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Abstract

The success of the symbolic mathematical computation discipline is striking.
The theoretical advances have been continuous and significaitin@rbases,

the Risch integration algorithm, integer lattice basis reduction, hypergeometric
summation algorithms, etc. From the beginning in the early 60s, it has been the
tradition of our discipline to create software that makes our ideas readily ava
able to scientists, engineers, and educators: SAC-1, Reduce, Maaygmiehe
commercial viability of our system products is proven by Maple and Mathemat-
ica.

Today’s user communities of symbolic computation systems are diverse: ed-
ucators, engineers, stock market analysts, etc. The mathematics and@ompu
science in the design and implementation of our algorithms are sophisticated.
The research challenges in symbolic computation at the close of the 20th cen-
tury are formidable.

| state my favorite eight open problems in symbolic computation. They range

*This material is based on work supported in part by the Nati®cience Foundation under Grant
No. CCR-9712267.
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from problems in symbolic/numeric computing, symbolic algorithm synthesis,
to system component construction. | have worked on seven of my problems
and borrowed one from George Collins. | present background tb eamy
problems and a clear-cut test that evaluates whether a proposed attestived

one of my problems. An additional ninth open problem by Rob Corless and
David Jeffrey on complex function semantics is given in an appendix.

Introduction

At the Fifth East Coast Computer Algebra Dayhich was held at the Unites States
Naval Academy in Annapolis, Maryland, on April 25, 1998, vga one hour lecture
of the same title. | repeated this lecture at tMeACS Conference on Applications
of Computer Algebrawhich was held in Prague, Czech Republic, on August 9-11,
1998. In this companion paper | have written up my favoriteroproblems of sym-
bolic computation and provided a more in-depth discussith veferences to the
literature. The selection of open problems is my personalamd is not intended to
be comprehensive of the field. | am leaving out major areasvastigation, among
them differential and difference equations, types of doman symbolic program-
ming languages, computational group theory, or mathematicthe Internet. In an
appendix to this paper, R. Corless and D. Jeffrey state aniamialitopen problem,
which was presented by Corless in his lecture at the samelEaith Coast Computer
Algebra Day in April 1998.

A Brief History of Symbolic Mathematical Computation

It is dangerous to stereotype historical development iet@opls. The following high-
lights during the decades of symbolic computation, as |gieecthem, should simply
be taken as a guideline.

1960s: pioneering years: polynomial arithmetic, inteigrat

1970s: Macsyma and Reduce; abstract domains: Scratchpad/Il

1980s: polynomial-time methods: factorization; Maplegnisterfaces: Mathemat-

ica

1990s: teaching of calculus; math on the web; black box syimbbjects

2000s: merging of symbolic, numeric, geometric, combinatand logic paradigm

(?)

In the past 40 years or so the discipline of symbolic computadtas made major
contributions to science. Collins (1960) pioneers the mead automatic garbage
collection by reference counts. New efficient multivariptdynomial greatest com-
mon divisor algorithms (see (Brown, 1971) and the referegoes there) are crucial
for the implementation of symbolic algebra. Risch (1969)vahthat the problem
of finding integrals of mathematical functions in closedhias decidable. Random-
ization is used by Berlekamp (1970) to efficiently factor pmlynials modulo large
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prime numbers before the now-famous randomized primadgtst Generic program-
ming is invented in the first half of the 1970s as a means toeréus code of alge-
braic algorithms over abstract domains, such as Gaussiamation (see Section 7).
Gosper in 1978 invents an ingenious algorithm for indefinytpergeometric summa-
tion (see (Petkdsek et al., 1996)). Lasz’s lattice reduction algorithm, a far-reaching
generalization of the Euclidean algorithm, appears firss agbstep for polynomial
factorization (Lenstra et al., 1982). Interpolation algons for sparse multivariate
polynomials, some of which are based on error-correctirdjngy revise a numeri-
cal computation subject that is over 100 years old (see ¢@ag and Lakshman Y.
N., 1995) and the references given there) and have becomnenrental in the calcu-
lus of black box polynomials (Kaltofen and Trager, 1990)ddy the mathematical
markup for Internet documents exposes several new isaugsas the structuring of
compound objects for display and selectfdmast, but not least, we must mention the
breakthrough algorithms for computing adner basis, which are discussed further
in Section 5, and for solving a sparse linear system overatisiields, which are
discussed in more detail in Section 3.

Our community of world-wide researchers is relatively dmia¢tween 150-300
active full-time researchers. | am sure, however, that weomntinue to contribute
in a significant way to science, and | hope that one or the athtire following nine
problems will attract attention.

1. Symbolic/Numeric Computation

A surface that is defined implicitly by all real roafs, y, z) of a trivariate polynomial
is displayed in Figure 1. The picture indicates that theegh@b components, an ellip-
soid and a hyperboloid, which the factorization of the polymal over the complex
numbersC verifies.

Now we take the two factors, approximate@ numerically by 141422 in one fac-
tor and 141421 in the other, and multiply the product out rounded tedhdecimal
places. We get the numerical trivariate polynomial equmtio

81x* + 16y* — 6480017 + 72%y? + .002¢Z + .001y°7
— 648¢ — 288/° — .0072 + 1296= 0.

Due to continuity the numerical perturbations do not chahgepicture of Figure 1
by much. The two now deformed components are still presemizdder, the polyno-
mial has become absolutely irreducible o¢&rMy first open problem concerns the
factorization of nearby polynomials over the complex nursbe

Open Problem 1
Given is a polynomial fx,y) € Q[x,y] ande € Q. Decide in polynomial time in the

degree and coefficient size if there is a factorizafie y) € C[x,y] with || f — || <,
for a reasonable coefficient vector notn||.

1Oral communication by R. S. Sutor.
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81x* + 16y* — 6487 + 72y — 648¢% — 288 + 1296=
(9 + 4y? +18V/222 — 36) (9%* + 4y* — 18V/222 —36) = 0

Figure 1: Surface represented by trivariate polynomial

This problem was first posed in my survey article (Kaltofed92). Efficient al-
gorithms for performing the factorization of a multivaggiolynomial over the com-
plex numbers exactly are described and cited in (Kaltof@35). Galligo and Watt
(1997) present heuristics for computing complex numefaabrs. Since then, | have
learned of several related problems and their solutiony Ene described next. The
constrained root problem described below solves Probldmriei looks for the near-
est polynomial with a complex factor of degree no more thaivengconstant bound
(Hitz et al., 1999).

Sensitivity analysis: approximate consistent linear system

Suppose the linear systefx = b, whereA is anm x n matrix over a field and is
a vector in an inner product space, is unsolvable. A claspicblem is to findb
“nearest to’b that makes it solvable.

If nearness is measured in terms of the norm induced by ther product, say if
one wishes to minimize the Euclidean distance,gX — b||2, a solution is obtained
by the method of least squares. Another important case is Wiecomponent-wise
distance is minimized:

n
min maxor - 3 &%)

By introducing a new variablg we can derive the minimum by solving the linear
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program due to Chebyshev.
minimize:y
linear constraints: y > b — z?zla;,jf(j (
y>—bi+3 8% (

m)

1<i
1<i<m)

IAINA

Component-wise minimization can account for round-off exiia the entries ob.

Sensitivity analysis: nearest singular matrix

There is no particular reason why one should not considengdgsinA for finding
solvable systems that are nearby. In fact, there existsaattod so-calledotal least
square methods (Golub and Van Loan, 1996). Related to it ipribl@em of finding
the numeric rank of a non-singular matrix. Both problems araerically attacked by
computing the singular value decomposition of the matrixtdttunately, the results
are not always satisfactory, and the following may explanywhis is:

Consider the following mathematical question. Given ané @tional numbers
gi-7j,a—;7j. Let 2 be theinterval matrix

arl ... 8nn
a={|: | |aj<aj<aforall<i,j<n}.
an1 ... ann

Doesa contain a singular matrix?

This problem is shown to bidP-complet€Poljak and Rohn, 1993), i.e., it is com-
putationally as difficult as computing the shortest travglsalesperson route in a
complete graph. We mention Poljak’s and Rohn’s breakthraadhbction because it
establishes that floating point roundoff errors may not gae easy to undo. When
the distance is measured bymatrix norm the problem of finding the nearest singular
matrix can be solved efficiently by a result of Eckart & Yourd®386) for Euclidean
norms and of Gastinel (see (Kahan, 1966)) for arbitrary matirms.

Sensitivity analysis: approximate greatest common divisor

Supposef = X"+ am_1x" 1+ ... + a9 andg = X"+ b,_1xX""1 + ... + by have no
common divisor. A problem in the same spirit as above is taiefily computef, §
“nearest to”f, g that have a common root.

Karmarkar and Lakshman (1996) describe an algorithm tHaesdhis problem
in polynomial time when the Euclidean distance between tmakined coefficient
vectors,

V18m-1— 8 1P+ 4180 — 0[2+ b1~ Bn_1[2+ - + oo — Bo[2

is minimized. The nearest GCD problem can be formulated imixi@rm: Compute
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the nearest singul&@ylvester matrixo the Sylvester matrix

FAm Ame] . ag -
an ... a; ag
Am e ag
bn bn_]_ ...... bO
bh ... b1 bo
L bn ......... bO-

The Sylvester matrix is a blockoeplitz matrixof a special form. We note that the
more general problem, namely, efficiently computing therestasingular Toeplitz
matrix to a given Toeplitz matrix, remains open.

There is a substantial body of work on variations on the gnoidlormulation, which
Is cited in passing (S&mhage, 1985, Corless et al., 1995, Emiris et al., 1997).

Sensitivity analysis: Kharitonov Theorem

An amazing result was obtained by V. L. Kharitonov in 1973(@dinnichelli et al.,
1989)), which concerns the stability of roots of polynorsiahen the coefficients are
individually perturbed. We state his theorem. Given area®ional numbers;, g;. Let

P be theinterval polynomial

P={x"+an X"+ ... ta|g<a<aforal0<i<n}.

Then every polynomial i is Hurwitz (all roots have negative real parts), if and only
if the four “corner” polynomials

ok(X)+h(x) e P, wherek=1,2andl =1,2,

with
R(X) =ag+anl+a+---, h(X)=ax+a+ax’+ -,
G(X) =0+ ayl+a+---, hp(X) = ax+ag+a+ -
are Hurwitz.

The corner polynomials are easily tested for the Hurwitzdition, for example
by a variant of Sturm sequences, and the condition coresitilte stability criterion
for the corresponding differential equations (see (Gantrag 1960, Ch. XV)). There
now exist many generalizations of Kharitonov’s theorem.

Sensitivity analysis: constrained root problem

Kharitonov’s theorem inspires new problem formulationsaat stability. Given is a
real or complex polynomial

f(z) =an2"+an 12"+ +az+a



E. Kaltofen: Challenges of Symbolic Computation 7

and a rootr € C that may be given explicitly or that may be constrained toréage
subset ofC. Computef “nearest to”f such thatf (a) = 0.

We (Hitz and Kaltofen, 1998) can solve this problem effidignte., in polynomial
time for the usual coefficient fields, and for

1. a parametrict (root stability) and Euclidean distance
2. explicit rootsa1, a», ... and coefficient-wise distance (infinity norm)
3. with linear coefficient constraints, e.gq = 1.
A theorem provable by our methods is the following (Hitz ef 4099). Given is the
real polynomial
f(x) =aX"+a, X" 1+ +ax+ag, a <R,

with no real root. Then one can compute in polynomial time end the size of the
coefficientsy; the following quantity (Hitz et al., 1999).

f(a)
Lolal]

>

min (max|ai—éi|> =
&p,...,an such that 0<i<n
JaeR: 4p0"+85_10" 1. 4-89=0

A related result appears in (Zhi and Wu, 1998).

2. Quantifier Elimination (QE)

What makes the approximation theoretic minimax problemseuiti6n 1 decidable
in the first place? The famous process of quantifier elimamaitn the theory of real
closed fields, first published by Tarski in 1948, delineatsslastantial mathematical
theory where all theorems are decidable and that has no Glieglandecidabilities.
We illustrate the principle of QE on the simple example of imizing a quadratic
function.

fora> 0: rr;(in(ax2+bx+c) < Yy: a> 0 anday’ + by+c > ax + bx+c

<:>a>0andx:—B
2a

The minimizing problem can be rewritten as a quantified esgion. The principle
of QE allows the removal of the quantified variables—our egjent third form. All
values of the variables that satisfy any quantifier-freeresgion define a so-called
semi-algebraicset. By QE those specializations of the free variables of atified
expression that yield theorems, i.e., true formulas, forsemi-algebraic set. The
algorithmic aspects of QE have been studied extensively.lydBins, D. Grigoriev,
J. Renegar, H. Hong, and others (see (Caviness and Johns@&)).18Qeneral, the
process is computationally hard, although several of tlaengtes in Section 1 have
efficient algorithms. Collins has suggested another miniprablem as a challenge
benchmark problem for QE software with the intent to demmasthe abilities of the
different algorithms and their implementations.
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Open Problem 2 (Zolotarev's problem by Collins 1992)
Eliminate the quantifiers and solve forn6 on a computer:

forr > 0: min max_|xX"4rx"1 — B(x)|
B:b0+,..+bn_2xn—2 —1<x<1

The best approximation of a polynomial of degmedy a polynomial of lower
degree on the intervgi | —1 < x < 1} is accomplished via Chebyshev polynomials.
Zolotarev seeks best approximations by polynomials wheggee is at least 2 less.
Note that mathematical expressions for explicit solutiaresknown (see (Achiezer,

1956, Addendum E)) and we give the one ffo£ 1 andn = 3, again in the form of a
formula in Tarski's theory.

Vo, c1Vxdy: (O<r<land—1<x<land—-1<y<1)=

3 r r? r, e rdy2
2 av_ cn)2 PGt x— (Gt = — e
(y3+ry C1y — Co) 2<X3—1—FX (4+2 4)/X E4+6 108))
b1 bo

3. Linear Algebra With Implicitly Represented Matrices

Several numerical methods for solving systems of lineaagqguos with sparse coef-
ficient matrices are based on the use of not too many matngstivector products,
which in the sparse case can be performed quickly. Examplesuich methods are
the conjugate gradient, the Lanczos and the Krylov algmsthThese methods are
sometimes referred to as matrix-free, because no coeffimatrix needs to be ex-
plicitly constructed. In 1990 we introduced the notions &idx box polynomials,
rational functions, and matrices (Kaltofen and Trager,09%he black box model
of a matrix requires as the representation of a matrix a fonahat performs the
matrix-times-vector product.

A-ye K"

-

ye K"

_

A c Knxn
K an arbitrary, e.g., finite field

In the symbolic computation context we consider abstraeffment fields, such as
finite fields. The main objective is to perform all linear dge operations, e.gA~1b
(Wiedemann, 1986) with

O(n) black box calls and
n?(logn)®®  arithmetic operations ifK and (1)
O(n) intermediate storage for field elements
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We note that a black box matrix algorithm applies not only parse matrices but
also to structured matrices that have a fast matrix-tineeger function. Fast matrix-
times-vector products are often a consequence of the ira@n of a given problem.
Examples are:

1. Petr's Q matrix in Berlekamp’s algorithm for factoring pobmials over finite
fields (Knuth, 1997), (Kaltofen and Shoup, 1998).

2. resultant matrices for non-linear algebraic equatises Section 5 below).

3. the linear systems in Kaltofen’s (1995) algorithm fortéatg multivariate poly-
nomials over algebraically closed fields.

Linear algebra algorithms for black box matrices are arvadubject of research.
In Table 1 we list several of them. Giesbrecht’s (1997) metfor finding integral
solutions to sparse linear systems is based on computirapahtsolutions whose
denominators are relatively prime. For instance, if on@iisttwo rational solutions
with common denominator 2 and 3, respectively, one canyeagiistruct an integer
solution.

A(%x[ = b, X ez, A(%xm) =b,x? e zZM
gcd2,3)=1=2.2—-1-3, A —x?)=4b—-3b=h.

Giesbrecht proceeds by proving that for a small algebraienston ofZ relative
primeness occurs with high probability. Recently, the needimall algebraic exten-
sion has been removed (Mulders and Storjohann, 1999).

Lambert (1996), Teitelbaum (1998), relationship of Wiedemand

Eberly & Kaltofen (1997) Lanczos approach
Villard (1997a), (1997b) analysis tfock Wiedemann algorithm
Giesbrecht (1997), computation of integral solutions

Mulders & Storjohann (1999)
Giesbrecht, Lobo & Saunders (1998) certificates for incziracy

Table 1: Flurry of recent results

Since Wiedemann'’s (1986) breakthrough paper, the follgyoblem remains un-
resolved.

Open Problem 3

Within the resource limitations (1) stated abdvepmpute the characteristic poly-
nomial of a black box matrix over an abstract field. Randommzrais allowed (of
course!), as is a “Monte Carlo” solution.

2Joachim von zur Gathen has suggested to rela®thgrequirements for both the number of black
box calls and for intermediate auxiliary storagentiogn)©%),
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Characteristic polynomials are needed, for example, foultast computations
(Canny et al., 1989, Canny, 1990, Emiris and Pan, 1997). Welud&d¢he section
by remarks on Monte Carlo vs. Las Vegas randomized algorithms

Classes of randomized algorithms

The use of random bits, so-called coin flips, has turned oo ta powerful algorithm

design tool. Coin flips are employed for both speed, i.e.,doaling the solution by

a random walk rather than by deterministic search, and fputcorrectness, where
unverifiable guesses about the solution are made. The taitees from numerical

integration: the frequency, with which a random point incps below a function, is

used to approximate the integral of the function. The follmwnotions have become
popular:

Monte Carlo = always fast, probably correct
Las Vegas = always correct, probably fast
BPP = probably correct, probably fast

Here BPP stands for bounded probabilistic polynomial-time & a notion from
complexity theory (Boppana and Hirschfeld, 1989). The caxip} class R con-
tains all problems solvable in Las Vegas polynomial timee Térm Las Vegas was
coined by L. Babai (1979). Clearly, as Gene Cooperman has pladtio me, a BPP
method can be converted to a Monte Carlo method by returnirigage when the
random walk consumes too much time. It is unknown if BPP = R, & # P, the
class of problems solvable deterministically in polynodrtiilme. Many theorists con-
jecture that since randomized algorithms perform very wakkn implemented with
pseudo-random number generators (Knuth, 1997, Chapteoid)flips are inessen-
tial for polynomial-time algorithmic solutions of probleamThe practicality of such
de-randomization is even further remote.

Some of my colleagues have expressed to me that Las Vegasmaadion is fine,
but Monte Carlo or BPP algorithms are suspicious as one cammidy the guessed
solution. | believe that such arguments are questionablkloAte Carlo algorithm
can deliver an answer that is correct with a probability thas high as the user de-
mands, e.g., higher than-11/2%%, Of course, the probability of correctness can only
be guaranteed if one uses a truly random process for the gosn $ay a quantum-
physical effect. However, deterministic algorithms casoafail due to momentary
hardware faults and programming bugs. Would the readdyreast a long number-
theoretic proof together with a 10,000 line program more tine answer given by a
single-page Monte Carlo primality testing program (Knut®91, Section 4.5.4)?

We have observed a further pitfall when trying to use Las Weajgorithms. The
following scheme is often employed, which makes a Monte Caldorithm Las Ve-
gas by verifying its answer by alternative considerations.
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repeat
pick random numbers
compute candidate answer
until a solution passes a test for it

The scheme has the flaw that a programming bug leads to arterifiop, which
is indistinguishable from bad luck in the coin flips! | haveebeold by many of my
colleagues that such looping has also happened to themtuzdgnwe give up in the
belief that the coin-flips keep on being unlucky and begindgag for the bug. In
one case, the problem turned out to be an invalid input.

A referee points out that even sequential schemes with urdezliteration have
this flaw. For instance, in Brown’s (1971) modular GCD algaritthe Chinese re-
maindering is stopped if the division check by the GCD candidacceeds. Because
of our experience (Kaltofen and Monagan, 1999) we now adedceavoid such un-
bounded loops whenever possible, even when adding a sntralleost®

4. Lattice Basis Reduction

The lattice basis reduction algorithm by A. K. Lenstra, H. Ménstra, Jr. and L.
Lovasz (1982) is said to be the major algorithmic breakthrodglymbolic computa-
tion in the 1980s (Odlyzko, 1996). The first application e thethod was to factoring
polynomials over the rational numbers. Since 1982 the dlgarhad its impact on a
variety of problems (see, e.g., (Borwein and Li6kn1997)). Recently, the method
was used to derive the following pretty formula fmr

el 4 2 1 1 )
_i;m 8i+1 8i+4 8i+5 8i+6

Following D. Bailey, P. Borwein, and S. Plouffe (1997), oneqareds as follows. Each
term under the sum (2) can be expressed as an integral rewfipl rational integral.

(16) y_%le/y&ﬂ(l :iiwlwk)

The question is which integer linear combination of thesegrals yieldst Lattice
basis reduction is used to find the multipliers. First, werappnatet and the in-
tegrals, multiplied by 19, via a Maple V procedure. Note that the global variable
Digits in Maple holds the number of decimal mantissa digits withalhMaple
performs its floating point arithmetic.

> latt := proc(digits)

local k, j, v, saved_Digits, 1tt;
saved_Digits := Digits; Digits :=
digits;

ollﬁ

vV VvV V

3A similar programming philosophy has also been expresseusy Mehlhorn for building the
LEDA library.
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for k from 1 to 8 do

vik] := [1;

for j from 1 to 10 do v[k] := [op(v[kl),
0]; od;

vik] [k] := 1;

v[k] [10] := trunc(10”digits *

od;

v [9]

1tt

evalf (Int(y~(k-1)/(1-y~8/16),
y=0..1, digits), digits));

:= [0,0,0,0,0,0,0,0,1,
trunc(evalf (Pi*10°digits,digits+1))];
= [1;

for k from 1 to 9 do ltt:=[op(1tt),evalm(v[k])];od;
Digits := saved_Digits;
RETURN (1tt) ;

end:
L :=

latt(25);

L:=[[1,0,0,0,0,0,0,0,0,10071844764146762286447600
0,1,0,0,0,0,0,0,0,5064768766674304809559394
[0,0,1,0,0,0,0,0,0,3392302452451990725155853
[0,0,0,1,0,0,0,0,0, 2554128118829953416027570
[0,0,0,0,1,0,0,0,0, 2050025576364235339441503
[0,0,0,0,0,1,0,0,0,1713170706664974589667328
[0,0,0,0,0,0,1,0,0,1472019346726350271955981
[0,0,0,0,0,0,0, 1,0, 1290770422751423433458478
[0,0,0,0,0,0,0,0,1,31415926535897932384626434

et al., 1989) or the PSLQ algorithm (Ferguson and Bailey, 1996
readlib(lattice):
lattice(L);

>
>

12

If Ttis an integer linear combination of the integrals, the abattece vectors must
sum to a short vector, which can be determined by latticeshasluction (Hstad
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[-4,0,0,2,1,1,0,0,1,5],[0,—8, —4,—4,0,0,1,0,2,5],
[—61,582 697, —1253 453 —1003 —347, —396,10,559,
[—333966 324, —1656 —56,784,1131 —351 —27, 255,
(429,714, —1591 778 —517, — 1215598 362 —87,398,
[—1046 —259, —295 —260, 1286 393 851,800,252, —112(,
(494,906, —380, —1389 11201845 —1454 —926, —218 400,
(1001 —1099 422, 1766 1405 —376,905 —1277,—394, —30),
[—1144491 —637,—736,—1261 —680, —1062 —1257,637, —360)]

The first short vector corresponds to (2). The second vestanother linearly in-
dependent solution:

=% — [ — _ 4
" i;16 (8|+2+8|+3+8|+4 8,+7) 3)

One may use Maple V.4 directly to complete the proof of (3) hyrying out the
corresponding integral symbolically.

> g = (8%y + 4xy”2 + 4xy~3 -

> y76)/(1-y~8/16);

gm 8y+4y?+4y3 —\p
= 1
1—-Iéy8

> int(g, y=0..1);
21

Formulas like (2) and (3) can be used to compute the binaiisigrat very high
position without keeping track of the intermediate expansithe so-called spigot
algorithm. At this moment, no formula that allows the congtiain of decimal digits
in this space and time efficient manner is known.

The GGH public key cryptosystem

Recently, the properties of reduced lattice bases have eploged to design pub-
lic key cryptosystems. Here is a nutshell description ofdhe by Goldreiclket al
(1997Db).

Public key A lattice basiB (rowsB; are basis vectors).

Private key A reducedbasisC for lattice spanned by the rows Bf

Clear text Represent the message as a vextoith smallinteger entries.
Encoded messagey = x+ 5 riBj wherey riB; is a random vector in the lattice.



E. Kaltofen: Challenges of Symbolic Computation 14

Decryption is based on one of Babai’'s (1986) algorithms for nearesté&foint:
Writey = ¥;5C; with 5 € Q. Theny nearest-integés )C; is a near lattice point,
probablyy;riB;.

In the paper by Goldreicht al. (1997b) more details are given on how to choBse
andC and how to sample random lattice points so that the decnyptiethod does not
produce an incorrect near lattice point. Nonetheless, @iNguyen has been able to
break this scheme in about 3 days on a 140MHz Ultrasparc 0§Iigl.7’s Schnorr-
Euchner variant of the reduction algorithm for lattices ohension 200. An alter-
native cryptosystem is described in (Ajtai and Dwork, 198@|dreich et al., 1997a)
and proven secure provided that computing a short non-aéiod vector is hard.

Open Problem 4
Devise a public key cryptosystem that is based on diophahtiear algebra but that
Is safe from lattice basis reduction.

5. Grobner Bases

The classical tool for solving a system of non-linear alg&gbequations is the u-
resultant. Consider the following simple example, due to &zdrd (1981).

fl:X2+Xy+2X + y_1:O (Xay):(17_1)7(_371>7(071)
fo=x>  +3x—y’+2y—-1=0
fg3 = ux +Vvy+w
By the theory of Macaulay (1916) the u-resultant can be espikas the determinant

of a matrix whose rows represent the polynomials multipbgdcertain terms and
whose columns are labeled by certain terms whose coeffeceatthe entries.

XXy ¥ xy¥ xy x Y oy oy 1

xfl 21 2 0 1 -1 0 O 0 O

yfl 0 1. 0 1 2 O O 1 -1 O

f71] 0 0 1. 0 1 2 O 0O 1 -1 (U—V+w)
xbl 1. 0 3 -1 2 -1 0 0 0 O - (—3Uv+w)
ybl] O 1 0 0 3 0 -1 2 -1 O (VW)
f,f]0O0O1 0 0 3 0-1 2 -1 (u=v)
xyfpf O u 0 v w O O O O O

xs] 0O 0O u 0 v w 0 O 0 O (u-resultant)
ygl 0 0 0 O u 0 0O v w O

f3 0 0O 0O 0 0O u O O Vv w

The u-resultant has linear factors provided the system fiagesolution. Its coeffi-
cients are the coordinates of the zeros of the system, imgublutions at infinity.
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Buchberger’s algorithm

The concept of a @bner basis (Buchberger, 1965, 1970, 1985, Becker and Whispfe
ning, 1993, Cox et al., 1996) has revolutionized commutadigebra. Buchberger’s
algorithm provides an alternative for solving non-linedgedbraic systems. Within
the algorithm, some S-polynomial constructions and redastcan be interpreted
as row-reduction in Macaulay’s matrices, like the one gifgrthe u-resultant above.
Faugere (1998) has been able to make this correspondence moregiie particular,
his method uses sparse so-called symbolic LU matrix decsitiqo for efficiently
performing these row reductions. His implementation mathledirst major marriage
of symbolic and numeric methods. The symbolic sparse LUofation is purely
combinatorial and treats the coefficient arithmetic alo$liyaln Faugere’s implemen-
tation the rational coefficients still become exceedinghgé, and some computations
can only be done modulo a prime number. Many other numerissslvers benefit
from iterative approximation of the solution, and my nextldem suggests to do the
same for Gobner basis computation.

Open Problem 5

Compute Gbbner bases approximately by iterative methods for solsysems, such
as Gauss-Seidel, conjugate gradient, Newton,...

A solution plugs into numerical software and computes somsedfaster than by ex-
act arithmetic; the structure of the bases may be determiegyd, by modular arith-

metic.

We note that related aspects of numerical error analysidiscassed in (Shirayanagi,
1996, Stetter, 1996).

6. Transposed Matrix Products

The following phenomenon has been observed in a varietytdhgs. One has an
efficient algorithm for computing a linear map, but one altyuzeeds the transposed
map. We shall begin with an example from field theory.

We first describe the overall approach. et K(a, 3) where

g=y*-2€Kly], f=x*—y-1eK[x}],
B=(ymodg) € K[y]/(g9), a=(xmod(f,g))<cK[xy]/(f,q),

with K[y]/(g) C K[x,y]/(f,g). Note thatf(a,) = 0 andg(p) = 0. For example,
0=111+v2—-+v2=a-. Infield theoretic termsy is an algebraic element in a
tower of fieldskK c K(B) c K(a,B). The tower is represented by a triangular set of
minimum polynomials for the extension elemeatandf: g € K]y] irreducible over
K, f € K(B)[x] irreducible ovelK(pB).

The computational task is to compute the minimum polynommjel) =0 :

h(x) = X"~ Cm1X™ 1 — .- —co e K[, m<deqf)-degg)
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— .
The coefficient vector®' of ' mod (f(x,y),g(y)) satisfy the linear recurrence on
vectors

Vji>0: o™ =cn10™ 4. 4 o0
—
Any non-trivial linear projection map (¢') preserves the linear recursion becalise

—

is irreducible. An algorithm can proceed by computing thilfi@ementsa; = £ (o)
for0<i<2m-1,i.e., using a linear map intd, and from them the linear recur-
renceh, the latter irm*+°() field operations ifK by the Berlekamp/Massey algorithm
(Massey, 1969, Brent et al., 1980). We now inspect the taskmipcting the linear
projections of the powers @f in more detail.

Power Projections = Transposed Modular Polynomial Composition

The operatorc is represented by a vector of field elements u1 ... un_1],
wheren = deq f)degg). The power projections can be expressed by the following
vector times matrix product:

0"00'

A

(%) 2@l c@?) . ]=[w0 u .. un_l]-ro ot |0 | ]

The key observation is that the transposed linear map is laogalynomial com-
position:

W(2) = Wo+W1Z+WoZ2 + - - - — W(a) mod (f(x,y),g(y))

Wo

—_— — — — W1
W(G):[oo‘ol’oz‘ ]~W2
‘Af .

We note that modular polynomial composition in the univ&rigase has been studied
extensively, as its complexity is closely related to factgrunivariate polynomials
over finite fields efficiently (von zur Gathen and Shoup, 199&tofen and Shoup,
1997, 1998, Bernstein, 1998, von zur Gathen and Gerhard)1999

The use of power projections for finding minimum polynomiadslgebraic num-
bers and its relation to modular polynomial compositionisedssed in (Shoup, 1994,
Section 3). The special cases

oc=a+B,0=a-B,0=a/Bwith f,ge KX,

i.e., arithmetic operations on roots of polynomials, carhbadled alternatively by
resultant computations (Loos, 1982). These require theriaation of a polynomial
of degree degf ) - deqg) overK, while our approach requires the factorizationfof
overK(pB) or of g overK(a), which is performed similarly by either a factorization of
a resultant ovekK (Trager, 1976, Encarnadm, 1997), or by completely different and



E. Kaltofen: Challenges of Symbolic Computation 17

in some cases more efficient algorithms (Weinberger and Bloitbds 1976, Lenstra,
1987).

Nonetheless, we still have to compute the power projectidnsalgorithmic theo-
rem, which we caltransposition principlenow states that any linear algorithm that
computes a matrix times vector product can be transformiedane that computes
the transposed matrix times vector product. One simplyrsegethe flow of the linear
circuit that represents the algoritfthBuch reversal of flow preserves the number of
arithmetic operations, but not the space needed to stamiediate results. There-
fore, a fast modular polynomial composition algorithm glebne for power projec-
tions, at least in theory. Shoup (1995) proceeds diffeyearttl designs, for the case of
a single algebraic extension, a baby step/giant step #igobased on modular poly-
nomial multiplication. Again, he needs the transposed noapvhich he synthesizes
the following algorithm (see (Shoup, 1995) for more dejails

Transposed Modular Polynomial Multiplication in NTL

1. Ty — FFT}(RED(g))

Th—T1-S

V +— —CRTOH_n_z(FFT(Tz))

To «— FFT Y{(RED¢; 1 (X" 1-V))

To—T- S

T S

. Replacel; by the ¥+ 1-point residue table whoseth column(0 < j < 2¢t1) is
0 if j is odd, and is column numbgy2 of Ty if j is even.

8 Th«—T+T
9. u+ CRTo_n-1(FFT(T2))

Noos®N

The algorithm has no interpretation of its own.

“we offer no other proof of correctness other than the validf this
transformation technique (and the fact that it does indemtt w practice)”
(Shoup, 1995, Section 7.5)

It is, however, as time and space efficient as modular polyalamultiplication, and
one is left with the question if the transposition principkes this property in general.
Here is then our sixth open problem.

Open Problem 6
With inputs Ac K™" and ye K" you are given an algorithm for Ay that uses

4The history of the principle is manifold. iBgisseret al. (1997) trace it to circuit analysis (see
(Antoniou, 1979354.7)). Fiduccia derives the principle in his Ph.D. thes®7@) (see also (Fiduccia,
1972)) and Kaminsket al. (1988) publish a paper on it.

5In the meantime, Shoup (1999) has been able to derive arcitasit algorithm for the transposed
modular polynomial multiplication problem. However, higarithm is still by a constant factor slower
than the the one based on the transposition principle.
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Figure 2: Component interaction in symbolic computation

T(m,n) arithmetic field operations and(8,n) auxiliary space. Show how to con-
struct an algorithm for A -z where zz K™ that uses QT (m,n)) time and simultane-
ously QS(m,n)) space. Your construction must be applicable to practicabpgms.

The transposition principle is a special caseofomatic differentiatior{fKaltofen
and Lakshman Yagati, 1988):

X1 Ox, f
For f(x,...,xa)=b" (A | : |)wehave| : | =ATb.
Xn Ox, f

Therefore, the so-calle@verse modef automatic differentiation for computing the
gradient vector of a function applies. Griewank (1992) shbww to solve the above
problem with a factor oO(log(mn)) penalty in both time and space.

We conclude by noting that the Lanczos algorithms and aeatés of inconsistency
of Table 1 all depend on efficient transposed matrix timesorgmoducts.

7. Plug-And-Play Components

The notion of plug-and-play components comes from the aatesn between com-
puter hardware and the resident operating system. If nedwae is installed, the
operating system can probe the device and determine andgjooafis characteristics
without human help. The device must respond to the probes ageeed fashion and
the operating system must know of the possible differentcgesharacteristics. The
guestion arises if a plug-and-play approach can be realagolurpose of arranging
software components in a customized fashion.

An example for the need of the plug-and-play methodologyvsrgin Figure 2. A
new algorithm, say the solution to Problem 1, is to be madéadla to researchers
outside the discipline of symbolic computation. We assuha¢ the users work on
commercial platforms such as Maple, Mathematica, or arretebrowser/Java en-
gine. Clearly, it is desirable to implement the brand-nevoathm in such a way that
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it is callable from these common platforms. R. Loos (1974pgeizes the need as
vertical integration.

A second issue concerns the usage of existing librariesfosgyolynomial arith-
metic or arbitrary precision floating point arithmetic. Caugr algebra has pioneered
what is now calledyeneric programmingwhere the underlying implementations are
hidden and multiple packages can be used, even at the same@aneric program-
ming was introduced simply because it became unwieldy ttevar{zaussian elimina-
tion procedure, for example, for each of the different cogfit fields that arose. Now
generic programming has become a means of technologyeraw#ien a new sparse
symbolic LU factorization algorithm is released in Linpatikat algorithm should be
instantaneously called from all programs that rely on sphts factorization.

The notion ofproblem solving environmentsas been coined. We offer plug-and-
play and generic programming software design as a definitddth it an end-user
can easily custom-make symbolic software tools.

Example: FoxBox (Diaz and Kaltofen, 1998)

One goal of our implementation of the algorithms for faatgrpolynomials in so-
called black box representation (Kaltofen and Trager, 198 a plug-and-play in-
terface to our BXxBox system. Our Maple server makes the procedureoxEoOX
accessible to a Maple session. These are a Maple user’s qusma

# Call FoxBox server from Maple

SymToeQ BlackBoxSymToe( BBNET_Q, 4, -1, 1.0 ):

> SymToeZP := BlackBoxSymToe( BBNET_ZP, 4, -1, 1.0 ):

> FactorsQ := BlackBoxFactors( BBNET_Q, SymToeQ, Mod, 1.0, Seed ):

> FactorsZP := BlackBoxHomomorphicMap( BBNET_FACS, FactorsQ, SymToeZP ):

\4

The server program is a generic one. Here we give a code fragmhéhe version
that uses SACLIB 1.1 rational number and polynomial aritheé&ihe C++ construc-
tor calls get compiled from thedxBox template library.

// construct factors of a symmetric Toeplitz determinant in C++
typedef BlackBoxSymToeDet< Saclib(), SaclibQX > BBSymToeDet(];
typedef BlackBoxFactors< Saclib(Q, SaclibQX, BBSymToeDetQ > BBFactors(Q;

BBSymToeDetQ SymToeDetQ( N );
BBFactorsQ FactorsQ( SymToeDetQ, Probab, Seed, &MPCard );

Software Design Issues

We think it useful to distinguish the plug-and-play intexdafrom the generic pro-
gramming interface, although the two are somewhat simi@rhave identified sev-
eral issues with both methodologies.
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Plug-and-play

1. The software components create a standamhlized representatiofor ex-
changing their data. For mathematical objects severatlatds have been pro-
posed: MP (Bachmann etal., 1997), OpenMath (Dalmas et &7)18nd MathML
(lon and Miner, 1998). All standards use static represemtaif the objects.

2. In FoxBox we could from the beginning transfer procedures for making o
evaluating polynomials and matrices. Our procedures weittew in standard
programming languages, e.g., in C++, as security from illegarations was
not an issue. Following the Java paradigm, it will be usedutansferbyte code
for constructing objects in place of the parse trees for ttemonical represen-
tation (cf. (Norman and Fitch, 1996)). The matfik/ (i% + j%)] _; ; ;4 SUrely
should be communicated via a procedure for constructiry standard for the
mathematical byte code solves the tésk.

3. Problem solving environments (PSEs) (Lakshman Y. N..e1888) are the end
product of the assembly of the different software companéfisual program-
ming environment$or instantiation of generic and assembly of plug-and-play
components can become part of the user interface to synmimhputation sys-
tems, and assist the end-user in making her/his PSE, whaitiwagtingly turns
into a very high level programmer.

4. A language that allowsverloaded operatorpermits the wrapping of existing
code with new definitions for the operators. MITMatlab (Hasts et al., 1998)
is an example where parallelism is introduced in this mamigrout having to
modify sequential library functions.

Generic Programming

1. The definition otommon object interfacdgmve been studied extensively in the
context of computer algebra (Musser, 1975, Abdali et al8619enks and Su-
tor, 1992, Monagan, 1993, Watt et al., 1994). The Standamdplae Library
of C++ (Musser and Saini, 1996) is an example from main-strpesgram-
ming. STL has container objects with a standardized formatrfanipulating
them/ Such standards can be created for mathematical objectsasuphbly-
nomials, matrices, or combinatorial graphs. Librarienthee accessed through
so-called wrapper classes that convert the standard gatliarface to the inter-
nal organization. No efficiency is lost, as the wrapper fiomg can be inlined
on compilation. In BXB0OX the wrapper classes provide streams of objects. For
instancek : :random _generator (500) iS a generic function object of the field
class that provides random field elements that are unifosasgpled from a set
of 500 elements. Random field elements are needed for randdrmalgebraic al-
gorithms (cf. Section 3). Specification of the object irteds can be expressed

6The OpenMath “programming content dictionary” proposed3aston Gonnet offers a possible
solution.

’STL does not supply a standard for serializing its contaifi@rtransport across systems.
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in CORBA, the Common Object Request Broker Architecture (Iglio Attardi,
1998).

. Several libraries, e.g., SACLIB, perforgarbage collectionwhich complicates
the generic object interface. Explistorage managemergmains a sticky issue
even in STL, as different C++ compilers implement differemmory models.

. Exceptionslike division by zero or failure due to an unlucky selectaimandom
elements, must be handled in a generic fashion across theorents.

. Objectinterfaces sometimes become a barrier that digslhteraction between
the generic algorithm and the used generic arithmetic. Rstance, a ring of
polynomials whose arithmetic is implemented by FFT-basethous, such as in
NTL (Shoup, 1998), has an efficient specialized evaluatitgrpolation scheme.
The generic algorithms can usslaortcutinto the specialized procedures when
employing a homomorphic imaging strategy. The wrapperselagan facilitate
these shortcuts.

. Parallel distributionof a symbolic computation over many different computers
is important as our computations tend to be large. Interr@t$ers can present
a familiar platform for managing the network of computer® arilizes. The
algorithms must be programmed with high-level paralléi@athat is built-in
from the beginning.

Open Problem 7

Devise a plug-and-play and generic programming methodofog symbolic math-
ematical computation that is widely adopted by the experegorithm design, the
commercial symbolic software producers, and the outsidersus

From our FOxXBox experience | observed that designing a system that sinailtan
ously plugs into several others is difficult. H. Hong, a ctkau of SACLIB, noted
that the reverse is also true, namely, that designing arsyitat someone else can
plug-in is difficult. However, our symbolic software is beamg very complex and a
solution to Problem 7 is crucial.

8. “Killer” Applications

The commercial success of a computer product is, accordiSgephen Jobs, depen-
dent on a so-called “killer” application that everyone v&btit only the one product
has. In Table 2 | attempt to list the killer app’s for severalgucts, including symbolic
software.

Certainly, the students learning calculus with the help afraputer algebra system
constitute the most numerous users of our software. At NOdtolina State Univer-
sity alone they number about 8000 per year. Such prolifamaif use makes a disci-
pline important to society, but it also influences the diacof its future development.
| am told that much of the MathML Internet standard is geaosehtds mathematics
education. My last problem, admittedly non-scientific, i@m$des this situation.
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Product “Killer application”
Macintosh Document preparation
Personal computer Spreadsheets
Supercomputers Weather forecasting
Mainframe computers  Social security system
Symbolic software Calculus teaching

Table 2: Successful applications

Open Problem 8

Besides mathematics education, find another so-calledetkiapplication for sym-
bolic computation.

The problem is solved when the new application makes the seftwréten for it a
commercial success.

Summary, Acknowledgement and Note Added in March 2000
These are my open problems.

Nearby multivariate polynomials that factor ov@r
Zolotarev’s problem on a computer

Characteristic polynomial of a black box matrix
Lattice basis reduction-safe GGH-like cryptosystems
Grobner bases via iterative numerical methods
Space and time efficient transposition principle

N o o bk~ wbdR

Plug-and-play and generic programming methodology yont®lic computa-
tion
8. Another “killer” application besides education

| would like to thank Laurent Bernardin, Bob Caviness, Georgkddaand Peter
Turner for giving me the forum to present them and Victor $htar his comments
on Problem 6. | appreciate the suggestions for improvemewlenby George Collins
and by P. Borwein, P. Lis&k and M. Monagan during my visit at Simon Fraser
University in July 1998. Rob Corless carefully read my manpseand made several
helpful suggestions. All three referees of the paper cteteseveral errors and made
many valuable suggestions, for which | am grateful.

The above problems were posed in April 1998. To my knowledgeg has been
resolved as of March 2000. However, there has been sigrifipagress on sev-
eral of them, which | would like to mention. Problem 1 has b&sakled by several
authors using numerical techniques. While the resultingrétyns do not resolve
the problem in its entirety, the solutions are nonethelassfullin many cases, sim-
ilarly to complex root finding procedures that do not coneefor all inputs. Good
progress can be reported on problem 3. Gilles Villard hasidoan algorithm that
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is within a factor ofn/2+°(1) of the required complexity. The algorithm does not
rely on fast matrix multiplication algorithms and theredas more practical than
those methods, which are still asymptotically faster. Ingoat research is being con-
ducted on problem 7, but | shall only provide some refererféésng, 1999, Le and
Howlett, 1999, Bernardin et al., 1999). The solution of peshI8 may lie in the past.
The Nobel Prize in physics was awarded in 1999 to Gerardusdftiand Marti-
nus J. G. Veltman, and as the citation of the Nobel Foundagads fww.nobel.
se/announcement-99/physics99.html] “At the end of the 1960s ... Veltman had
developed the Schoonschip computer program which, usimdpsls, performed al-
gebraic simplifications of the complicated expression$ #llaqguantum field theo-
ries result in when quantitative calculations are perfame With the help of Velt-
man’s computer program 't Hooft's partial results were n@sified and together they
worked out a calculation method in detail.”

A. Appendix: Complex Variables in Computer Algebra
(by R. M. Corless and D. J. Jeffrey)

By now, many users and most developers of computer algebtansggCAS) are
familiar with a set of problems known generically for manyayeas “the square root
bug.” What was meant by this expression was that CAS would sorasttransform
complex-valued expressions incorrectly. The exampleghe¢ the bug its name was
the transformation of/x2 to x, which is not even valid for all real, much less for
complexx. Squarely at the root of the difficulty is multivaluedneskjet does happen
with real variables, but is much more common with complexaldes.

A concise and elegant description of the problem can be fonn8toutemyer
(1991). More discussion can be found in the papers by AsigksePatton, by Fate-
man, by Rich & Jeffrey, and by Corless & Jeffrey in Issue 116 €JL896) of the
ACM SIGsAM BULLETIN (Communications in Computer Algebra).

One of the fundamental difficulties in dealing with ‘the sgpi@oot bug’ is that
because of multivaluedness, some cherished algebraittidensuch as

Inzzzo=Inz1 +Inz, (4)

no longer hold—they are not true for all specializations loé tariables. People
have been willing to try to keep these identities, at almast @ost. For example,
in Caratleodory (1964), even Carabdory was willing tochange the meaning of
equality in order to keep equation (4). He changed the int¢afion of the symbols
in the formula in two ways. First, he interpreted each sida ast. Second, he inter-
preted the equals sign to mean that the set represented deftthand side of the
equals sign had a non-empty intersection with the set repted on the right-hand
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side® In a discussion at ECCAD '98, Dana Scott observed that Caoalbry’s notion
of equality is not transitive, and hence is not an equivaaetation.

Other approaches, such as Riemann surfaces, are also stadaty (chiefly be-
cause algebra on them seems so difficult).

One of the main consequences of these mathematical dikfisudt that there have
been persistent bugs in many computer algebra systemguypanty in integration,
where changing interpretations of square roots or the l&eeresulted in absurdi-
ties such as positive integrands giving negative (defimiggrals. It is a firmly held
conviction in CAS that the proper setting for the integratmmoblem is the complex
plane. One consequence is that it is quite possible to iatedtto getf 4 c wherec
Is a complexpiecewise constant; indeed the discontinuities may be complex.

While we would like to pose the general problem of correct difiicption of complex-
valued transcendental functions as our “open problem,” et that this is both too
vague and too difficult. On the other hand, “fixing all the buig€AS” doesn't have
the right tone, either. Instead, we focus on a smaller suidnoin this area.

Recent progress on ‘the square root bug’ includes the rentgvall major com-
puter algebra systems of automatic simplifications thahat@lways true on special-
ization over the complex numbers (except possibly on setseaisure zero). Progress
has also been made on integration, particularly with thejpeffrey (1993), Jeffrey
and Rich (1994), Jeffrey (1994, 1997). The main contributbthese papers is that
it is better to return an integral that éentinuous on a domain of maximum extent,
rather than trying to fix up spurious singularities and bhanats later. See also a
discussion of Rioboo’s algorithm, such as the one in Brongi€a7).

However, these papers address only the simplest sortsegfrals. One of the cen-
tral pillars of computer algebra is the Risch integratioroalpm and its extensions
(see for example Bronstein (1997)). The algorithm, whichlgelaraic and not an-
alytic in its essentials, does not always produce integraiginuous on domains of
maximum extent. Further, it often forces computation ie tomplex plane. For a
simple example, consider the following Maple session.
> infolevellint] := 5;

infoleve|; :==5

We force Maple to skip its inexpensive heuristics and go ®Risch algorithm,
normally a last resort.
> ah := ‘int/risch_like‘(1/(2+sin(z)),z);

int/risch: enter Risch integration

int/risch/algebraicl: RootOfs should be algebraic numbers and
functions

int/risch: the field extensions are

8Note added in proof: Unlike the English translation, Cagattory’s original German version of
this passage does not lend itself to this interpretatiohrdther to set equality (observation courtesy
A. Davenport). However, even so, set equality afip and Inz; + Inz, does not imply set equality of
InZ2 and 2Irz, because of correlations (observation courtesy J. H. Dmrgn
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Z (RootOf(_Z%+1) z)]

int/risch: Introduce the namings:

{thy = e(RootOf( Z%+1) z)}

unknown: integrand is
1
2 1RootOf(ZZ+1)(th 1)
2 R 1 Ty
unknown: integrand expressed as

RootOf Z2 +1) thy
4Ro0tOf _Z? +1) _thy + thy? — 1

int/risch/ratpart: integrating
RootOf 72+ 1) thy
4ARo00tOf_Z? +1) _thy + th;? —1

int/risch/ratpart: Hermite reduction yields
RootOf Z?+1) thy
4Ro0tOf_Z? +1) _thy + thy> — 1

int/risch/ratpart: Rothstein’s method - factored resultant is

372+1

int/risch/ratpart: result is

%| V3In(_th; +1v/3+2Ro0otOf _Z%+1)) — %I V3In(_thy —1v/3+2RootOf_Z?+1))

int/risch: exit Risch integration
1 1
ah:= | V3In(e'? +1 \/§+2|)_§| V3In(e!'? —1v3+21)

We see by the following plot that the Risch algorithm appleethis simple problem
does not produce a continuous antiderivative.
> plot([evalc(Re(ah)),evalc(Im(ah))],z=-5..5);
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Open Problem 9

Modify (or replace) the Risch algorithm so as to produce gras continuous on
domains of maximum extent, or else clearly describe theelrglass of functions
(elementary or other) for which continuous antidifferetiba can be done efficiently.

This problem will be known to be solved when a proof of the altpon’s correct-
ness appears in a good journal, or more preferably whengloeitdm is implemented
in a major CAS and thus made available for general use andrscrut

Since, even for the integration of rational functions oveoaplex field, we can
have branch cuts consisting of any algebraic curve whatsptvs seems difficult.
For rational functions over a real field, Rioboo’s algorithemde used (Bronstein,
1997). Some related issues include the following.

A.1l. Domains of Computation

We feel that the default domain of computation should matehuser’'s expectations
(and be modifiable at the user’s will). If the computer algetystem begins its com-
putations in the real domain, assuming all variables arkawed all functions are
real-valued, then if at any time during the computation ty&tesm decides to move
into the complex domain, as it did in our Risch example, thenuker should be
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warned somehow; B. F. Caviness has suggested that the baclgrolour of the
screen could change, for example.

Automatic simplifications should only perform transforias valid for all special-
izations of the variables in the domain in question (pogsiking dynamic evaluation,
or provisos). The user, of course, should be allowed to p@remy manipulation she
or he desires.

A.2. Integration of Special Functions

There are several classes of complex-valued special nscivhich are of great value
to the scientist, not all of which are supported equally Wwglthe major computer al-
gebra systems. Examples include the Jacobian elliptidifumeand elliptic integrals,
and the hypergeometric or even Meijer G functions or stilllengenerally the so-
called “H-functions.” The Jacobian elliptic functions arery rich in algebraic iden-
tities, occur very often in applications (see the beautitubk Lawden (1989)), and
being doubly-periodic in the complex plane have multivdlueverses. Therefore, all
the difficulties talked about earlier are inherited here alf.w
As an example, consider

/cn(u, k)du. (5)

We will use the substitutiop = am(u), where anu) is Jacobi’'s amplitude function
and satisfies

snu,k) = sin(fam(u,k)) = sin(@)
cn(u,k) = cogam(u,k)) = cogq)
%am(u,k) = dn(u,k).

This gives thatlu= dg/ /1 — k?sir? @, on using the identity
k?srf(u, k) +dr(u,k) = 1.

Therefore, we may express any integrand rational in sn, roh,da as an algebraic
integral in sij) and co$g) by a simple change of variables. Our simple example
gives

/cn(u, k)du:/ cosd@)de (6)

\/1—K2siré(@

It is an easy exercise ((Lawden, 1989, p. 40)) to show thatighin fact equal to
[en(u,k)du= sin~*(ksn(u,k))/k, up to a constant. More interestingly, Maple gives
a nontrivial discontinuous integral for the following contous integrand (with ex-
plicit use of changevar, because otherwise Maple does not know how to integrate
the Jacobian elliptic functions as yet):

du _ / do . @)

2+cn(uyk) (2+ cosy) \/mp
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We leave the verification of this as an exercise for the reader

Integration of all these functions would be very usefulegration valid on domains
of maximum extent would be more useful. Although the simgaifion of expressions
containing these functions and a few transcendental catssgimpossible in general
(even recognizing zero is undecidable)ne can still ask packages to do as much as
Is possible.

A.3. Branches and the Unwinding Number

Many people have tried to automate symbolic computatiorts multivalued func-
tions; see for example Dingle and Fateman (1994) or Corledsleffrey (1996). It
now appears, at least for the logarithm and hence for sini@meentary functions, that
complex analysigan be turned into computer algebra. Once you replace theeffal
identity Inexpz = zwith the true identity

Ine? =2z-2m%(2), (8)

where K is the so-called “unwinding number,” then computer algefystems can
manipulate some complex formulae correctly. The geometfmriation about the
branch cuts is encoded in the arguments to the unwinding au(mhich makes this
approach similar, in fact, to that of Dingle and Fateman @)R9here are simple the-
orems one can use to simplify some unwinding numbers, ared athebraic identities
that can be implemented, such as

c - [m2r]

21
Inzzzz = Inzz+Inz—2ni%x (Inz1 +Inz)
winz = Inz"+2mnix (winz)
X (z+2mn) = %x(2)+n
x(lnz) = 0
212} = (z1zp)Vexp(2niwx (Inz; +Inz))
yald (2)"exp(2niwx (vinz)).

A prototype implementation in Maple is under constructioy Gurjeet Litt (a Mas-
ters’ student at the University of Western Ontario at thisgtiof writing).

The talk from which the material of this appendix was exgdotan be found at
http://www.apmaths.uwo.ca/ rmc/papers/symbolic/index.html under the head-
ing “East Coast Computer Algebra Day 1998.”

9As a point of clarification, it is useful to emphasize the idistion between the undecidability of
algebraic simplification in general and the decidabilityirdegration once the model for the field of
extensions is known, as shown by Risch. See (Bronstein,)180@ detailed discussion.
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