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Abstract

An algorithm is presented which reduces the problem of finding
the irreducible factors of a bivariate polynomial with integer coefficients in
polynomial time in the total degree and the coefficient lengths to factoring a
univariate integer polynomial.Together with A. Lenstra’s, H. Lenstra’s and
L. Lovasz’ polynomial-time factorization algorithm for univariate integer
polynomials and the author’s multivariate to bivariate reduction the new
algorithm implies the following theorem.Factoring a polynomial with a
fixed number of variables into irreducibles, except for the constant factors,
can be accomplished in time polynomial in the total degree and the size of
its coefficients. Thenew algorithm can be generalized to reducing multi-
variate factorization directly to univariate factorization and to factoring mul-
tivariate polynomials with coefficients in algebraic number fields and finite
fields in polynomial time.

1. Introduction

Both the classical Kronecker algorithm [Kronecker 1882] and the
modern multivariate Hensel algorithm [Musser 75, Wang 78, Zippel 79]
solve the problem of factoring multivariate polynomials with integer coeffi-
cients by reduction to factoring univariate polynomials and reconstructing
the multivariate factors from the univariate ones. However, the running time
of both methods suffers from the fact that, in rare cases, an exponential
number of factor candidates obtained from the univariate factorization may
have to be tested to determine the true factors (cf. [Kaltofen 82b, Sec. 3.2]).
In [Kaltofen 82a] we have shown that factoring multivariate polynomials
with integer coefficients in a fixed number of variables is Turing-reducible
in time polynomial in the total degree and the coefficient size to factoring
bivariate polynomials. This paper provides a polynomial-time Turing
reduction from bivariate to univariate integer polynomial factorization. Our
algorithm is a bivariate version of an algorithm due to H. Zassenhaus [Zas-
senhaus 81], which, instead of leading to an integer linear programming
problem, as is the case for Zassenhaus’ algorithm, leads to a system of
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linear equations for the coefficients of an irreducible bivariate factor.

Recently, A. Lenstra, H. Lenstra, and L. Lovasz have shown that
factoring univariate polynomials is achievable in polynomial time [Lenstra
et al. 82]. Their as well as our algorithms exclude the full factorization of a
possible common integer content, which all coefficients of the polynomial
to be factored might have. Therefore our result implies the following theo-
rem. Factoring a polynomial with a fixed number of variables into irre-
ducibles, except for the constant factors, can be accomplished in time poly-
nomial in the total degree and the size of its coefficients.

We will present our new algorithm for the bivariate case only
though it can be generalized to directly reducing multivariate to univariate
factorization [Kaltofen 82b, Chap. 3] thus avoiding the algorithm of
[Kaltofen 82a]. However, the results in [Kaltofen 82a] also imply a polyno-
mial-time reduction for irreducibility testing, which our new algorithm does
not provide. We like to point out that by using ideas from [Lenstra et al. 82]
we were able to reduce the order of the approximation for a root needed to
obtain a correct minimal polynomial though this improvement seems to be
only applicable in the bivariate case.

The question arises whether our algorithm is of practical impor-
tance. Unlike in the univariate case, in the multivariate Hensel algorithm
the factors of the reduced univariate polynomial are almost always the true
images of the multivariate factors, in which case no exponential running
time occurs. This empirical observation can be explained by the Hilbert
Irreducibility Theorem but there is no guarantee that one can always avoid
bad reductions in polynomial time. In this connection we state an open
problem in section 6.

In this paper, we adopt the notation from [Kaltofen 82a].We also
apply the initial transformations discussed there to our input polynomial.
We shortly review these matters in section 2. In the next section, we present
the algorithm. The correctness of the proposed algorithm is then shown in
section 4. In section 5 we analyze its complexity, in particular we show that
the size of all intermediately computed integers stays within polynomial
bounds. Section6 concludes this paper with an open problem and a short
discussion how our new algorithm can also be applied to coefficient
domains other than the integers, such as finite fields and algebraic number
fields.

2. Notation and Initial Transformations

By Z we denote the integers (or, when stated, any unique factor-
ization domain) by Q the rationals (or the quotient field of Z); by C we
denote the complex numbers. By1/r Z we denote those elements in Q
which, when multiplied by r, lie in Z. D[y,x] denotes the bivariate polyno-
mials in y and x over D; degx( f ) and degy( f ) denote the highest degrees in
f ε D[y, x] of x and y, resp., by deg(f) we denote the total degree of f. The
coefficient of the highest power of x in f is referred to as the leading coeffi-
cient of f in x and will be denoted byldcf x( f ). We call f monic in x if
ldcf x( f ) is the unity of D. We note that the highest degree of y in any factor
of f is less than or equal todegy( f ). Theinfinity norm of f ε C[y, x], the
maximum of the absolute values of the coefficients of f, will be denoted by

|f|. Thesquare norm of the coefficients of f will be denoted by |f |2. By 


n

m



we denote the binomial coefficient
n!

m! (n − m)!
.
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First we notice that all arithmetic operations on Z[y,x] including
substitutions and greatest common divisor (GCD) computations take poly-
nomial time in the degree and coefficient size of the input polynomials. As
we have shown in [Kaltofen 82a, Sec. 3], factoringf (y, x) ε Z [y, x] can be
reduced to factoring a polynomialf (y, x) ε Z[y,x] which is monic in x and
for which f(0,x) is squarefree. The process involves the GCD computation
of all coefficientsε Z [y] of f (x), a squarefree decomposition [Wang and
Trager 79], a transformation which makes a squarefree factor monic [Knuth
81, Sec. 4.6.2, Exercise 18], and finally a translation ofy = y+b, b ε Z . The
translation point b must not be a root of the discriminantε Z [y] of the con-
structed squarefree and monic polynomial but its degree is easily bounded.
We refer the reader to [Kaltofen 82a, Lemma 5] for the details.

3. Description of Main Algorithm

[Input: f (y, x) ε Z[y,x] monic in x such that f(0,x) is squarefree.Z can be
any unique factorization domain and Q its quotient field. Output:g(y, x) ε
Z[y,x] irreducible which divides f(y,x). Thealgorithm then can be called
again to factor the co-factor of g.]

(I) [Initializations:] n ← degx( f ); d ← degy( f ).

Rewrite f (y, x) = Σk≥0 fk(x) yk . [Since f is monicdeg < n for
k ≥ 1. Also f (0, x) = f0(x).]

(F) [Factorization off0(x):] Computean irreduciblefactor t(x) ε
Z[x] of f0(x); m = deg(t). [Let β be a root of t. In the following
we will perform computations inQ(β ) whose elements are poly-
nomials inQ[β ] of degree m-1.]

(N) [Newton iteration, emulated as Hensel lifting: We construct

α k(y) =
k

j=0
Σ a j y j, a j ε Q(β )

for k=0,1,... such that

f (y,α k(y)) ≡ 0 mod yk+1. ]

[Set order of approximation:]K ← d(2n −1) /m.
g0(x) ← x − β ; h0(x) ← f0(x)/g0(x); a0 ← β .

FORk ← 1, . . ., K DO steps (N1) and (N2)

(N1) IF k=1 THENbk(x) ← fk(x) ELSE

bk(x) ← fk(x) −
k−1

s=1
Σ as hk−s(x).

(N2) [Solve g0(x)hk(x) + h0(x)ak = bk(x) with deg ≤ n − 2.]

ak ← bk(β )/ f0′(β );

hk(x) ← (bk(x) − ak h0(x))/g0(x).

(L) [Find minimal polynomial forα K :]

[Compute the powers ofα K(y):]

FOR i ← 0, . . ., n −1 DO α (i)
K (y) ← α i

K mod yK+1.

FOR I ← m, . . .  ,n −1 DO L ← d(n + I )/m;
Try to solve the equation
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α (I )
L +

I−1

i=0
Σ ui(y) α (i)

L ≡ 0 mod yL+1 (3.1)

for polynomialsui(y) ε Q[y], deg ≤ d. Let
ui =

0≤k≤d
Σ uik yk and let

α (i)
L =

L

k=0
Σ





m−1

j=0
Σ a(i)

kj β j



yk.

Then (3.1) leads to the linear system

a(I )
kj +

I−1

i=0
Σ

d

s=0
Σ a(i)

k−s, j uis = 0 (3.2)

for k=0,...,L, j=0,...,m-1 in the variablesuis, i=0,...,I-1,
s=0,...,d.

IF (3.2) has a solution (which, as we will prove, is then
integral and unique) THEN

g(y, x) ← x I +
I−1

i=0
Σ ui(y) xi

and EXIT. [We will also show that then g(y,x) is an
irreducible factor of f(y,x).]

[At this point, the above FOR loop has not produced a solution to
(3.1). Inthis case f is irreducible.]g ← f .

Notice that L, the order of the approximation needed, grows with
I, the possible degree of the minimal polynomial. Hence we could improve
our algorithm by increasing the order of the approximation within the loop
on I in step L instead of computing the best approximation eventually
needed a-priori in step (N). Also, a complete factorization off0 may
exclude certain degrees for g. E.g., iff0 factors into irreducibles of even
degree, then g cannot be of odd degree. (Cf. [Knuth 81, Sec. 4.6.2, Exercise
16].)

4. Correctness Proof

We first show that step (N) computes a rootα K(y) of f(y,x) mod-

ulo yK+1. The numbersak ε Q(β ) and the polynomialshk(x) ε Q(β )[ x]
must satisfy



x −

∞

k=0
Σ ak yk





∞

k=0
Σ hk(x)yk


= f (y, x)

which leads to

g0(x)hk(x) + ak h0(x) = bk(x). (4.1)

Noting the fact thath0(β ) = f0′(β ) we now only need to setx = β in (4.1) to
obtain the assignments of step (N2). If we choose the n-1 coefficients of
hk(x) and ak as unknowns then (4.1) becomes a linear system whose coeffi-
cient matrix is the resultant ofg0 andh0, which in our case happens to be
equal tof0′(β ).

We now prove that the first solution of (3.2) corresponds to an
irreducible factor of f. First, we must prove a simple lemma.

Lemma 4.1: Let g(y,x) monic in x divide f(y,x) in Z[y,x] and assume that
g(0, β ) = 0 in Q(β ). Theng(y,α k(y)) ≡ 0 mod yk+1 for k ≥ 1 andα k(y) as
computed in step (N).
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Proof: Let f = gg and assume that j is the first index such thatg(y,α j(y))
≡/ 0 mod y j+1. Becauseg(y,α j−1(y)) ≡ 0 mod y j we have g(y,α j(β )) ≡ γ y j

mod y j+1 with γ ε Q(β ) andγ ≠ 0. Sinceg(0, β ) = 0 and f(0,x) is square-
free it follows thatg(0, β ) ≠ 0. Therefore

g(y,α j(y))g(y,α j(y)) ≡ γ g(0, β )y j ≡/ 0 mod y j+1,

a contradiction toα j(y) being the j-th order approximation of a root of f.

Theorem 4.1: The first solution of (3.1) in step (L), as I increases, deter-
mines a proper factor g of f in Z[y,x]. This factor is also irreducible.

Proof: We show that g must divide f provided its coefficients satisfy (3.2).
The irreducibility of g then follows immediately from the fact that the mini-
mal polynomial for the root of f(y,x) corresponding toα L also provides a
solution to (3.1) and hence (3.2).

Let D(y,x) = GCD(f,g),j = degx(D). We shall prove that the condition j < I
= degx(D) is impossible. Assumethat this condition is satisfied, i.e. 0≤ j <
I. By S j(y, x) we denote the j-th subresultant of f and g and write

S j(y, x) = s j0(y)x j +. . .+ s jj(y)

with s jp(y) ε Z[y], 0 ≤ p ≤ j (cf. [Brown and Traub 71, Sec. 5]). Since D
dividesS j it follows thats j0(y) ≠ 0. Fromlemma 4.1 and the fact that g is
the polynomial of smallest degree solving (3.1) we conclude thatD(0, β ) ≠

0. Thisimplies thatyL+1 dividess j0(y). However, we can show that even
ymL dividess j0(y).

Let f(y,x) = xn + an−1(y)xn−1 +...+ a0(y), g(y,x) = x I + bI−1(y)x I−1 +...+
b0(y) and assume thata−i, b−i = 0 for -i < 0. Then

1 an−1 . . . a2 j−I+1

I − j

s j0 = 0 1 an−1 . . . a j (4.2)

1 bI−1 . . . b2 j−n+1

n − j

0 1 bI−1
. . . b j

We can triangulize the determinant in (4.2) by repeatedly subtracting that
multiple of a row of a smaller column entry such that the larger column
entry is replaced by the remainder. This process is very similar to the
Euclidean algorithm. However, if we interpret the rows in (4.2) as

fx I− j−1, . . .  , f , gxn− j−1, . . .  ,g

the row operations described above lead to constructing two polynomialλ i

andµ i ε Z[y,x], i = j ,..., n+I-j-1 such that

λ i f + µ i g = hi, degx(hi) = i. (4.3)

It follows that

s j0 =
n+I− j−1

i= j
Π ldcf x(hi).

But we will show below that for j≤ i ≤ j+m-1
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yL divides ldcf x(hi). (4.4)

ThereforeymL dividess j0(y) and sinces j0 ≠ 0 we conclude thatdegy(s j0) ≥
mL. However, the degree of each entry in the determinant in (4.2) is
bounded by d =degy( f ) and thusdegy(s j0) ≤ (I+n−1)d. Thiscontradicts the
fact that mL≥ (I+n)d.

We finally prove (4.4). By(4.3) it follows thathi(y,α L(y)) ≡ 0 mod yL+1

andhi = D D. Since D(0, β ) ≠ 0 we conclude thatD(y,α L(y)) ≡ 0 mod
yL+1. If yL did not divideldcf x(D) thenD(0, β ) = 0. But deg = i-j < m and
the minimal polynomial ofβ has degree m.

Remark: In the above proof the argument thatymL dividess j0(y) is due to
[Lenstra et al. 82]. The author originally used the bound L = (n+I-1)d
which also generalizes to the case in which there are more than two vari-
ables. Theproof for the tighter bound depends on the fact that Q[y] is a
Euclidean domain and seems not to extend to the full multivariate case.

5. Complexity Analysis

In order to show that the algorithm is of polynomial-time com-
plexity in deg(f) log(|f|) we first count the number of arithmetic operations
in Q and then show that if Q is the set of the rationals, all numerators and
the common denominator of fractions computed during our algorithm are
bounded in size polynomially in deg(f) log(|f|).

Step (F): It is the result by [Lenstra et al 82] that t(x) can be computed in

O(n12 + n9log(| f |2)
3) binary steps.

Step (N): We count the number of additions, subtractions and multiplica-
tions inQ(β ) which we shall call ASM ops. Obviously, the multiplication

is the most expensive operation and takesO(m2) arithmetic operations in Q.
The complexity of the initialization step in (N) is clearly dominated by later
steps. Step(N1) takes O(kn) ASM ops and this complexity dominates step

(N2). Hence,step (N) takesO(K2n) ASM ops, i.e.

O(m2K2n)

rational operations.

Step (L): It is easy to show that allα (i)
K can be computed inO(K2n) ASM

ops, orO(m2K2n) rational operations.To solve the linear system (3.2) in p
= m(L+1) equations and q = I(d+1) unknowns by Gaussian elimination

takes at mostO(pq2) rational operations, hence step (L) takes

O(m2K2n) + O(mKd2n3)

rational operations. Since mK≈ dn the number of rational operations for
both steps (N) and (L) is dominated by

O(d3n4).

A more difficult problem is to bound the size of any occurring
rational number. Our proof proceeds in various stages. First we bound
|α K(y)| ≤ B1( f ) and |α (i)

K (y)| ≤ B2( f ) for 1≤ i ≤ n-1 as polynomials in
Q(β )[y] with complex coefficients,β being any root of h. Then we estimate
the common integral denominator≤ B3( f , m) of all occurring coefficients of
elements ofQ[β ] calculated throughout the algorithm.For a computed ele-
ment
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γ (β ) =
0≤i≤m−1

Σ ci

M
β i

with M, ci ε Z we obtain from |γ (β )| ≤ B2( f ) and |M|≤ B3( f , m) a bound
B4(f , m) for all occurring numeratorsci, i.e. |ci| ≤ B4( f , m). Finally, we
consider the Gaussian elimination on (3.2) and give a boundB5( f , m) for
the absolute values of the numerators and denominators which appear in the
course of this process. The logarithms of all boundsB1( f ), B2( f ),
B3( f , m), B4( f , m) and B5( f , m) will be polynomial in deg(f) log(|f|).

The most difficult of these bounds isB1( f ). We first need to
prove a lemma.

Lemma 5.1: Let g0(x) and h0(x) ε Z (β )[ x] be as computed in step (N). Fur-
thermore, let A denote the Sylvester matrix ofg0(x) and h0(x) with entries
in Q(β ).

a) Then|β| ≤ 2|f0| and |h0| ≤ 2n| f0|2 ≤ (n +1)
1
2 2n| f0|, where the later

coefficient bound holds for any factorε C[x] of f0(x).

b) LetM be any n-1 by n-1 submatrix of A. Then its determinant is
bounded by

|det(M)| ≤ T ( f0) = (n 2n | f0|)
n−1.

c) Theresultant ofg0 andh0, the determinant of A, is bounded by
1/S(f0) ≤ |det(A)|≤ 2T ( f0) with

S( f0) = (4| f0|)
(n−1)(n−2) /2.

Proof: a) It is easy to show that if |β| ≥ 2|f0| then |f0(β )| > 0 which proves the
bound onβ . The bound on |h0| is the Landau-Mignotte bound translated to
maximum norms [Mignotte 74, Knuth 81, Sec. 4.6.2, Exercise 20].

b) By part a) we know a bound for the absolute value of each entry in A.
Hadamard’s determinant inequality [Knuth 81, Sec. 4.6.1, Exercise 15] then
gives the bound for |det(M)|.

c) Let β2 ,..., β n be the conjugates ofβ = β1, i.e. h0(x) = (x − β2) ...
(x − β n). Thendet(A) =Π2≤i≤n(β − β i). Thediscriminant off0(x),
discr( f0(x)) = Πi≠ j(β i − β j) is an integer not equal 0, becausef0(x) is
squarefree [van der Waerden 53, pp. 87-89].Also |β i| ≤ 2|f0| by a) and
hence |β i − β j| ≤ 4|f0(x)| for 1≤ i < j ≤ n. Therefore

1 ≤ |discr( f0(x))|
1
2

= |det(A)|
2≤i< j≤n
Π |β i − β j|

≤ |det(A)| (4|f0|)
(n−1)(n−2) /2.

The following theorem is a consequence of what we call the main
theorem on the coefficient growth for the Hensel lifting algorithm.We shall
not prove this theorem here but refer the reader to Theorem 1 in [Kaltofen
82a] the proof of which can be easily modified to yield our statement. The
proof for the complete multivariate version can be found in [Kaltofen 82b,
Sec. 3.4].

Theorem 5.1: Let g0(x), h0(x) and ak be as computed in step (N). LetS( f0)
andT ( f0) be as defined in lemma 5.1 and let N =max(n2, n| f |). Further-
more, let
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1

res(g0, h0)
=

1

R
r(β ) with R ε Z , r(β ) ε Z [β ].

Finally, let dk denote
1

k


2k − 2

k −1



for k ≥ 1, the k-th Catalan number. Then

for all k ≥ 1

R2k−1 ak ε Z [β ]

and, independently of which rootβ of f0 we choose,

|ak| ≤ dk(N ( f ) S( f0) T ( f0))
2k−1.

Therefore we can set

B1( f ) = dK(N ( f ) S( f0) T ( f0))
2K−1 < (2n| f |)2Kn2

,

assuming that n≥ 4. It is easy to show by induction that

|α (i)
K (y)| ≤ (K +1)i−1B1( f )i

for 2 ≤ i ≤ n-1 which implies that we can choose

B2( f ) = ((K +1)B1( f ))n−1.

We now demonstrate that for R =res(t, f0′), t the minimal polyno-
mial of β as computed in step (F),

α (i)
K ε 


1

R2K−1
Z [β ]


[y] (5.1)

for i = 1 ,..., n-1.We first show thatres(g0, h0) ε 1/R Z [β ]. Thereexist
polynomialsλ(x) and µ(x) ε Z[x] such thatλ t + µ f0′ = R. ThusR/ f0′(β ) =
µ(β ) ε Z [β ]. Theremark in section 4 thatres(g0, h0) = f0′(β ) establishes
our claim. Theorem 5.1 now implies thatak ε 1/R2k−1Z [β ] which shows
our initial statement for i = 1, the remainder of which can be shown by
induction. UsingHadamard’s determinant inequality we can derive from
(5.1) and lemma 5.1 a) a boundB3( f , m) for the common denominator in all
rational coefficients, namely

R2K−1 < B3( f , m) = ((n +1)2n| f0|)
2(n+m)K.

A well-known lemma now giv es us a bound for the numerators of
all occurring rational coefficients.

Lemma 5.2: Let β be a root oft(x) ε Z[x], monic squarefree of degree m.
Let A be a real upper bound for the absolute value of any conjugate ofβ .
Assume that





m−1

i=0
Σ ci β i





≤ C with ci ε Z .

Furthermore, let D be the absolute value of the discriminant of t. Then

|ci| ≤
C m! Am(m−1) /2

D
1
2

, 0 ≤ i < m.

(Cf. [Weinberger and Rothschild 76, Lemma 8.3].)

In our case we can choose A =2|f0| by lemma 5.1 a), C =B2( f ) B3( f , m)
and D≥ 1. Therefore,a valid bound is

B4( f , m) = B2( f ) B3( f , m) m! (2|f0|)
m2/2.
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We finally need to investigate the Gaussian elimination process.
In order to solve (3.2) we can first remove the common denominator of all
rational coefficients. Ascan be shown with little effort, all intermediate
rationals computed during the elimination process are fractions of subdeter-
minants of the matrix for the linear system [Gantmacher 58, Chap. 2]. It is
not necessary to calculate the GCD of the numerator and denominator of a
newly obtained rational since, as can also be shown, the denominator of the
row used for the elimination in subsequent rows divides the numerators and
denominators in these rows after the elimination process. If q = (n-1)(d+1)
then the Hadamard bound for numerators and denominators is

B5( f , m) = (q
1
2 B4( f , m))q.

Using the estimates from above and assuming that d≥ n we can
easily establish that

B5( f , m) < (4n| f |)6n4d3

which together with the initial operation count shows that the running time
of steps (N) and (L) of our algorithm is dominated by

O(d6+ε n8+ε log(| f |)1+ε )

for anyε > 0. Since both the initial transformations and step (F) can be
accomplished in polynomial time this concludes the proof that an irre-
ducible factor of any bivariate integral polynomial can be found in time
polynomial in its total degree and coefficient size.To find the remaining
irreducible factors we reapply our algorithm. The coefficients of any inter-
mediate cofactor can be bounded uniformly (cf. [Gel’fond 60, pp. 135-139]
or [Knuth 81, Sec. 4.6.2, Exercise 21].) Hence the complete factorization
process takes polynomial time.

6. Conclusion

We hav eshown how to overcome the extraneous factor problem
during the multivariate Hensel algorithm by approximating a root and then
determining its minimal polynomial, which leads to solving a system of lin-
ear equations. Our main algorithm was formulated for coefficients from a
unique factorization domain and hence can be also applied to polynomials
over Galois fields or algebraic extensions of the rationals. It can be shown
that in both cases the algorithm works in polynomial time.

In the case of algebraic coefficients we need a polynomial-time
algorithm for univariate factorization. Thatthis is possible is a consequence
of the polynomial-time algorithm for factoring univariate polynomials over
the integers [Landau 82]. One usually describes an algebraic extension of
the rationals by the minimal polynomial of an algebraic integer generating
the field and then reduces the problem to factoring polynomials with coeffi-
cients which are algebraic integers. Thering of algebraic integers is in gen-
eral not a unique factorization domain. Therefore we cannot guarantee that
a solution of (3.2) consists of algebraic integers but one can prove that the
numbers are algebraic integers within an integral quotient [Weinberger and
Rothschild 76, Lemma 7.1].

In the case that the coefficients are elements from a finite field one
may not be able to carry out all transformations of section 2.3. It may hap-
pen that a good translation point b does not exist within the coefficient field.
Then the coefficient domain has to be extended to a larger field and thus the
factors returned by our main algorithm may have coefficients which are not
in the original coefficient field.A simple trick by taking the norm [Weyl 40,



-10-

pp. 10-13] can then be used to determine the irreducible factors in the
smaller field. This approach together with the Berlekamp algorithm [Knuth
81, Sec. 4.6.2] gives an algorithm which works in time polynomial in the
total degree of the input polynomial and the cardinality of the coefficient
field.

We conclude this paper with the following open problem.

Open Problem: Does there exist an infinite sequence of irreducible polyno-
mials f(y,x)ε Z[y,x], n = deg(f), such that for no polynomial p(n) any poly-
nomial f(i,x) is irreducible for an integer i with |i| < p(n)? This problem
asks whether there is an effective version of the Hilbert Irreducibility Theo-
rem.
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Appendix
Errata and Remarks to [Kaltofen 82a]

p. 262, Lemma 5: d = max(degu(h), degv(h), degx(h)).

p. 263, (4): (
→
h ij ,

→gij) Syl(g00, h00) =
→
b ij .

p. 264, theorem 2, proof: Prof. H. Lenstra points out that the correspon-
dence between the factors of f(u,v,x) andgc,s(u, x) also follows
from the uniqueness of the Hensel lifting process (theorem 1),
which avoids the introduction of the fractional power series
domain.

p. 264, sec. col., line 8:bijk .

p. 264, sec. col., middle: A more accurate bound forα is |α | ≤ 2|F /lc(F)|
and hence one can remove the factor 2sd from the bound in theo-
rem 2.

p. 265, first col., line 3: monotonicly.

p. 265, theorem 3, line 9: deg(h) log(|h|).

p. 265, theorem 3, proof: Prof. H. Lenstra suggests the following much
more efficient algorithm for the factorization of g. Choose a point
c such that the g(u,cu,x) does not factor into more irreducibles
than g(u,v,x). Thenlift these factors to a factorization of g(u,v,x)
by performing the coefficient arithmetic in Q(u). Since the initial
factorization is correct all computed coefficients must be elements
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of Z[u].

p. 266, Ref.: Adleman, L. M.


