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Abstract
The success of the symbolic mathematical computation discipline is striking.
The theoretical advances have been continuous and significant: Gröbner bases,
the Risch integration algorithm, integer lattice basis reduction, hypergeometric
summation algorithms, etc. From the beginning in the early 60s, it has been the
tradition of our discipline to create software that makes our ideas readily avail-
able to scientists, engineers, and educators: SAC-1, Reduce, Macsyma, etc. The
commercial viability of our system products is proven by Maple and Mathemat-
ica.

Today’s user communities of symbolic computation systems are diverse: ed-
ucators, engineers, stock market analysts, etc. The mathematics and computer
science in the design and implementation of our algorithms are sophisticated.
The research challenges in symbolic computation at the close of the 20th cen-
tury are formidable.

I state my favorite eight open problems in symbolic computation. They range
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from problems in symbolic/numeric computing, symbolic algorithm synthesis,
to system component construction. I have worked on seven of my problems
and borrowed one from George Collins. I present background to each of my
problems and a clear-cut test that evaluates whether a proposed attack has solved
one of my problems. An additional ninth open problem by Rob Corless and
David Jeffrey on complex function semantics is given in an appendix.

Introduction
At the Fifth East Coast Computer Algebra Day, which was held at the Unites States
Naval Academy in Annapolis, Maryland, on April 25, 1998, I gave a one hour lecture
of the same title. I repeated this lecture at theIMACS Conference on Applications
of Computer Algebra, which was held in Prague, Czech Republic, on August 9–11,
1998. In this companion paper I have written up my favorite open problems of sym-
bolic computation and provided a more in-depth discussion with references to the
literature. The selection of open problems is my personal one and is not intended to
be comprehensive of the field. I am leaving out major areas of investigation, among
them differential and difference equations, types of domains in symbolic program-
ming languages, computational group theory, or mathematics on the Internet. In an
appendix to this paper, R. Corless and D. Jeffrey state an additional open problem,
which was presented by Corless in his lecture at the same FifthEast Coast Computer
Algebra Day in April 1998.

A Brief History of Symbolic Mathematical Computation

It is dangerous to stereotype historical development into periods. The following high-
lights during the decades of symbolic computation, as I perceive them, should simply
be taken as a guideline.

1960s: pioneering years: polynomial arithmetic, integration

1970s: Macsyma and Reduce; abstract domains: Scratchpad/II

1980s: polynomial-time methods: factorization; Maple; user interfaces: Mathemat-
ica

1990s: teaching of calculus; math on the web; black box symbolic objects

2000s: merging of symbolic, numeric, geometric, combinatoric, and logic paradigm
(?)

In the past 40 years or so the discipline of symbolic computation has made major
contributions to science. Collins (1960) pioneers the process of automatic garbage
collection by reference counts. New efficient multivariatepolynomial greatest com-
mon divisor algorithms (see (Brown, 1971) and the referencesgiven there) are crucial
for the implementation of symbolic algebra. Risch (1969) shows that the problem
of finding integrals of mathematical functions in closed form is decidable. Random-
ization is used by Berlekamp (1970) to efficiently factor polynomials modulo large
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prime numbers before the now-famous randomized primality tests. Generic program-
ming is invented in the first half of the 1970s as a means to reuse the code of alge-
braic algorithms over abstract domains, such as Gaussian elimination (see Section 7).
Gosper in 1978 invents an ingenious algorithm for indefinitehypergeometric summa-
tion (see (Petkov̌sek et al., 1996)). Lov́asz’s lattice reduction algorithm, a far-reaching
generalization of the Euclidean algorithm, appears first asa substep for polynomial
factorization (Lenstra et al., 1982). Interpolation algorithms for sparse multivariate
polynomials, some of which are based on error-correcting coding, revise a numeri-
cal computation subject that is over 100 years old (see (Grigoriev and Lakshman Y.
N., 1995) and the references given there) and have become instrumental in the calcu-
lus of black box polynomials (Kaltofen and Trager, 1990). Today, the mathematical
markup for Internet documents exposes several new issues, such as the structuring of
compound objects for display and selection.1 Last, but not least, we must mention the
breakthrough algorithms for computing a Gröbner basis, which are discussed further
in Section 5, and for solving a sparse linear system over abstract fields, which are
discussed in more detail in Section 3.

Our community of world-wide researchers is relatively small, between 150–300
active full-time researchers. I am sure, however, that we will continue to contribute
in a significant way to science, and I hope that one or the otherof the following nine
problems will attract attention.

1. Symbolic/Numeric Computation
A surface that is defined implicitly by all real roots(x,y,z) of a trivariate polynomial
is displayed in Figure 1. The picture indicates that there are two components, an ellip-
soid and a hyperboloid, which the factorization of the polynomial over the complex
numbersC verifies.

Now we take the two factors, approximate
√

2 numerically by 1.41422 in one fac-
tor and 1.41421 in the other, and multiply the product out rounded to three decimal
places. We get the numerical trivariate polynomial equation

81x4 +16y4−648.001z4 +72x2y2 + .002x2z2 + .001y2z2

−648x2−288y2− .007z2 +1296= 0.

Due to continuity the numerical perturbations do not changethe picture of Figure 1
by much. The two now deformed components are still present. However, the polyno-
mial has become absolutely irreducible overC. My first open problem concerns the
factorization of nearby polynomials over the complex numbers.

Open Problem 1
Given is a polynomial f(x,y) ∈ Q[x,y] andε ∈ Q. Decide in polynomial time in the
degree and coefficient size if there is a factorizablef̂ (x,y) ∈ C[x,y] with ‖ f − f̂‖ ≤ ε,
for a reasonable coefficient vector norm‖ · ‖.

1Oral communication by R. S. Sutor.
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81x4 +16y4−648z4 +72x2y2−648x2−288y2 +1296=

(9x2 +4y2 +18
√

2z2−36)(9x2 +4y2−18
√

2z2−36) = 0

Figure 1: Surface represented by trivariate polynomial

This problem was first posed in my survey article (Kaltofen, 1992). Efficient al-
gorithms for performing the factorization of a multivariate polynomial over the com-
plex numbers exactly are described and cited in (Kaltofen, 1995). Galligo and Watt
(1997) present heuristics for computing complex numericalfactors. Since then, I have
learned of several related problems and their solution. They are described next. The
constrained root problem described below solves Problem 1 if one looks for the near-
est polynomial with a complex factor of degree no more than a given constant bound
(Hitz et al., 1999).

Sensitivity analysis: approximate consistent linear system

Suppose the linear systemAx= b, whereA is anm×n matrix over a field andb is
a vector in an inner product space, is unsolvable. A classical problem is to findb̂
“nearest to”b that makes it solvable.

If nearness is measured in terms of the norm induced by the inner product, say if
one wishes to minimize the Euclidean distance, minx̂‖Ax̂−b‖2, a solution is obtained
by the method of least squares. Another important case is when thecomponent-wise
distance is minimized:

min
x̂

(

max
1≤i≤m

∣
∣bi −

n

∑
j=1

ai, j x̂ j
∣
∣

)

By introducing a new variabley we can derive the minimum by solving the linear
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program due to Chebyshev.

minimize:y

linear constraints: y≥ bi −∑n
j=1ai, j x̂ j (1≤ i ≤ m)

y≥−bi +∑n
j=1ai, j x̂ j (1≤ i ≤ m)

Component-wise minimization can account for round-off errors in the entries ofb.

Sensitivity analysis: nearest singular matrix

There is no particular reason why one should not consider changes inA for finding
solvable systems that are nearby. In fact, there exists a theory of so-calledtotal least
square methods (Golub and Van Loan, 1996). Related to it is theproblem of finding
the numeric rank of a non-singular matrix. Both problems are numerically attacked by
computing the singular value decomposition of the matrix. Unfortunately, the results
are not always satisfactory, and the following may explain why this is:

Consider the following mathematical question. Given are 2n2 rational numbers
ai, j , āi, j . LetA be theintervalmatrix

A = {






a1,1 . . . an,n
...

...
an,1 . . . an,n




 | ai, j ≤ ai, j ≤ āi, j for all 1≤ i, j ≤ n}.

DoesA contain a singular matrix?
This problem is shown to beNP-complete(Poljak and Rohn, 1993), i.e., it is com-

putationally as difficult as computing the shortest traveling salesperson route in a
complete graph. We mention Poljak’s and Rohn’s breakthroughreduction because it
establishes that floating point roundoff errors may not always be easy to undo. When
the distance is measured by amatrix norm, the problem of finding the nearest singular
matrix can be solved efficiently by a result of Eckart & Young (1936) for Euclidean
norms and of Gastinel (see (Kahan, 1966)) for arbitrary matrix norms.

Sensitivity analysis: approximate greatest common divisor

Supposef = xm + am−1xm−1 + · · ·+ a0 and g = xn + bn−1xn−1 + · · ·+ b0 have no
common divisor. A problem in the same spirit as above is to efficiently computef̂ , ĝ
“nearest to”f ,g that have a common root.

Karmarkar and Lakshman (1996) describe an algorithm that solves this problem
in polynomial time when the Euclidean distance between the combined coefficient
vectors,

√

|am−1− âm−1|2 + · · ·+ |a0− â0|2 + |bn−1− b̂n−1|2 + · · ·+ |b0− b̂0|2

is minimized. The nearest GCD problem can be formulated in matrix form: Compute
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the nearest singularSylvester matrixto the Sylvester matrix














am am−1 . . . . . . a0

am . . . . . . a1 a0
. .. . . . . . .

am . . . . . . . . . a0

bn bn−1 . . . . . . b0

bn . . . . . . b1 b0
. .. . . . . . .

bn . . . . . . . . . b0















The Sylvester matrix is a blockToeplitz matrixof a special form. We note that the
more general problem, namely, efficiently computing the nearest singular Toeplitz
matrix to a given Toeplitz matrix, remains open.

There is a substantial body of work on variations on the problem formulation, which
is cited in passing (Schönhage, 1985, Corless et al., 1995, Emiris et al., 1997).

Sensitivity analysis: Kharitonov Theorem

An amazing result was obtained by V. L. Kharitonov in 1979 (see (Minnichelli et al.,
1989)), which concerns the stability of roots of polynomials when the coefficients are
individually perturbed. We state his theorem. Given are 2n rational numbersai, āi. Let
P be theintervalpolynomial

P = {xn +an−1xn−1 + · · ·+a0 | ai ≤ ai ≤ āi for all 0≤ i < n}.

Then every polynomial inP is Hurwitz (all roots have negative real parts), if and only
if the four “corner” polynomials

gk(x)+hl (x) ∈ P, wherek = 1,2 andl = 1,2,

with

g1(x) = a0 + ā2x2 +a4x4 + · · · , h1(x) = a1x+ ā3x3 +a5x5 + · · · ,
g2(x) = ā0 +a2x2 + ā4x4 + · · · , h2(x) = ā1x+a3x3 + ā5x5 + · · ·

are Hurwitz.
The corner polynomials are easily tested for the Hurwitz condition, for example

by a variant of Sturm sequences, and the condition constitutes the stability criterion
for the corresponding differential equations (see (Gantmacher, 1960, Ch. XV)). There
now exist many generalizations of Kharitonov’s theorem.

Sensitivity analysis: constrained root problem

Kharitonov’s theorem inspires new problem formulations inroot stability. Given is a
real or complex polynomial

f (z) = anzn +an−1zn−1 + · · ·+a1z+a0
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and a rootα ∈ C that may be given explicitly or that may be constrained to a certain
subset ofC. Computef̂ “nearest to”f such thatf̂ (α) = 0.

We (Hitz and Kaltofen, 1998) can solve this problem efficiently, i.e., in polynomial
time for the usual coefficient fields, and for

1. a parametricα (root stability) and Euclidean distance

2. explicit rootsα1,α2, . . . and coefficient-wise distance (infinity norm)

3. with linear coefficient constraints, e.g.,an = 1.

A theorem provable by our methods is the following (Hitz et al., 1999). Given is the
real polynomial

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0, ai ∈ R,

with no real root. Then one can compute in polynomial time inn and the size of the
coefficientsai the following quantity (Hitz et al., 1999).

min
â0,...,ân such that

∃α∈R : ânαn+ân−1αn−1+···+â0=0

(

max
0≤i≤n

|ai − âi|
)

=

∣
∣
∣
∣

f (α)

∑n
i=0 |αi|

∣
∣
∣
∣

A related result appears in (Zhi and Wu, 1998).

2. Quantifier Elimination (QE)
What makes the approximation theoretic minimax problems of Section 1 decidable
in the first place? The famous process of quantifier elimination in the theory of real
closed fields, first published by Tarski in 1948, delineates asubstantial mathematical
theory where all theorems are decidable and that has no Goedel-like undecidabilities.
We illustrate the principle of QE on the simple example of minimizing a quadratic
function.

for a > 0: min
x

(ax2 +bx+c) ⇐⇒∀y: a > 0 anday2 +by+c≥ ax2 +bx+c

⇐⇒ a > 0 andx = − b
2a

The minimizing problem can be rewritten as a quantified expression. The principle
of QE allows the removal of the quantified variables—our equivalent third form. All
values of the variables that satisfy any quantifier-free expression define a so-called
semi-algebraicset. By QE those specializations of the free variables of a quantified
expression that yield theorems, i.e., true formulas, form asemi-algebraic set. The
algorithmic aspects of QE have been studied extensively by G. Collins, D. Grigoriev,
J. Renegar, H. Hong, and others (see (Caviness and Johnson, 1998)). In general, the
process is computationally hard, although several of the examples in Section 1 have
efficient algorithms. Collins has suggested another minimaxproblem as a challenge
benchmark problem for QE software with the intent to demonstrate the abilities of the
different algorithms and their implementations.
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Open Problem 2 (Zolotarev’s problem by Collins 1992)
Eliminate the quantifiers and solve for n≥ 6 on a computer:

for r > 0: min
B=b0+···+bn−2xn−2

(

max
−1≤x≤1

|xn + rxn−1−B(x)|
)

The best approximation of a polynomial of degreen by a polynomial of lower
degree on the interval{x | −1≤ x≤ 1} is accomplished via Chebyshev polynomials.
Zolotarev seeks best approximations by polynomials whose degree is at least 2 less.
Note that mathematical expressions for explicit solutionsare known (see (Achiezer,
1956, Addendum E)) and we give the one forr ≤ 1 andn = 3, again in the form of a
formula in Tarski’s theory.

∀c0,c1∀x∃y: (0 < r ≤ 1 and−1≤ x≤ 1 and−1≤ y≤ 1) ⇒

(y3 + ry2−c1y−c0)
2 ≥

(

x3 + rx2−
(3

4
+

r
2
− r2

4

)

︸ ︷︷ ︸

b1

x− (
r
4

+
r2

6
− r3

108
)

︸ ︷︷ ︸

b0

)2

3. Linear Algebra With Implicitly Represented Matrices
Several numerical methods for solving systems of linear equations with sparse coef-
ficient matrices are based on the use of not too many matrix-times-vector products,
which in the sparse case can be performed quickly. Examples for such methods are
the conjugate gradient, the Lanczos and the Krylov algorithms. These methods are
sometimes referred to as matrix-free, because no coefficient matrix needs to be ex-
plicitly constructed. In 1990 we introduced the notions of black box polynomials,
rational functions, and matrices (Kaltofen and Trager, 1990). The black box model
of a matrix requires as the representation of a matrix a function that performs the
matrix-times-vector product.

y∈ Kn

−−−−−−→
A·y∈ Kn

−−−−−−−−→

A∈ Kn×n

K an arbitrary, e.g., finite field

In the symbolic computation context we consider abstract coefficient fields, such as
finite fields. The main objective is to perform all linear algebra operations, e.g.,A−1b
(Wiedemann, 1986) with

O(n) black box calls and
n2(logn)O(1) arithmetic operations inK and

O(n) intermediate storage for field elements
(1)
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We note that a black box matrix algorithm applies not only to sparse matrices but
also to structured matrices that have a fast matrix-times-vector function. Fast matrix-
times-vector products are often a consequence of the linearization of a given problem.
Examples are:

1. Petr’s Q matrix in Berlekamp’s algorithm for factoring polynomials over finite
fields (Knuth, 1997), (Kaltofen and Shoup, 1998).

2. resultant matrices for non-linear algebraic equations (see Section 5 below).

3. the linear systems in Kaltofen’s (1995) algorithm for factoring multivariate poly-
nomials over algebraically closed fields.

Linear algebra algorithms for black box matrices are an active subject of research.
In Table 1 we list several of them. Giesbrecht’s (1997) method for finding integral
solutions to sparse linear systems is based on computing rational solutions whose
denominators are relatively prime. For instance, if one obtains two rational solutions
with common denominator 2 and 3, respectively, one can easily construct an integer
solution.

A(
1
2

x[1]) = b,x[1] ∈ Zn, A(
1
3

x[2]) = b,x[2] ∈ Zn;

gcd(2,3) = 1 = 2·2−1·3, A(2x[1]−x[2]) = 4b−3b = b.

Giesbrecht proceeds by proving that for a small algebraic extension ofZ relative
primeness occurs with high probability. Recently, the need for small algebraic exten-
sion has been removed (Mulders and Storjohann, 1999).

Lambert (1996), Teitelbaum (1998), relationship of Wiedemann and
Eberly & Kaltofen (1997) Lanczos approach

Villard (1997a), (1997b) analysis ofblockWiedemann algorithm
Giesbrecht (1997), computation of integral solutions

Mulders & Storjohann (1999)
Giesbrecht, Lobo & Saunders (1998) certificates for inconsistency

Table 1: Flurry of recent results

Since Wiedemann’s (1986) breakthrough paper, the following problem remains un-
resolved.

Open Problem 3
Within the resource limitations (1) stated above,2 compute the characteristic poly-
nomial of a black box matrix over an abstract field. Randomization is allowed (of
course!), as is a “Monte Carlo” solution.

2Joachim von zur Gathen has suggested to relax theO(n) requirements for both the number of black
box calls and for intermediate auxiliary storage ton(logn)O(1).
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Characteristic polynomials are needed, for example, for resultant computations
(Canny et al., 1989, Canny, 1990, Emiris and Pan, 1997). We conclude the section
by remarks on Monte Carlo vs. Las Vegas randomized algorithms.

Classes of randomized algorithms

The use of random bits, so-called coin flips, has turned out tobe a powerful algorithm
design tool. Coin flips are employed for both speed, i.e., for locating the solution by
a random walk rather than by deterministic search, and for output correctness, where
unverifiable guesses about the solution are made. The lattercomes from numerical
integration: the frequency, with which a random point in space is below a function, is
used to approximate the integral of the function. The following notions have become
popular:

Monte Carlo ≡ always fast, probably correct
Las Vegas ≡ always correct, probably fast
BPP ≡ probably correct, probably fast

Here BPP stands for bounded probabilistic polynomial-time and is a notion from
complexity theory (Boppana and Hirschfeld, 1989). The complexity class R con-
tains all problems solvable in Las Vegas polynomial time. The term Las Vegas was
coined by L. Babai (1979). Clearly, as Gene Cooperman has pointed out to me, a BPP
method can be converted to a Monte Carlo method by returning garbage when the
random walk consumes too much time. It is unknown if BPP = R, or ifR = P, the
class of problems solvable deterministically in polynomial-time. Many theorists con-
jecture that since randomized algorithms perform very wellwhen implemented with
pseudo-random number generators (Knuth, 1997, Chapter 3), coin flips are inessen-
tial for polynomial-time algorithmic solutions of problems. The practicality of such
de-randomization is even further remote.

Some of my colleagues have expressed to me that Las Vegas randomization is fine,
but Monte Carlo or BPP algorithms are suspicious as one cannot verify the guessed
solution. I believe that such arguments are questionable. AMonte Carlo algorithm
can deliver an answer that is correct with a probability thatis as high as the user de-
mands, e.g., higher than 1−1/2100. Of course, the probability of correctness can only
be guaranteed if one uses a truly random process for the coin flips, say a quantum-
physical effect. However, deterministic algorithms can also fail due to momentary
hardware faults and programming bugs. Would the reader really trust a long number-
theoretic proof together with a 10,000 line program more than the answer given by a
single-page Monte Carlo primality testing program (Knuth, 1997, Section 4.5.4)?

We have observed a further pitfall when trying to use Las Vegas algorithms. The
following scheme is often employed, which makes a Monte Carloalgorithm Las Ve-
gas by verifying its answer by alternative considerations.
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repeat
pick random numbers
compute candidate answer

until a solution passes a test for it

The scheme has the flaw that a programming bug leads to an infinite loop, which
is indistinguishable from bad luck in the coin flips! I have been told by many of my
colleagues that such looping has also happened to them. Eventually, we give up in the
belief that the coin-flips keep on being unlucky and begin searching for the bug. In
one case, the problem turned out to be an invalid input.

A referee points out that even sequential schemes with unbounded iteration have
this flaw. For instance, in Brown’s (1971) modular GCD algorithm the Chinese re-
maindering is stopped if the division check by the GCD candidate succeeds. Because
of our experience (Kaltofen and Monagan, 1999) we now advocate to avoid such un-
bounded loops whenever possible, even when adding a small extra cost.3

4. Lattice Basis Reduction
The lattice basis reduction algorithm by A. K. Lenstra, H. W.Lenstra, Jr. and L.
Lovász (1982) is said to be the major algorithmic breakthrough of symbolic computa-
tion in the 1980s (Odlyzko, 1996). The first application of the method was to factoring
polynomials over the rational numbers. Since 1982 the algorithm had its impact on a
variety of problems (see, e.g., (Borwein and Lisoněk, 1997)). Recently, the method
was used to derive the following pretty formula forπ.

π =
∞

∑
i=0

1
16i

(
4

8i +1
− 2

8i +4
− 1

8i +5
− 1

8i +6

)

(2)

Following D. Bailey, P. Borwein, and S. Plouffe (1997), one proceeds as follows. Each
term under the sum (2) can be expressed as an integral multiple of a rational integral.

Z 1

0

yk−1

1− y8

16

dy =
Z 1

0

∞

∑
i=0

yk−1
(

y8

16

)i

dy =
∞

∑
i=0

1
16i

Z 1

0
y8i+k−1dy =

∞

∑
i=0

1
16i(8i +k)

The question is which integer linear combination of these integrals yieldsπ. Lattice
basis reduction is used to find the multipliers. First, we approximateπ and the in-
tegrals, multiplied by 1025, via a Maple V procedure. Note that the global variable
Digits in Maple holds the number of decimal mantissa digits with which Maple
performs its floating point arithmetic.
> latt := proc(digits)
> local k, j, v, saved_Digits, ltt;
> saved_Digits := Digits; Digits :=
> digits;

3A similar programming philosophy has also been expressed byKurt Mehlhorn for building the
LEDA library.
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> for k from 1 to 8 do
> v[k] := [];
> for j from 1 to 10 do v[k] := [op(v[k]),
> 0]; od;
> v[k][k] := 1;
> v[k][10] := trunc(10^digits *
> evalf(Int(y^(k-1)/(1-y^8/16),
> y=0..1, digits), digits));
> od;
> v[9] := [0,0,0,0,0,0,0,0,1,
> trunc(evalf(Pi*10^digits,digits+1))];
> ltt := [];
> for k from 1 to 9 do ltt:=[op(ltt),evalm(v[k])];od;
> Digits := saved_Digits;
> RETURN(ltt);
> end:
> L := latt(25);

L := [[1, 0, 0, 0, 0, 0, 0, 0, 0, 10071844764146762286447600],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 5064768766674304809559394],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 3392302452451990725155853],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 2554128118829953416027570],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 2050025576364235339441503],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 1713170706664974589667328],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 1472019346726350271955981],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 1290770422751423433458478],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 31415926535897932384626434]]

If π is an integer linear combination of the integrals, the abovelattice vectors must
sum to a short vector, which can be determined by lattice basis reduction (H̊astad
et al., 1989) or the PSLQ algorithm (Ferguson and Bailey, 1996).
> readlib(lattice):
> lattice(L);
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[[−4,0,0,2,1,1,0,0,1,5], [0,−8,−4,−4,0,0,1,0,2,5],

[−61,582,697,−1253,453,−1003,−347,−396,10,559],

[−333,966,324,−1656,−56,784,1131,−351,−27,255],

[429,714,−1591,778,−517,−1215,598,362,−87,398],

[−1046,−259,−295,−260,1286,393,851,800,252,−1120],

[494,906,−380,−1389,1120,1845,−1454,−926,−218,400],

[1001,−1099,422,1766,1405,−376,905,−1277,−394,−30],

[−1144,491,−637,−736,−1261,−680,−1062,−1257,637,−360]]

The first short vector corresponds to (2). The second vector is another linearly in-
dependent solution:

2π =
∞

∑
i=0

1
16i

(
8

8i +2
+

4
8i +3

+
4

8i +4
− 1

8i +7

)

(3)

One may use Maple V.4 directly to complete the proof of (3) by carrying out the
corresponding integral symbolically.
> g := (8*y + 4*y^2 + 4*y^3 -
> y^6)/(1-y^8/16);

g :=
8y+4y2 +4y3−y6

1− 1
16

y8

> int(g, y=0..1);

2π

Formulas like (2) and (3) can be used to compute the binary digits of π at very high
position without keeping track of the intermediate expansion, the so-called spigot
algorithm. At this moment, no formula that allows the computation of decimal digits
in this space and time efficient manner is known.

The GGH public key cryptosystem

Recently, the properties of reduced lattice bases have been employed to design pub-
lic key cryptosystems. Here is a nutshell description of theone by Goldreichet al.
(1997b).

Public key A lattice basisB (rowsBi are basis vectors).

Private key A reducedbasisC for lattice spanned by the rows ofB.

Clear text Represent the message as a vectorx with small integer entries.

Encoded messagey = x+∑i r iBi where∑i r iBi is a random vector in the lattice.
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Decryption is based on one of Babai’s (1986) algorithms for nearest lattice point:
Write y= ∑i siCi with si ∈Q. Then∑i nearest-integer(si)Ci is a near lattice point,
probably∑i r iBi.

In the paper by Goldreichet al. (1997b) more details are given on how to chooseB
andC and how to sample random lattice points so that the decryption method does not
produce an incorrect near lattice point. Nonetheless, Phong Nguyen has been able to
break this scheme in about 3 days on a 140MHz Ultrasparc usingNTL 1.7’s Schnorr-
Euchner variant of the reduction algorithm for lattices of dimension 200. An alter-
native cryptosystem is described in (Ajtai and Dwork, 1997,Goldreich et al., 1997a)
and proven secure provided that computing a short non-zero lattice vector is hard.

Open Problem 4
Devise a public key cryptosystem that is based on diophantine linear algebra but that
is safe from lattice basis reduction.

5. Gröbner Bases
The classical tool for solving a system of non-linear algebraic equations is the u-
resultant. Consider the following simple example, due to D. Lazard (1981).

f1 = x2 +xy+2x + y−1 = 0 (x,y) = (1,−1),(−3,1),(0,1)

f2 = x2 +3x−y2 + 2y−1 = 0

f3 = ux +vy+w

By the theory of Macaulay (1916) the u-resultant can be expressed as the determinant
of a matrix whose rows represent the polynomials multipliedby certain terms and
whose columns are labeled by certain terms whose coefficients are the entries.

x3 x2y x2 xy2 xy x y3 y2 y 1
x f1 1 1 2 0 1 −1 0 0 0 0
y f1 0 1 0 1 2 0 0 1 −1 0

f1 0 0 1 0 1 2 0 0 1 −1
x f2 1 0 3 −1 2 −1 0 0 0 0
y f2 0 1 0 0 3 0 −1 2 −1 0

f2 0 0 1 0 0 3 0 −1 2 −1
xy f3 0 u 0 v w 0 0 0 0 0
x f3 0 0 u 0 v w 0 0 0 0
y f3 0 0 0 0 u 0 0 v w 0

f3 0 0 0 0 0 u 0 0 v w

=

(u−v+w)
· (−3u+v+w)
· (v+w)
· (u−v)

(u-resultant)

The u-resultant has linear factors provided the system has afinite solution. Its coeffi-
cients are the coordinates of the zeros of the system, including solutions at infinity.
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Buchberger’s algorithm

The concept of a Gröbner basis (Buchberger, 1965, 1970, 1985, Becker and Weispfen-
ning, 1993, Cox et al., 1996) has revolutionized commutativealgebra. Buchberger’s
algorithm provides an alternative for solving non-linear algebraic systems. Within
the algorithm, some S-polynomial constructions and reductions can be interpreted
as row-reduction in Macaulay’s matrices, like the one givenfor the u-resultant above.
Faug̀ere (1998) has been able to make this correspondence more precise. In particular,
his method uses sparse so-called symbolic LU matrix decomposition for efficiently
performing these row reductions. His implementation may bethe first major marriage
of symbolic and numeric methods. The symbolic sparse LU factorization is purely
combinatorial and treats the coefficient arithmetic abstractly. In Faug̀ere’s implemen-
tation the rational coefficients still become exceedingly large, and some computations
can only be done modulo a prime number. Many other numeric sparse solvers benefit
from iterative approximation of the solution, and my next problem suggests to do the
same for Gr̈obner basis computation.

Open Problem 5
Compute Gr̈obner bases approximately by iterative methods for solvingsystems, such
as Gauss-Seidel, conjugate gradient, Newton,...
A solution plugs into numerical software and computes some bases faster than by ex-
act arithmetic; the structure of the bases may be determined, e.g., by modular arith-
metic.

We note that related aspects of numerical error analysis arediscussed in (Shirayanagi,
1996, Stetter, 1996).

6. Transposed Matrix Products
The following phenomenon has been observed in a variety of settings. One has an
efficient algorithm for computing a linear map, but one actually needs the transposed
map. We shall begin with an example from field theory.

We first describe the overall approach. Letσ ∈ K(α,β) where

g = y2−2∈ K[y], f = x2−y−1∈ K[x,y],

β = (y modg) ∈ K[y]/(g), α = (x mod( f ,g)) ∈ K[x,y]/( f ,g),

with K[y]/(g) ⊂ K[x,y]/( f ,g). Note that f (α,β) = 0 andg(β) = 0. For example,

σ =
√

1+
√

2−
√

2 = α−β. In field theoretic terms,σ is an algebraic element in a
tower of fieldsK ⊂ K(β) ⊂ K(α,β). The tower is represented by a triangular set of
minimum polynomials for the extension elementsα andβ: g∈ K[y] irreducible over
K, f ∈ K(β)[x] irreducible overK(β).

The computational task is to compute the minimum polynomialh(σ) = 0 :

h(x) = xm−cm−1xm−1−·· ·−c0 ∈ K[x], m≤ deg( f ) ·deg(g)
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The coefficient vectors
−→
σi of σi mod( f (x,y),g(y)) satisfy the linear recurrence on

vectors
∀ j ≥ 0:

−−→
σm+ j = cm−1

−−−−→
σm−1+ j + · · ·+c0

−→
σ j

Any non-trivial linear projection mapL (
−→
σi ) preserves the linear recursion becauseh

is irreducible. An algorithm can proceed by computing the field elementsai = L (
−→
σi )

for 0 ≤ i ≤ 2m−1, i.e., using a linear map intoK, and from them the linear recur-
renceh, the latter inm1+o(1) field operations inK by the Berlekamp/Massey algorithm
(Massey, 1969, Brent et al., 1980). We now inspect the task of computing the linear
projections of the powers ofσ in more detail.

Power Projections = Transposed Modular Polynomial Composition

The operatorL is represented by a vector of field elements
[
u0 u1 . . . un−1

]
,

wheren = deg( f )deg(g). The power projections can be expressed by the following
vector times matrix product:

[

L (
−→
σ0) L (

−→
σ1) L (

−→
σ2) . . .

]

=
[
u0 u1 . . . un−1

]
·
[−→
σ0

∣
∣
∣

−→
σ1

∣
∣
∣

−→
σ2

∣
∣
∣ . . .

]

︸ ︷︷ ︸

A

The key observation is that the transposed linear map is modular polynomial com-
position:

w(z) = w0 +w1z+w2z2 + · · · 7−→ w(σ) mod( f (x,y),g(y))

−−→
w(σ) =

[−→
σ0

∣
∣
∣

−→
σ1

∣
∣
∣

−→
σ2

∣
∣
∣ . . .

]

︸ ︷︷ ︸

A

·








w0

w1

w2
...








We note that modular polynomial composition in the univariate case has been studied
extensively, as its complexity is closely related to factoring univariate polynomials
over finite fields efficiently (von zur Gathen and Shoup, 1992,Kaltofen and Shoup,
1997, 1998, Bernstein, 1998, von zur Gathen and Gerhard, 1999).

The use of power projections for finding minimum polynomialsof algebraic num-
bers and its relation to modular polynomial composition is discussed in (Shoup, 1994,
Section 3). The special cases

σ = α±β,σ = α ·β,σ = α/β with f ,g∈ K[x],

i.e., arithmetic operations on roots of polynomials, can behandled alternatively by
resultant computations (Loos, 1982). These require the factorization of a polynomial
of degree deg( f ) ·deg(g) overK, while our approach requires the factorization off
overK(β) or of g overK(α), which is performed similarly by either a factorization of
a resultant overK (Trager, 1976, Encarnación, 1997), or by completely different and
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in some cases more efficient algorithms (Weinberger and Rothschild, 1976, Lenstra,
1987).

Nonetheless, we still have to compute the power projections. An algorithmic theo-
rem, which we calltransposition principle, now states that any linear algorithm that
computes a matrix times vector product can be transformed into one that computes
the transposed matrix times vector product. One simply reverses the flow of the linear
circuit that represents the algorithm.4 Such reversal of flow preserves the number of
arithmetic operations, but not the space needed to store intermediate results. There-
fore, a fast modular polynomial composition algorithm yields one for power projec-
tions, at least in theory. Shoup (1995) proceeds differently and designs, for the case of
a single algebraic extension, a baby step/giant step algorithm based on modular poly-
nomial multiplication. Again, he needs the transposed map for which he synthesizes
the following algorithm (see (Shoup, 1995) for more details).

Transposed Modular Polynomial Multiplication in NTL

1. T1 ← FFT−1(REDk(g))

2. T2 ← T1 ·S2

3. v←−CRT0...n−2(FFT(T2))

4. T2 ← FFT−1(REDk+1(xn−1 ·v))
5. T2 ← T2 ·S3

6. T1 ← T1 ·S4

7. ReplaceT1 by the 2k+1-point residue table whosej-th column(0≤ j < 2k+1) is
0 if j is odd, and is column numberj/2 of T1 if j is even.

8. T2 ← T2 +T1

9. u← CRT0...n−1(FFT(T2))

The algorithm has no interpretation of its own.5

“we offer no other proof of correctness other than the validity of this
transformation technique (and the fact that it does indeed work in practice)”
(Shoup, 1995, Section 7.5)

It is, however, as time and space efficient as modular polynomial multiplication, and
one is left with the question if the transposition principlehas this property in general.
Here is then our sixth open problem.

Open Problem 6
With inputs A∈ Km×n and y∈ Kn you are given an algorithm for A· y that uses

4The history of the principle is manifold. B̈urgisseret al. (1997) trace it to circuit analysis (see
(Antoniou, 1979,§4.7)). Fiduccia derives the principle in his Ph.D. thesis (1973) (see also (Fiduccia,
1972)) and Kaminskiet al. (1988) publish a paper on it.

5In the meantime, Shoup (1999) has been able to derive an explicit fast algorithm for the transposed
modular polynomial multiplication problem. However, his algorithm is still by a constant factor slower
than the the one based on the transposition principle.
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Figure 2: Component interaction in symbolic computation

T(m,n) arithmetic field operations and S(m,n) auxiliary space. Show how to con-
struct an algorithm for AT ·z where z∈ Km that uses O(T(m,n)) time and simultane-
ously O(S(m,n)) space. Your construction must be applicable to practical problems.

The transposition principle is a special case ofautomatic differentiation(Kaltofen
and Lakshman Yagati, 1988):

For f (x1, . . . ,xn) = bT(A






x1
...

xn




) we have






∂x1 f
...

∂xn f




 = ATb.

Therefore, the so-calledreverse modeof automatic differentiation for computing the
gradient vector of a function applies. Griewank (1992) shows how to solve the above
problem with a factor ofO(log(mn)) penalty in both time and space.

We conclude by noting that the Lanczos algorithms and certificates of inconsistency
of Table 1 all depend on efficient transposed matrix times vector products.

7. Plug-And-Play Components
The notion of plug-and-play components comes from the interaction between com-
puter hardware and the resident operating system. If new hardware is installed, the
operating system can probe the device and determine and configure its characteristics
without human help. The device must respond to the probes in an agreed fashion and
the operating system must know of the possible different device characteristics. The
question arises if a plug-and-play approach can be realizedfor purpose of arranging
software components in a customized fashion.

An example for the need of the plug-and-play methodology is given in Figure 2. A
new algorithm, say the solution to Problem 1, is to be made available to researchers
outside the discipline of symbolic computation. We assume that the users work on
commercial platforms such as Maple, Mathematica, or an Internet browser/Java en-
gine. Clearly, it is desirable to implement the brand-new algorithm in such a way that
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it is callable from these common platforms. R. Loos (1974) recognizes the need as
vertical integration.

A second issue concerns the usage of existing libraries, sayfor polynomial arith-
metic or arbitrary precision floating point arithmetic. Computer algebra has pioneered
what is now calledgeneric programming, where the underlying implementations are
hidden and multiple packages can be used, even at the same time. Generic program-
ming was introduced simply because it became unwieldy to write a Gaussian elimina-
tion procedure, for example, for each of the different coefficient fields that arose. Now
generic programming has become a means of technology transfer. When a new sparse
symbolic LU factorization algorithm is released in Linpack, that algorithm should be
instantaneously called from all programs that rely on sparse LU factorization.

The notion ofproblem solving environmentshas been coined. We offer plug-and-
play and generic programming software design as a definition. With it an end-user
can easily custom-make symbolic software tools.

Example: FOXBOX (Dı́az and Kaltofen, 1998)

One goal of our implementation of the algorithms for factoring polynomials in so-
called black box representation (Kaltofen and Trager, 1990) was a plug-and-play in-
terface to our FOXBOX system. Our Maple server makes the procedures in FOXBOX

accessible to a Maple session. These are a Maple user’s commands.

# Call FoxBox server from Maple

> SymToeQ := BlackBoxSymToe( BBNET_Q, 4, -1, 1.0 ):

> SymToeZP := BlackBoxSymToe( BBNET_ZP, 4, -1, 1.0 ):

> FactorsQ := BlackBoxFactors( BBNET_Q, SymToeQ, Mod, 1.0, Seed ):

> FactorsZP := BlackBoxHomomorphicMap( BBNET_FACS, FactorsQ, SymToeZP ):

The server program is a generic one. Here we give a code fragment of the version
that uses SACLIB 1.1 rational number and polynomial arithmetic. The C++ construc-
tor calls get compiled from the FOXBOX template library.

// construct factors of a symmetric Toeplitz determinant in C++

typedef BlackBoxSymToeDet< SaclibQ, SaclibQX > BBSymToeDetQ;

typedef BlackBoxFactors< SaclibQ, SaclibQX, BBSymToeDetQ > BBFactorsQ;

BBSymToeDetQ SymToeDetQ( N );

BBFactorsQ FactorsQ( SymToeDetQ, Probab, Seed, &MPCard );

Software Design Issues

We think it useful to distinguish the plug-and-play interface from the generic pro-
gramming interface, although the two are somewhat similar.We have identified sev-
eral issues with both methodologies.
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Plug-and-play

1. The software components create a standardserialized representationfor ex-
changing their data. For mathematical objects several standards have been pro-
posed: MP (Bachmann et al., 1997), OpenMath (Dalmas et al., 1997), and MathML
(Ion and Miner, 1998). All standards use static representation of the objects.

2. In FOXBOX we could from the beginning transfer procedures for making or
evaluating polynomials and matrices. Our procedures were written in standard
programming languages, e.g., in C++, as security from illegal operations was
not an issue. Following the Java paradigm, it will be useful to transferbyte code
for constructing objects in place of the parse trees for their canonical represen-
tation (cf. (Norman and Fitch, 1996)). The matrix

[
1/(i2 + j2)

]

1≤i, j≤100 surely
should be communicated via a procedure for constructing it.A standard for the
mathematical byte code solves the task.6

3. Problem solving environments (PSEs) (Lakshman Y. N. et al., 1998) are the end
product of the assembly of the different software components. Visual program-
ming environmentsfor instantiation of generic and assembly of plug-and-play
components can become part of the user interface to symboliccomputation sys-
tems, and assist the end-user in making her/his PSE, who thusunwittingly turns
into a very high level programmer.

4. A language that allowsoverloaded operatorspermits the wrapping of existing
code with new definitions for the operators. MITMatlab (Husbands et al., 1998)
is an example where parallelism is introduced in this mannerwithout having to
modify sequential library functions.

Generic Programming

1. The definition ofcommon object interfaceshave been studied extensively in the
context of computer algebra (Musser, 1975, Abdali et al., 1986, Jenks and Su-
tor, 1992, Monagan, 1993, Watt et al., 1994). The Standard Template Library
of C++ (Musser and Saini, 1996) is an example from main-streamprogram-
ming. STL has container objects with a standardized format for manipulating
them.7 Such standards can be created for mathematical objects suchas poly-
nomials, matrices, or combinatorial graphs. Libraries then are accessed through
so-called wrapper classes that convert the standard calling interface to the inter-
nal organization. No efficiency is lost, as the wrapper functions can be inlined
on compilation. In FOXBOX the wrapper classes provide streams of objects. For
instance,K::random generator(500) is a generic function object of the field
class that provides random field elements that are uniformlysampled from a set
of 500 elements. Random field elements are needed for randomized algebraic al-
gorithms (cf. Section 3). Specification of the object interfaces can be expressed

6The OpenMath “programming content dictionary” proposed byGaston Gonnet offers a possible
solution.

7STL does not supply a standard for serializing its containers for transport across systems.
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in CORBA, the Common Object Request Broker Architecture (Iglio and Attardi,
1998).

2. Several libraries, e.g., SACLIB, performgarbage collection, which complicates
the generic object interface. Explicitstorage managementremains a sticky issue
even in STL, as different C++ compilers implement different memory models.

3. Exceptions, like division by zero or failure due to an unlucky selectionof random
elements, must be handled in a generic fashion across the components.

4. Object interfaces sometimes become a barrier that disallows interaction between
the generic algorithm and the used generic arithmetic. For instance, a ring of
polynomials whose arithmetic is implemented by FFT-based methods, such as in
NTL (Shoup, 1998), has an efficient specialized evaluation/interpolation scheme.
The generic algorithms can use ashortcutinto the specialized procedures when
employing a homomorphic imaging strategy. The wrapper classes can facilitate
these shortcuts.

5. Parallel distributionof a symbolic computation over many different computers
is important as our computations tend to be large. Internet browsers can present
a familiar platform for managing the network of computers one utilizes. The
algorithms must be programmed with high-level parallelization that is built-in
from the beginning.

Open Problem 7
Devise a plug-and-play and generic programming methodology for symbolic math-
ematical computation that is widely adopted by the experts inalgorithm design, the
commercial symbolic software producers, and the outsider users.

From our FOXBOX experience I observed that designing a system that simultane-
ously plugs into several others is difficult. H. Hong, a co-author of SACLIB, noted
that the reverse is also true, namely, that designing a system that someone else can
plug-in is difficult. However, our symbolic software is becoming very complex and a
solution to Problem 7 is crucial.

8. “Killer” Applications
The commercial success of a computer product is, according to Stephen Jobs, depen-
dent on a so-called “killer” application that everyone wants but only the one product
has. In Table 2 I attempt to list the killer app’s for several products, including symbolic
software.

Certainly, the students learning calculus with the help of a computer algebra system
constitute the most numerous users of our software. At NorthCarolina State Univer-
sity alone they number about 8000 per year. Such proliferation of use makes a disci-
pline important to society, but it also influences the direction of its future development.
I am told that much of the MathML Internet standard is geared towards mathematics
education. My last problem, admittedly non-scientific, addresses this situation.
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Product “Killer application”
Macintosh Document preparation
Personal computer Spreadsheets
Supercomputers Weather forecasting
Mainframe computers Social security system
Symbolic software Calculus teaching

Table 2: Successful applications

Open Problem 8
Besides mathematics education, find another so-called “killer” application for sym-
bolic computation.
The problem is solved when the new application makes the software written for it a
commercial success.

Summary, Acknowledgement and Note Added in March 2000
These are my open problems.

1. Nearby multivariate polynomials that factor overC

2. Zolotarev’s problem on a computer

3. Characteristic polynomial of a black box matrix

4. Lattice basis reduction-safe GGH-like cryptosystems

5. Gr̈obner bases via iterative numerical methods

6. Space and time efficient transposition principle

7. Plug-and-play and generic programming methodology for symbolic computa-
tion

8. Another “killer” application besides education

I would like to thank Laurent Bernardin, Bob Caviness, George Nakos, and Peter
Turner for giving me the forum to present them and Victor Shoup for his comments
on Problem 6. I appreciate the suggestions for improvement made by George Collins
and by P. Borwein, P. Lisoněk and M. Monagan during my visit at Simon Fraser
University in July 1998. Rob Corless carefully read my manuscript and made several
helpful suggestions. All three referees of the paper corrected several errors and made
many valuable suggestions, for which I am grateful.

The above problems were posed in April 1998. To my knowledge,none has been
resolved as of March 2000. However, there has been significant progress on sev-
eral of them, which I would like to mention. Problem 1 has beentackled by several
authors using numerical techniques. While the resulting algorithms do not resolve
the problem in its entirety, the solutions are nonetheless useful in many cases, sim-
ilarly to complex root finding procedures that do not converge for all inputs. Good
progress can be reported on problem 3. Gilles Villard has found an algorithm that
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is within a factor ofn1/2+o(1) of the required complexity. The algorithm does not
rely on fast matrix multiplication algorithms and therefore is more practical than
those methods, which are still asymptotically faster. Important research is being con-
ducted on problem 7, but I shall only provide some references(Wang, 1999, Le and
Howlett, 1999, Bernardin et al., 1999). The solution of problem 8 may lie in the past.
The Nobel Prize in physics was awarded in 1999 to Gerardus ’t Hooft and Marti-
nus J. G. Veltman, and as the citation of the Nobel Foundationreads [www.nobel.
se/announcement-99/physics99.html] “At the end of the 1960s ... Veltman had
developed the Schoonschip computer program which, using symbols, performed al-
gebraic simplifications of the complicated expressions that all quantum field theo-
ries result in when quantitative calculations are performed. ... With the help of Velt-
man’s computer program ’t Hooft’s partial results were now verified and together they
worked out a calculation method in detail.”

A. Appendix: Complex Variables in Computer Algebra
(by R. M. Corless and D. J. Jeffrey)

By now, many users and most developers of computer algebra systems (CAS) are
familiar with a set of problems known generically for many years as “the square root
bug.” What was meant by this expression was that CAS would sometimes transform
complex-valued expressions incorrectly. The example thatgave the bug its name was
the transformation of

√
x2 to x, which is not even valid for all realx, much less for

complexx. Squarely at the root of the difficulty is multivaluedness, which does happen
with real variables, but is much more common with complex variables.

A concise and elegant description of the problem can be foundin Stoutemyer
(1991). More discussion can be found in the papers by Aslaksen, by Patton, by Fate-
man, by Rich & Jeffrey, and by Corless & Jeffrey in Issue 116 (June 1996) of the
ACM SIGSAM BULLETIN (Communications in Computer Algebra).

One of the fundamental difficulties in dealing with ‘the square root bug’ is that
because of multivaluedness, some cherished algebraic identities, such as

lnz1z2 = lnz1 + lnz2 , (4)

no longer hold—they are not true for all specializations of the variables. People
have been willing to try to keep these identities, at almost any cost. For example,
in Carath́eodory (1964), even Carathéodory was willing tochange the meaning of
equality in order to keep equation (4). He changed the interpretation of the symbols
in the formula in two ways. First, he interpreted each side asa set. Second, he inter-
preted the equals sign to mean that the set represented on theleft-hand side of the
equals sign had a non-empty intersection with the set represented on the right-hand



E. Kaltofen: Challenges of Symbolic Computation 24

side.8 In a discussion at ECCAD ’98, Dana Scott observed that Carathéodory’s notion
of equality is not transitive, and hence is not an equivalence relation.

Other approaches, such as Riemann surfaces, are also not satisfactory (chiefly be-
cause algebra on them seems so difficult).

One of the main consequences of these mathematical difficulties is that there have
been persistent bugs in many computer algebra systems, particularly in integration,
where changing interpretations of square roots or the like have resulted in absurdi-
ties such as positive integrands giving negative (definite)integrals. It is a firmly held
conviction in CAS that the proper setting for the integrationproblem is the complex
plane. One consequence is that it is quite possible to integrate f ′ to get f +c wherec
is a complexpiecewise constant; indeed the discontinuities inc may be complex.

While we would like to pose the general problem of correct simplification of complex-
valued transcendental functions as our “open problem,” we feel that this is both too
vague and too difficult. On the other hand, “fixing all the bugsin CAS” doesn’t have
the right tone, either. Instead, we focus on a smaller subproblem in this area.

Recent progress on ‘the square root bug’ includes the removalby all major com-
puter algebra systems of automatic simplifications that arenot always true on special-
ization over the complex numbers (except possibly on sets ofmeasure zero). Progress
has also been made on integration, particularly with the papers Jeffrey (1993), Jeffrey
and Rich (1994), Jeffrey (1994, 1997). The main contributionof these papers is that
it is better to return an integral that iscontinuous on a domain of maximum extent,
rather than trying to fix up spurious singularities and branch cuts later. See also a
discussion of Rioboo’s algorithm, such as the one in Bronstein(1997).

However, these papers address only the simplest sorts of integrals. One of the cen-
tral pillars of computer algebra is the Risch integration algorithm and its extensions
(see for example Bronstein (1997)). The algorithm, which is algebraic and not an-
alytic in its essentials, does not always produce integralscontinuous on domains of
maximum extent. Further, it often forces computation into the complex plane. For a
simple example, consider the following Maple session.
> infolevel[int] := 5;

infolevelint := 5

We force Maple to skip its inexpensive heuristics and go to the Risch algorithm,
normally a last resort.
> ah := ‘int/risch_like‘(1/(2+sin(z)),z);

int/risch: enter Risch integration

int/risch/algebraic1: RootOfs should be algebraic numbers and
functions

int/risch: the field extensions are

8Note added in proof: Unlike the English translation, Carathéodory’s original German version of
this passage does not lend itself to this interpretation, but rather to set equality (observation courtesy
A. Davenport). However, even so, set equality of lnz1z2 and lnz1 + lnz2 does not imply set equality of
lnz2 and 2lnz, because of correlations (observation courtesy J. H. Davenport).
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[z, e(RootOf( Z2+1)z)]

int/risch: Introduce the namings:

{ th1 = e(RootOf( Z2+1)z)}

unknown: integrand is

1

2− 1
2

RootOf( Z2 +1)( th1−
1
th1

)

unknown: integrand expressed as

2
RootOf( Z2 +1) th1

4RootOf( Z2 +1) th1 + th1
2−1

int/risch/ratpart: integrating

2
RootOf( Z2 +1) th1

4RootOf( Z2 +1) th1 + th1
2−1

int/risch/ratpart: Hermite reduction yields
Z

2
RootOf( Z2 +1) th1

4RootOf( Z2 +1) th1 + th1
2−1

dz

int/risch/ratpart: Rothstein’s method - factored resultant is

3z2 +1

int/risch/ratpart: result is

1
3

I
√

3ln( th1+I
√

3+2RootOf( Z2+1))− 1
3

I
√

3ln( th1−I
√

3+2RootOf( Z2+1))

int/risch: exit Risch integration

ah :=
1
3

I
√

3ln(e(I z) + I
√

3+2I)− 1
3

I
√

3ln(e(I z)− I
√

3+2I)

We see by the following plot that the Risch algorithm applied to this simple problem
does not produce a continuous antiderivative.
> plot([evalc(Re(ah)),evalc(Im(ah))],z=-5..5);
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Open Problem 9
Modify (or replace) the Risch algorithm so as to produce integrals continuous on
domains of maximum extent, or else clearly describe the largest class of functions
(elementary or other) for which continuous antidifferentiation can be done efficiently.

This problem will be known to be solved when a proof of the algorithm’s correct-
ness appears in a good journal, or more preferably when the algorithm is implemented
in a major CAS and thus made available for general use and scrutiny.

Since, even for the integration of rational functions over acomplex field, we can
have branch cuts consisting of any algebraic curve whatsoever, this seems difficult.
For rational functions over a real field, Rioboo’s algorithm can be used (Bronstein,
1997). Some related issues include the following.

A.1. Domains of Computation

We feel that the default domain of computation should match the user’s expectations
(and be modifiable at the user’s will). If the computer algebra system begins its com-
putations in the real domain, assuming all variables are real and all functions are
real-valued, then if at any time during the computation the system decides to move
into the complex domain, as it did in our Risch example, then the user should be
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warned somehow; B. F. Caviness has suggested that the background colour of the
screen could change, for example.

Automatic simplifications should only perform transformations valid for all special-
izations of the variables in the domain in question (possibly using dynamic evaluation,
or provisos). The user, of course, should be allowed to perform any manipulation she
or he desires.

A.2. Integration of Special Functions

There are several classes of complex-valued special functions which are of great value
to the scientist, not all of which are supported equally wellby the major computer al-
gebra systems. Examples include the Jacobian elliptic functions and elliptic integrals,
and the hypergeometric or even Meijer G functions or still more generally the so-
called “H-functions.” The Jacobian elliptic functions arevery rich in algebraic iden-
tities, occur very often in applications (see the beautifulbook Lawden (1989)), and
being doubly-periodic in the complex plane have multivalued inverses. Therefore, all
the difficulties talked about earlier are inherited here as well.

As an example, consider
Z

cn(u,k)du. (5)

We will use the substitutionφ = am(u), where am(u) is Jacobi’s amplitude function
and satisfies

sn(u,k) = sin(am(u,k)) = sin(φ)

cn(u,k) = cos(am(u,k)) = cos(φ)

d
du

am(u,k) = dn(u,k) .

This gives thatdu= dφ/
√

1−k2sin2φ, on using the identity

k2sn2(u,k)+dn2(u,k) = 1.

Therefore, we may express any integrand rational in sn, cn, and dn as an algebraic
integral in sin(φ) and cos(φ) by a simple change of variables. Our simple example
gives

Z

cn(u,k)du=
Z

cos(φ)dφ
√

1−k2sin2(φ)
. (6)

It is an easy exercise ((Lawden, 1989, p. 40)) to show that this is in fact equal to
R

cn(u,k)du= sin−1(ksn(u,k))/k, up to a constant. More interestingly, Maple gives
a nontrivial discontinuous integral for the following continuous integrand (with ex-
plicit use ofchangevar, because otherwise Maple does not know how to integrate
the Jacobian elliptic functions as yet):

Z

du
2+cn(u,k)

=
Z

dφ

(2+cosφ)
√

1−k2sin2φ
. (7)
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We leave the verification of this as an exercise for the reader.
Integration of all these functions would be very useful; integration valid on domains

of maximum extent would be more useful. Although the simplification of expressions
containing these functions and a few transcendental constants is impossible in general
(even recognizing zero is undecidable),9 one can still ask packages to do as much as
is possible.

A.3. Branches and the Unwinding Number

Many people have tried to automate symbolic computations with multivalued func-
tions; see for example Dingle and Fateman (1994) or Corless and Jeffrey (1996). It
now appears, at least for the logarithm and hence for simple elementary functions, that
complex analysiscan be turned into computer algebra. Once you replace the (false)
identity lnexpz= z with the true identity

lnez = z−2πiK (z) , (8)

whereK is the so-called “unwinding number,” then computer algebrasystems can
manipulate some complex formulæ correctly. The geometric information about the
branch cuts is encoded in the arguments to the unwinding number (which makes this
approach similar, in fact, to that of Dingle and Fateman (1994)). There are simple the-
orems one can use to simplify some unwinding numbers, and other algebraic identities
that can be implemented, such as

K (z) =

⌈
Im(z)−π

2π

⌉

lnz1z2 = lnz1 + lnz2−2πiK (lnz1 + lnz2)

wlnz = lnzw +2πiK (wlnz)

K (z+2πin) = K (z)+n

K (lnz) = 0

zw
1 zw

2 = (z1z2)
wexp(2πiwK (lnz1 + lnz2))

zvw = (zv)wexp(2πiwK (vlnz)) .

A prototype implementation in Maple is under construction,by Gurjeet Litt (a Mas-
ters’ student at the University of Western Ontario at this time of writing).

The talk from which the material of this appendix was extracted can be found at
http://www.apmaths.uwo.ca/~rmc/papers/symbolic/index.html under the head-
ing “East Coast Computer Algebra Day 1998.”

9As a point of clarification, it is useful to emphasize the distinction between the undecidability of
algebraic simplification in general and the decidability ofintegration once the model for the field of
extensions is known, as shown by Risch. See (Bronstein, 1997) for a detailed discussion.
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O. Bachmann, H. Scḧonemann, and S. Gray. A proposal for syntactic data integration
for math protocols. In Hitz and Kaltofen (1997), pages 165–175.

D. Bailey, P. Borwein, and S. Plouffe. On the rapid computationof various polyloga-
rithmic constants.Math. Comput., 66(218):903–913, 1997.
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W. Küchlin, editor. ISSAC 97 Proc. 1997 Internat. Symp. Symbolic Algebraic Com-
put., New York, N. Y., 1997. ACM Press.

Lakshman Y. N., editor.ISSAC 96 Proc. 1996 Internat. Symp. Symbolic Algebraic
Comput., New York, N. Y., 1996. ACM Press.

Lakshman Y. N., B. Char, and J. Johnson. Software components using symbolic
computation for problem solving environments. In Gloor (1998), pages 46–53.

R. Lambert.Computational Aspects of Discrete Logarithms. PhD thesis, University
of Waterloo, 1996.

Derek F. Lawden.Elliptic Functions and Applications, volume 80 ofAMS. Springer-
Verlag, 1989.
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