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Abstract

An algorithm is presented which reduces the problem of finding
the irreducible factors of av@riate polynomial with integer coefficients in
polynomial time in the total degree and the coefficient lengths to factoring a
univariate integer polynomialTogether with A. Lenstra’s, H. Lenstsaénd
L. Lovasz’ polynomial-time factorization algorithm for wariate integer
polynomials and the authsrfrultivariate to bvariate reduction the new
algorithm implies the following theorenkactoring a polynomial with a
fixed number of variables into irreducibles, except for the constant factors,
can be accomplished in time polynomial in the total degree and the size of
its coeficients. Thenew agorithm can be generalized to reducing multi-
variate factorization directly to uwériate factorization and to factoring mul-
tivariate polynomials with coefficients in algebraic number fields and finite
fields in polynomial time.

1. Introduction

Both the classical Kronecker algorithm [Kronecker 1882] and the
modern multvariate Hensel algorithm [Musser 75, Wang 78, Zippel 79]
solve the problem of factoring multériate polynomials with integer coeffi-
cients by reduction to factoring wariate polynomials and reconstructing
the multvariate factors from the uwdriate ones. Howeer, the running time
of both methods suffers from the fact that, in rare cases, an exponential
number of factor candidates obtained from thearrate factorization may
have © be ested to determine the true factors (cf. [Kaltofen 82b, Sec. 3.2]).
In [Kaltofen 82a] we hee $hown that factoring muliariate polynomials
with integer coefficients in a fixed number of variables is Turing-reducible
in time polynomial in the total degree and the coefficient size to factoring
bivariate polynomials. This paper provides a polynomial-time Turing
reduction from biariate to unvariate integer polynomiakfctorization. Our
algorithm is a hiariate version of an algorithm due to H. Zassenhaus [Zas-
senhaus 81], which, instead of leading to an integer linear programming
problem, as is the case for Zassenhaus’ algorithm, leads to a system of



linear equations for the coefficients of an irreduciblerixnte factor.

Recently A. Lenstra, H. Lenstra, and L. @z hae siown that
factoring unvariate polynomials is achiable in polynomial time [Lenstra
et al. 82]. Their as well as our algorithms exclude the full factorization of a
possible common integer content, which all coefficients of the polynomial
to be factored might wa. Therefore our result implies the following theo-
rem. Factoring a polynomial with a fixed number of variables into irre-
ducibles, except for the constant factors, can be accomplished in time poly-
nomial in the total degree and the size of its coefficients.

We will present our ne algorithm for the brariate case only
though it can be generalized to directly reducing wariite to unvariate
factorization [Kaltofen 82b, Chap. 3] thugoiding the algorithm of
[Kaltofen 82a]. Howeer, the results in [Kaltofen 82a] also imply a polyno-
mial-time reduction for irreducibility testing, which ounmelgorithm does
not provide. Ve like to point out that by using ideas from [Lenstra et al. 82]
we were able to reduce the order of the approximation for a root needed to
obtain a correct minimal polynomial though this immment seems to be
only applicable in the bariate case.

The question arises whether our algorithm is of practical impor-
tance. Unlilke in the unvariate case, in the mulriate Hensel algorithm
the factors of the reduced waiiate polynomial are almostvadys the true
images of the multariate factors, in which case no exponential running
time occurs. This empirical observation can be explained by the Hilbert
Irreducibility Theorem but there is no guarantee that one vaayskbvoid
bad reductions in polynomial time. In this connection we state an open
problem in section 6.

In this paperwe alopt the notation from [Kaltofen 82ajVe dso
apply the initial transformations discussed there to our input polynomial.
We dhortly reviewv these matters in section 2. In the next section, we present
the algorithm. The correctness of the proposed algorithm is then shown in
section 4. In section 5 we analyze its complesxityarticular we she that
the size of all intermediately computed integers stays within polynomial
bounds. Sectiof concludes this paper with an open problem and a short
discussion he our new algorithm can also be applied to coefficient
domains other than the integers, such as finite fields and algebraic number
fields.

2. Notation and Initial Transformations

By Z we denote the integers (@rhen stated, anunique factor-
ization domain) by Q the rationals (or the quotient field of Z); by C we
denote the compkenumbers. Byl/r Z we denote those elements in Q
which, when multiplied by,lie in Z. D[y,x] denotes the Wériate polyno-
mials in'y and x wer D; deg,(f) and deg,( ) denote the highest degrees in
f £ D[y, x] of x and y; resp., by deg(f) we denote the total degree of f. The
coefficient of the highest power of x in f is referred to as the leading coeffi-
cient of f in x and will be denoted bgicf,(f). We all f monic in x if
Idcf,(f) is the unity of D. We rote that the highest degree of y irydactor
of fis less than or equal teg,(f). Theinfinity norm of f £ C[y, x], the
maximum of the absolute values of the coefficients of f, will be denoted by

[f|. Thesquare norm of the coefficients of f will be denotedflyy |By E:E

- n!
we denote the binomial coefficiept———.
m! (n— m)



First we notice that all arithmetic operations on Z[y,x] including
substitutions and greatest common divisor (GCD) computationgbd
nomial time in the degree and coefficient size of the input polynomials. As
we hare shown in [Kaltofen 82a, Sec. 3], factorirf@y, x) ¢ Z[y, X] can be
reduced to factoring a polynomié(y, x) ¢ Z[y,x] which is monic in x and
for which f(0,x) is squarefree. The processlues the GCD computation
of all coefficientse Z[y] of f(x), a squarefree decomposition [Wang and
Trager 79], a transformation which makes a squarefree factor monic [Knuth
81, Sec. 4.6.2, Exercise 18], and finally a translationof+b,b ¢ Z. The
translation point b must not be a root of the discrimimanfy] of the con-
structed squarefree and monic polynomial but its degree is easily bounded.
We refer the reader to [Kaltofen 82a, Lemma 5] for the details.

3. Description of Main Algorithm

[Input: f(y, X) € Z[y,x] monic in x such that f(0,x) is squarefreg.can be
ary unique factorization domain and Q its quotient field. Outg(y; X) €
Z[y,x] irreducible which divides f(x). Thealgorithm then can be called
again to factor the co-factor of g.]

() [Initializations:] n — deg,(f); d — deg,(f).

Rewrite f (y, X) = 2 100 fk(X) yX. [Since f is monideg < n for
k=1. Also f(0, x) = fy(x).]

(3] [Factorization offy(x):] Computean irreduciblefactort(x)
Z[x] of fo(x); m = dey(t). [Let B be a root of t. In the following
we will perform computations iQ(3) whose elements are poly-
nomials inQ[ 3] of degee m-1.]

(N) [Newton iteration, emulated as Hensel liftinge\nstruct
k .
a(y) = ZO a; y!, a5 £ Q(B)
]:
for k=0,1,... such that
f(y, ai(y)) =0 mod y

k+1. ]

[Set order of approximationq — [@(2n-1)/mQg

Go(X) « X = B; ho(X) « fo(X)/go(X); @ «~ B.
FORk ~ 1,..,K DO steps (N1) and (N2)
(N1) IFk=1 THENDb,(x) « fi(x) ELSE

k-1
b(x) « fu(x) - Zl as hi-s(X).

(N2)  [Sohe go()hy(X) + ho(X)ax = bi(x) with deg < n—2.]
a « b(B) To'(B);

hi (%) — (bi(X) — axho(X))/go(X)-

(L) [Find minimal polynomial foray :]
[Compute the powers af(Yy):]
FORi « 0,..,n=-1D0 al(y) « ak mod y<*.
FORI « m,...,n=-1DOL « m@(n+1)/mg
Try to olve the equation



1-1 .
a’+Zu(yal’=0md yt (@)
I

for polynomialsu;(y) € Q[y], deg< d. Let

u= 3 uyy<and let
O<ksd

=3 DZ ag B! D/

k=0 [}=0

Then (3.1) leads to the linear system

aly) + z z . Uis=0 3.2)
i=0 s=0
for k=0,...,L, j=0,...,m-1 in the variables;, i=0,...,I-1,

s=0,...,d.

IF (3.2) has a solution (which, as we will pepis then
integral and unique) THEN

1-1 .
9y, x) < x' + 2 uy) ¥

and EXIT [We will also shav that then g(y,x) is an
irreducible factor of f(y,x).]

[At this point, the abee FOR loop has not produced a solution to
(3.1). Inthis case fis irreducible.y - f. O

Notice that L, the order of the approximation needed, grows with
I, the possible degree of the minimal polynomial. Hence we could irapro
our algorithm by increasing the order of the approximation within the loop
on | in step L instead of computing the best approximatienteally
needed a-priori in step (N). Also, a complete factorizatiofy ofiay
exclude certain degrees for g. E.g.fiffactors into irreducibles ofven
degree, then g cannot be of odd degree. (Cf. [Knuth 81, Sec. 4.6.2, Exercise
16].)

4. Correctness Proof

We first shav that step (N) computes a rast (y) of f(y,x) mod-

ulo y**. The numbersy £ Q(B) and the polynomial$(x) £ Q(B) ]
must satisfy

O
Zakyk ?hk(x)y = t(y, %)
which leads to

Go(X)hi(X) + axho(x) = by(x). (4.1)

Noting the fact thahy(3) = fy'(8) we now only need to sex = gin (4.1) to
obtain the assignments of step (N2). If we choose the n-1 coefficients of
he(x) and a, as unknowns then (4.1) becomes a linear system whose coeffi-
cient matrix is the resultant gf andhg, which in our case happens to be
equal tofy'(B).

We row prove that the first solution of (3.2) corresponds to an
irreducible factor of f. First, we must pr@ a émple lemma.

Lemma 4.1: Let g(y,x) monic in x divide f(y,x) in Z[y,x] and assume that
9(0. /) =0in Q(B). Theng(y, ay(y)) =0 mod y“** for k 21 and a(y) as
computed in step (N).



Proof: Let f = gg and assume that j is the first indich thatg(y, a;(y))
g 0mody’™. Becauseay(y, aj(y)) =0 mody’ we hare g(y, a;(B)) = yy’
mody/* with y £ Q(8) andy # 0. Snceg(0, B) =0 and f(0,x) is square-
free it follows thatg(0, B) # 0. Therefore

gy, a;(yDaly, a;(y)) = yg(0 By’ ¥ 0 mod y/*,
a contradiction taz(y) being the j-th order approximation of a root afif.

Theorem 4.1: The first solution of (3.1) in step (L), as | increases, deter-
mines a proper factor g of fin ZR}. Thisfactor is also irreducible.

Proof: We $ow that g must divide f provided its coefficients satisfy (3.2).
The irreducibility of g then follows immediately from the fact that the mini-
mal polynomial for the root of f(y,x) correspondingatp also provides a
solution to (3.1) and hence (3.2).

Let D(y,x) = GCD(f,g),j = deg,(D). We dhall prove that the condition j < |
= deg,(D) is impossible. Assumthat this condition is satisfied, i.e<Q <
l. By Sj(y, x) we cenote the j-th subresultant of f and g and write

Si(y, ¥) = sj(y)x) +...+ s5(y)

with s;(y) € Z[y], 0< p<j (cf. [Brown and Traub 71, Sec. 5]). Since D
dividesS; it follows thatsjo(y) # 0. Fromlemma 4.1 and the fact that g is
the polynomial of smallest degree solving (3.1) we concludelX{@ig) #

0. Thisimplies thaty"* dividess;o(y). However, we can shav that even
y™ dividess;o(y).

Let f(y,x) =x" + ang(Y)X"™ +...+ ag(y), gy.x) =x' +byg(Y)X' ™ +...+
by(y) and assume that ;, b_; =0 for -i < 0. Then

lapyy - . . &ja
I =]
Sjp= 0 lapg...aq (4.2)
1by . . . by
n-=j
0 1bjy--b;

We @n triangulize the determinant in (4.2) by repeatedly subtracting that
multiple of a rev of a gmaller column entry such that the larger column
entry is replaced by the remainddihis process is very similar to the
Euclidean algorithm. Hower, if we interpret the rows in (4.2) as

X' g
the rav operations described amlead to constructing twpolynomial 4;
andy; € Z[yx],i=j,..., n+l-j-1 such that
At + g =h;, deg,(hy) =i. 4.3)

It follows that

n+l—j-1

o= [1 Idcf,(hy).

i=j

But we will shav below that for j<i < j+m-1



y* divides Idcf,(h). 4.4)

Thereforey™ dividess;o(y) and sinces;o # 0 we onclude thatleg,(s;o) 2
mL. However, the degree of each entry in the determinant in (4.2) is
bounded by d <leg,(f) and thusdeg,(s;o) < (I+n-1)d. Thiscontradicts the
fact that mL> (I1+n)d.

We finally prove @.4). By(4.3) it follows thath(y, a,(y)) =0 mod y-*
andh, =D D. SinceD(0, 8) # 0 we onclude thaD(y, a(y)) =0 mod
y-*. 1f yt did not divideldcf,(D) thenD(0, 8) = 0. But deg = i-j < m and
the minimal polynomial of3 has degree mao

Remark: In the abee poof the argument that™ dividessio(y) is due to
[Lenstra et al. 82]. The author originally used the bound L = (n+I-1)d
which also generalizes to the case in which there are more thaariw
ables. Theroof for the tighter bound depends on the fact that Q[y] is a
Euclidean domain and seems not to extend to the full vatdtie case.

5. Complexity Analysis
In order to shw that the algorithm is of polynomial-time com-
plexity in deg(f) log(|f]) we first count the number of arithmetic operations
in Q and then shwthat if Q is the set of the rationals, all numerators and
the common denominator of fractions computed during our algorithm are
bounded in size polynomially in deg(f) log(|f]).

Sep (F): It is the result by [Lenstra et al 82] that t(x) can be computed in
O(n*2 + n®log(| f |,)®) binary steps.

Sep (N): We ount the number of additions, subtractions and multiplica-
tions inQ(B) which we shall call ASM ops. Obviouslhe multiplication

is the most expeng qperation and take®(m?) arithmetic operations in Q.
The complexity of the initialization step in (N) is clearly dominated by later
steps. StefN1) takes O(kn) ASM ops and this complexity dominates step

(N2). Hencestep (N) take©(K2n) ASM ops, i.e.
O(m?K?n)
rational operations.

Sep (L): It is easy to shw that allaﬂ) can be computed iB(K?n) ASM
ops, orO(m?K 2n) rational operationsTo wlve the linear system (3.2) in p
= m(L+1) equations and q = I(d+1) unknowns by Gaussian elimination

takes at mogD(pq?) rational operations, hence step (L) takes
O(mPK?n) + O(mKd?n®)

rational operations. Since mKdn the number of rational operations for
both steps (N) and (L) is dominated by

o(d®n?).

A more difficult problem is to bound the size ofyaxtcurring
rational number Our proof proceeds in various stages. First we bound
lak(Y)] < By(f) and p(y)| < By(f) for 1<i < n-1 as polynomials in
Q(B)y] with complex coefficients, being ay root of h. Then we estimate
the common integral denominatoBs( f, m) of al occurring coefficients of
elements of)[ 8] calculated throughout the algorithrfror a computed ele-
ment



viB) = % % B
Osism-1
with M, ¢; € Z we dbtain from }(B)| < Bx(f) and |[M|< Bs(f, m) a bound
B,(f, m) for all occurring numeratorg, i.e. fi| < B4(f, m). Finally, we
consider the Gaussian elimination on (3.2) and gilwundBs( f, m) for
the absolute values of the numerators and denominators which appear in the
course of this process. The logarithms of all bouBd$), B,(f),

Bs(f, m), B4(f, m) and Bs(f, m) will be polynomial in deg(f) log(|f]).
The most difficult of these boundsBg(f). We first need to
prove a Emma.

Lemma 5.1: Let go(X) and hg(x) £ Z(B)[x] be as omputed in step (N). Fur-
thermore, let A denote the Sylvester matrixgg(fx) and hy(x) with entries

in Q(B).

a) Then | < 2|fg and gl < 2" fol, < (n+1)z 2" f|, where the later
coefficient bound holds for griactore C[x] of fy(X).

b) LetM be any n-1 by n-1 submatrix of A. Then its determinant is
bounded by

|det(M)| < T(fo) = (n 2" |fo) ™™,

c) Theresultant ofg, andhg, the determinant of A, is bounded by
1/9(fp) < |det(A)|< 2T (fp) with

S(fo) = (4 fol)" 2"

Proof: a) It is easy to shethat if |8 = 2|fy| then [fo(B)| > O which proves the
bound ong. The bound oty is the Landau-Mignotte bound translated to
maximum norms [Mignotte 74, Knuth 81, Sec. 4.6.2, Exercise 20].

b) By part a) we knw a bound for the absolute value of each entry in A.
Hadamards determinant inequality [Knuth 81, Sec. 4.6.1, Exercise 15] then
gives the bound for |det(M)].

c) Let s, ,..., B, be the conjugates @ = B;, i.e. hy(X) =(X— 5,) ...
(x = Bn). Thendet(A) =[] ,¢<n(B = Bi). Thediscriminant offy(x),
discr (fo(X)) = ﬂi¢j(ﬁi - f;) is an integer not equal 0, becaufgx) is
squarefree [van der Waerden 53, pp. 87-89%0 |3| < 2|f¢| by &) and
hencef; — Bj| < 4|fy(x)| for 1<i<j<n. Therefore

1 < |discr (fo(X)2

=|det(A)_ I 18- Bl

2<i<j<n
< |det(A)] @] o)X o

The following theorem is a consequence of what we call the main
theorem on the coefficient growth for the Hensel lifting algorithide dhall
not prove this theorem here but refer the reader to Theorem 1 in [Kaltofen
82a] the proof of which can be easily modified to yield our statement. The
proof for the complete multariate version can be found in [Kaltofen 82b,
Sec. 3.4].

Theorem 5.1: Let go(X), ho(X) and a, be as computed in step (N). Ls(tfo)
andT(f,) be as @éfined in lemma 5.1 and let Nraax(n?, n|f]). Further-
more, let



r%(gl()’ho) = lR r(B) with Re Z, r(p) £ Z[A].

12k-2
Finally, letd, denote— 2 Dfor k=1, the k-th Catalan numbefrhen

k Ok-10
forallk=>1
R a £ Z[A]
and, independently of which rogtof f; we choose,
lal < di(N(f) S(fo) T(fo))* % O
Therefore we can set
Bi(f) = di(N(f) S(fo) T(f))* < (2] f [P,
assuming that B 4. Itis easy to she by induction that
lal(y)l s (K +1)By(f)
for 2<i < n-1 which implies that we can choose
By(f) = (K +1)By(f))"™
We row demonstrate that for R res(t, fy'), t the minimal polyno-
mial of g as computed in step (F),

a) ¢ s 218 (5.)

fori=1,..., n-1.We first shav thatres(gg, hp) € 1/R Z[5]. Thereexist
polynomialsA(x) and u(x) € Z[x] such thatit + ufy' = R. ThusR/fy'(B) =
u(B) € Z[B]. Theremark in section 4 thaes(gg, hy) = fo'(B) establishes

our claim. Theorem 5.1 moimplies thata, & 1/R?*1Z[ 8] which shows

our initial statement for i = 1, the remainder of which can be shown by
induction. UsingHadamards determinant inequality we can degifrom

(5.1) and lemma 5.1 a) a bouBg( f, m) for the common denominator in all
rational coefficients, namely

R < By(f, m) = ((n +1)2" o) ™™

A well-known lemma nw gives us a lound for the numerators of
all occurring rational coefficients.

Lemma 5.2: Let B be a root of(x) £ Z[x], monic squarefree of degree m.
Let A be a real upper bound for the absolute value ptanjugate ofs.
Assume that

i O ]

02 ¢ B'0<C withg € Z.

g=o O
Furthermore, let D be the absolute value of the discriminant of t. Then
C m| Am(m—l)/‘z
lcils ———

D2

(Cf. [Weinberger and Rothschild 76, Lemma 8.8].)

In our case we can choose A%| by lemma 5.1 a), C 85(f) Bs(f, m)
and D= 1. Thereforea valid bound is

,0<i<m.

Ba(f,m) = By(f) By(f, m) m! (2fo])™".



We finally need to imestigate the Gaussian elimination process.
In order to sole (3.2) we can first reme the common denominator of all
rational coeficients. Ascan be shown with little effort, all intermediate
rationals computed during the elimination process are fractions of subdeter-
minants of the matrix for the linear system [Gantmacher 58, Chap. 2]. Itis
not necessary to calculate the GCD of the numerator and denominator of a
newly obtained rational since, as can also be shown, the denominator of the
row used for the elimination in subsequent rows divides the numerators and
denominators in these rows after the elimination process. If g = (n-1)(d+1)
then the Hadamard bound for numerators and denominators is

Bs(f, m) = (g Bu(f, m)°.

Using the estimates from a®and assuming that®n we @n
easily establish that

B(f, m) < (4n|f "¢

which together with the initial operation count shows that the running time
of steps (N) and (L) of our algorithm is dominated by

O(d***n***log( f }"**)

for anye > 0. Since both the initial transformations and step (F) can be
accomplished in polynomial time this concludes the proof that an irre-
ducible factor of aybivariate integral polynomial can be found in time
polynomial in its total degree and coefficient siZe.find the remaining
irreducible factors we reapply our algorithm. The coefficients pfiater-
mediate cofactor can be bounded uniformly (cf. [Gel'fond 60, pp. 135-139]
or [Knuth 81, Sec. 4.6.2, Exercise 21].) Hence the complete factorization
process takes polynomial time.

6. Conclusion

We haveshown hev to overcome the extraneous factor problem
during the multrariate Hensel algorithm by approximating a root and then
determining its minimal polynomial, which leads to solving a system of lin-
ear equations. Our main algorithm was formulated for coefficients from a
unique factorization domain and hence can be also applied to polynomials
over Galois fields or algebraic extensions of the rationals. It can be shown
that in both cases the algorithm works in polynomial time.

In the case of algebraic coefficients we need a polynomial-time
algorithm for unvariate factorization. Thathis is possible is a consequence
of the polynomial-time algorithm for factoring wariate polynomials eer
the integers [Landau 82]. One usually describes an algebraic extension of
the rationals by the minimal polynomial of an algebraic integer generating
the field and then reduces the problem to factoring polynomials with coeffi-
cients which are algebraic igers. Theing of algebraic integers is in gen-
eral not a unique factorization domain. Therefore we cannot guarantee that
a olution of (3.2) consists of algebraic integers but one caregdhat the
numbers are algebraic integers within an integral quotient [Weinberger and
Rothschild 76, Lemma 7.1].

In the case that the coefficients are elements from a finite field one
may not be able to carry out all transformations of section 2.3. It may hap-
pen that a good translation point b does not exist within the coefficient field.
Then the coefficient domain has to be extended to a larger field and thus the
factors returned by our main algorithm mayéaoefficients which are not
in the original coefficient fieldA simple trick by taking the norm [@1 40,



pp. 10-13] can then be used to determine the irreducible factors in the
smaller field. This approach together with the Berlekamp algorithm [Knuth
81, Sec. 4.6.2] ges an dgorithm which works in time polynomial in the

total degree of the input polynomial and the cardinality of the coefficient
field.

We mnclude this paper with the following open problem.

Open Problem: Does there exist an infinite sequence of irreducible polyno-
mials f(y,x) € Z[y,x], n = deg(f), such that for no polynomial p(n)/gioly-
nomial f(i,x) is irreducible for an integer i with |i| < p(n)? This problem
asks whether there is an effgetivasion of the Hilbert Irreducibility Theo-
rem.
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Appendix

Errata and Remarks to [Kaltofen 82a]
Lemma 5: d = madgg,(h), deg,(h), deg,(h)).
(4): 6”‘, gij) Syl(9oo, hoo) = E’ij-
theorem 2, proof: Prof. H. Lenstra points out that the correspon-
dence between the factors of f(u,v,x) aad(u, x) also follows
from the uniqueness of the Hensel lifting process (theorem 1),

which avoids the introduction of the fractional power series
domain.

sec. col., line &y.
sec. col., middle: A more accurate boundrfax | < 2|F/Ic(F)|

and hence one can rewaothe factor 2sd from the bound in theo-
rem 2.

first col., line 3: monotonicly.
theorem 3, line 9: deg(h) log(|h).

theorem 3, proof: Prof. H. Lenstra suggests the following much
more efficient algorithm for the factorization of g. Choose a point
¢ such that the g(u,cu,x) does not factor into more irreducibles
than g(u,\). Thenlift these factors to a factorization of g(u,v,x)

by performing the coefficient arithmetic in Q(u). Since the initial
factorization is correct all computed coefficients must be elements



of Z[u].
p. 266, Ref.: Adleman, L. M.



