Efficient Algorithms for Computing the Nearest Polynomial With Parametrically Constrained Roots and Factors

Erich Kaltofen
North Carolina State University www.kaltofen.net

Joint work with: Markus Hitz (North Georgia College)
Lakshman Y. N. (Bell Labs)

Factorization of nearby polynomials over the complex numbers

$$
81 x^{4}+16 y^{4}-648 z^{4}+72 x^{2} y^{2}-648 x^{2}-288 y^{2}+1296=0
$$

$$
\begin{aligned}
& \left(9 x^{2}+4 y^{2}+18 \sqrt{2} z^{2}-36\right)\left(9 x^{2}+4 y^{2}-18 \sqrt{2} z^{2}-36\right)=0 \\
& 81 x^{4}+16 y^{4}-648.003 z^{4}+72 x^{2} y^{2}+.002 x^{2} z^{2}+.001 y^{2} z^{2} \\
& -648 x^{2}-288 y^{2}-.007 z^{2}+1296=0
\end{aligned}
$$

Open Problem [Kaltofen LATIN'92]
Given is a polynomial $f(x, y) \in \mathbb{Q}[x, y]$ and $\varepsilon \in \mathbb{Q}$.
Decide in polynomial time in the degree and coefficient size if there is a factorizable $\hat{f}(x, y) \in \mathbb{C}[x, y]$ with $\|f-\hat{f}\| \leq \varepsilon$, for a reasonable coefficient vector norm $\|\cdot\|$.

Theorem [Hitz, Kaltofen, Lakshman ISSAC'99]
We can compute in polynomial time in the degree and coefficient size if there is a $\tilde{f}(x, y) \in \mathbb{C}[x, y]$ with a factor of a constant degree and $\|f-\tilde{f}\|_{2} \leq \varepsilon$.

Numerical algorithms
Conclusion on my exact algorithm [JSC 1985]:
"D. Izraelevitz at Massachusetts Institute of Technology has already implemented a version of algorithm 1 using complex floating point arithmetic. Early experiments indicate that the linear systems computed in step (L) tend to be numerically ill-conditioned. How to overcome this numerical problem is an important question which we will investigate."

Galligo and Watt [ISSAC'97]: substitute variables by generic linear forms; then certain coefficients in true factors must vanish.

Stetter, Haung, Wu and Zhi [ISSAC'2K]: Hensel lift factor combinations numerically and eliminate extraneous factors early

Univariate Problem: Given $f \in \mathbb{C}[z]$ and $\alpha \in \mathbb{C}$.
Find $\tilde{f} \in \mathbb{C}[z]$, such that

$$
\tilde{f}(\alpha)=0, \quad \text { and } \quad\|f-\tilde{f}\|=\min
$$

Let

$$
\begin{aligned}
f(z) & =a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \\
\tilde{f}(z) & =(z-\alpha)\left(u_{n-1} z^{n-1}+u_{n-2} z^{n-2}+\cdots+u_{0}\right) \\
& =u_{n-1} z^{n}+\left(u_{n-2}-\alpha\right) z^{n-1}+\cdots+\left(u_{0}-\alpha u_{1}\right) z-\alpha u_{0}
\end{aligned}
$$

In terms of linear algebra:
(1) is an over-determined linear system of equations:

Linear program,

$$
\text { if }\|\cdot\| \text { is the }\left\{\begin{array}{l}
\infty-\text { norm, or } \\
1 \text {-norm }
\end{array}\right.
$$

Least squares problem, if $\|\cdot\|$ is the 2 -norm (Euclidean).

Solutions for the 2-norm in closed form:

$$
\mathcal{N}_{\min }(\alpha)=\|f-\tilde{f}\|^{2}=\frac{\overline{f(\alpha)} f(\alpha)}{\sum_{k=0}^{n}(\bar{\alpha} \alpha)^{k}}, \quad f_{j}-\tilde{f}_{j}=\frac{(\bar{\alpha})^{j} f(\alpha)}{\sum_{k=0}^{n}(\bar{\alpha} \alpha)^{k}}
$$

(also derived in Corless et al. [ISSAC'95] via SVD)

An ∞-norm example: $x^{2}+1=1 \cdot x^{2}+0 \cdot x+1$

$$
\begin{aligned}
& \min _{\tilde{a}_{2}, \tilde{a}_{1}, \tilde{a}_{0} \in \mathbb{R} \text { such that }}\left(\max \left\{\left|1-\tilde{a}_{2}\right|,\left|0-\tilde{a}_{1}\right|,\left|1-\tilde{a}_{0}\right|\right)\right. \\
& \exists \alpha \in \mathbb{R}: \tilde{a}_{2} \alpha^{2}+\tilde{a}_{1} \alpha+\tilde{a}_{0}=0
\end{aligned}
$$

Sensitivity analysis: Kharitonov [1978] theorem
Given are $2 n$ rational numbers $\underline{a}_{i}, \bar{a}_{i}$.
Let P be the interval polynomial

$$
P=\left\{x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \mid \underline{a}_{i} \leq a_{i} \leq \bar{a}_{i} \text { for all } 0 \leq i<n\right\} .
$$

Then every polynomial in P is Hurwitz (all roots have negative real parts), if and only if the four "corner" polynomials

$$
g_{k}(x)+h_{l}(x) \in P, \quad \text { where } k=1,2 \text { and } l=1,2
$$

with

$$
\begin{array}{ll}
g_{1}(x)=\underline{a}_{0}+\bar{a}_{2} x^{2}+\underline{a}_{4} x^{4}+\cdots, & h_{1}(x)=\underline{a}_{1}+\bar{a}_{3} x^{3}+\underline{a}_{5} x^{5}+\cdots \\
g_{2}(x)=\bar{a}_{0}+\underline{a}_{2} x^{2}+\bar{a}_{4} x^{4}+\cdots, & h_{2}(x)=\bar{a}_{1}+\underline{a}_{3} x^{3}+\bar{a}_{5} x^{5}+\cdots
\end{array}
$$

are Hurwitz.

Constraining a Root Locus to a Curve

Let Γ be a piecewise smooth curve with finitely many segments, each having a parametrization $\gamma_{k}(t)$ in a single real parameter t.

For a given polynomial $f \in \mathbb{C}[z]$, we want to find a minimally perturbed polynomial $\tilde{f} \in \mathbb{C}[z]$ that has (at least) one root on Γ.

Parametric Minimization

We substitute the parametrization $\gamma_{k}(t)$ for the indeterminate α in $\mathcal{N}_{\min }(\alpha)$. The resulting expression is a function in $t \in \mathbb{R}$.

It attains its minima at its stationary points. We have to compute the real roots of the derivative.

The derivative of the norm-expression is determined symbolically, but the roots can be computed numerically.

Example (of a monic polynomial)

$$
f(z)=z^{3}+(2.41-3.50 \mathbf{i}) z^{2}+(2.76-5.84 \mathbf{i}) z-1.02-9.25 \mathbf{i}
$$

Root locations: $-1.04+3.10 \mathbf{i},-.99-1.30 \mathbf{i},-.37+1.70 \mathbf{i}$ (satisfies Hurwitz conditions)

Nearest unstable polynomial, i.e., one root is on imaginary axis:

$$
\begin{aligned}
\tilde{f}(z)=z^{3}+(2.7037-3.1492 \mathbf{i}) z^{2}+(2.5740-5.6842 \mathbf{i}) z \\
-1.1026-9.3486 \mathbf{i} .
\end{aligned}
$$

Radius of stability in the 2-norm: 0.533567 .

Bivariate factorization
Given $f=\sum f_{i, j} x^{i} y^{j} \in \mathbb{C}[x, y]$ absolute irreducible, find

$$
\tilde{f}=\left(c_{0}+c_{1} x+c_{2} y\right) u(x, y) \in \mathbb{C}[x, y], \quad \operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f)
$$

such that $\|f-\tilde{f}\|_{2}$ is minimal.
("nearest polynomial with a linear factor").

Approach: minimize parametric least square solution in the real and imaginary parts of the $c_{i}=\alpha_{i}+\beta_{i} \mathbf{i}$.
\rightarrow must minimize least squares solution with 6 parameters.
\rightarrow yields polynomial system with a fixed number of variables, hence polynomial time.

Special case: nearest polynomial with root α :

$$
\begin{equation*}
\delta(\alpha)=\min _{\mathbf{u} \in \mathbb{R}^{n}}\|\mathbf{P u}-\mathbf{b}\|_{\infty}=\left|\frac{\sum_{i=0}^{n} \lambda_{i} a_{i}}{\sum_{i=0}^{n}\left|\lambda_{i}\right|}\right|=\left|\frac{f(\alpha)}{\sum_{i=0}^{n}\left|\alpha^{i}\right|}\right| . \tag{2}
\end{equation*}
$$

(also derived by Manocha \& Demmel [1995])
Stiefel's theorem also gives algorithm for finding u.

Parametric α : must minimize rational function (2).

Generalization to l^{p}-norm, where $1 \leq p \leq \infty$ (Hitz 1999):

$$
\delta(\alpha)=\frac{|f(\alpha)|}{\left(\sum_{k=0}^{n}\left|\alpha^{k}\right|^{q}\right)^{1 / q}}, \quad \frac{1}{q}+\frac{1}{p}=1, \quad \text { and } \quad \frac{1}{\infty}=0
$$

$$
f(x)=x^{2}+1, \tilde{f}(x)=\frac{1}{3} x^{2}-\frac{2}{3} x+\frac{1}{3}=\frac{1}{3}(x-1)^{2}, \delta=\frac{2}{3}
$$

Sensitivity analysis: component-wise nearest singular matrix
Given are $2 n^{2}$ rational numbers $\underline{a}_{i, j}, \bar{a}_{i, j}$.
Let \mathcal{A} be the interval matrix

$$
\mathcal{A}=\left\{\left.\left[\begin{array}{ccc}
a_{1,1} & \ldots & a_{n, n} \\
\vdots & & \vdots \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right] \right\rvert\, \underline{a}_{i, j} \leq a_{i, j} \leq \bar{a}_{i, j} \text { for all } 1 \leq i, j \leq n\right\} .
$$

Does \mathscr{A} contain a singular matrix?
This problem is NP-complete (Poljak \& Rohn 1990).

