENDIX B

A Short Bibliography of Hilbert’s Irreducibility Theorem

[Hilbert 1892]

Hilbert, D.: "Uber die Irreduzibilit"at ganzer rationaler Funktionen mit ganzzahligen Koeffizienten.
Journal f"ur die reine und angewandte Mathematik 110, 104-29 (1892).

[Skolem 21]

Skolem, T.: Untersuchungen "uber die m"oglichen Verteilungen ganzzahliger L"osungen gewisser
Gleichungen. Skrifter udgivne af Videnskaps-Selskapet i Christinia 17, (1921).

[D"orge 26]

D"orge, K.: Zum Hilbertschen Irreduzibilit"atssatz. Mathematische Annalen 95, 84-97 (1926).

[D"orge 26]

D"orge, K.: "Uber die Seltenheit der reduziblen Polynome und der Normalgleichungen. Mathema-
tische Annalen 95, 247-56 (1926).

[D"orge 26]

D"orge, K.: Ein Beitrag zur Theorie der diophantischen Gleichungen mit zwei Unbekannten.
Mathematische Zeitschrift 24, 193-8 (1926).

[D"orge 27]

D"orge, K.: Einfacher Beweis des Hilbertschen Irreduzibilit"atssatzes. Mathematische Annalen 96,
176-82 (1927).

[D"orge 30]

D"orge, K.: Bemerkung zum Hilbertschen Irreduzibilit"atssatz. Mathematische Annalen 102, 521-30
(1930).

[Franz 31]

Franz, W.: Untersuchungen zum Hilbertschen Irreduzibilit"atssatz. Math. Zeitschrift 33, 275-293
(1931).

[Eichler 38]

Eichler, M.: Zum Hilbertschen Irreduzibilit"atssatz. Mathematische Annalen 116, 742-8 (1938).

[Inaba 44]

Inaba, E.: "Uber den Hilbertschen Irreduzibilit"atssatz. Japanese J. of Math. 19, 1-25 (1944).

[Knobloch 55]

Knobloch, H.-W.: Zum Hilbertschen Irreduzibilit"atssatz. Abhandlungen aus dem Mathematischen
Seminar and der Universit"at Hamburg 19, 176-90 (1955).

- 107 -

108

[Knobloch 56]

Knobloch, H.-W.: Die Seltenheit der reduziblen Polynome. Jahresbericht des deutschen Mathema-
tikervereins 59, Abteilung 1, 12-9 (1956).

[Lang 62]

Lang, S.: Diophantine Geometry. New York: Interscience Publ. 1962.

[D"orge 65]

D"orge, K.: Absch"atzung der reduziblen Polynome. Mathematische Annalen 160, 59-63 (1965).

[Schinzel 65]

Schinzel, A.: On Hilbert’s Irreducibility Theorem. Ann. Polon. Math. 16, 333-340 (1965).

[Fried 74]

Fried, M.: On Hilbert’s Irreducibility Theorem. J. Number Theory 6, 211-231 (1974).

