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ABSTRACT
An algorithm for interpolating a polynomial f from evaluation

points whose running time depends on the sparsity t of the polyno-
mial when it is represented as a sum of t Chebyshev Polynomials

of the First Kind with non-zero scalar coefficients is given by Lak-

shman Y. N. and Saunders [SIAM J. Comput., vol. 24, nr. 2 (1995)];

Kaltofen and Lee [JSC, vol. 36, nr. 3–4 (2003)] analyze a randomized

early termination version which computes the sparsity t . Those
algorithms mirror Prony’s algorithm for the standard power basis

to the Chebyshev Basis of the First Kind. An alternate algorithm

by Arnold’s and Kaltofen’s [Proc. ISSAC 2015, Sec. 4] uses Prony’s

original algorithm for standard power terms.

Here we give sparse interpolation algorithms for generalized

Chebyshev polynomials, which include the Chebyshev Bases of

the Second, Third and Fourth Kind. Our algorithms also reduce

to Prony’s algorithm. If given on input a bound B ≥ t for the
sparsity, our new algorithms deterministically recover the sparse

representation in the First, Second, Third and Fourth Kind Cheby-

shev representation from exactly t + B evaluations.

Finally, we generalize our algorithms to bases whose Chebyshev

recurrences have parametric scalars. We also show how to compute

those parameter values which optimize the sparsity of the represen-

tation in the corresponding basis, similar to computing a sparsest

shift.
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1. INTRODUCTION
We consider the problem of reconstructing the term degrees and

non-zero coefficients of a univariate polynomial f whose evaluation
we can obtain at arbitrary values for the variable for a black box

for the polynomial. Here f is represented in an orthogonal term

basis P0 (x ), P1 (x ), P2 (x ), . . .

f (x ) =
t∑
j=1

c jPδj (x ),c j ∈ K,c j , 0,0 ≤ δ1 < δ2 < · · · < δt (1)
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where Pδ are Chebyshev Polynomials of the first, second, or third

kind and where K is an arbitrary field of characteristic , 2. Our algo-

rithms compute the term degrees δj and term coefficients c j , hence
perform a sparse polynomial interpolation with one of the Cheby-

shev bases. The main idea is to reduce the sparse interpolation

problem in Chebyshev basis to a sparse interpolation problem in

the power basis and apply Prony’s algorithm [5, 23] (the 1959 Bose-

Chaudhuri-Hocquenghem error correction decoding algorithm) to

the latter problem.

As with Prony’s algorithm, the sparsity of t need not be given

on input. We consider two early termination strategies that deter-

mine t : if a bound B ≥ t is given on input, we compute t and f
deterministically from t + B evaluations. A difficulty is that the

constructed Prony problem has sparsity 2t and we have to exploit

its special structure to reduce the number of evaluations. Our de-

terministic algorithm can be implemented in (t + B)2+o (1) field
operations, degree-t polynomial root finding, and computing t in-
teger logarithms in K. The quadratic exponent is a consequence
of the lack of fast main-diagonal Toeplitz solvers with arbitrary

look-ahead (cf. [4, 6, 24]). For finite coefficient fields K with a fast

discrete logarithm algorithm [21] our algorithm is of bit complexity

((t +B) log(deg f ))O (1)
. We can also compute t and f by Kaltofen’s

and Lee’s randomized early termination strategy from 2t + 2 eval-

uations (see [1, Sec. 4.2]). In order to use soft-linear randomized

Toeplitz/Hankel solvers with t1+o (1)
arithmetic operations [15] one

needs to oversample to 2B or 2
⌈log

2
(2t+2)⌉

evaluations, respectively.

We now recall the properties of the Chebyshev Polynomials of

the First, Second, Third and Fourth Kind. Traditionally, those are

n-degree polynomials in x over the field of real numbers denoted

by Tn (x ) (First Kind),Un (x ) (Second Kind), Vn (x ) (Third Kind) and

Wn (x ) (Fourth Kind). If Pn (x ) denotes any of those four polynomi-

als, we have

P0 (x ) = 1, Pn (x ) = 2x Pn−1 (x ) − Pn−2 (x ) for n ≥ 2, (2)

Pn = Tn ,Un ,Vn ,Wn , and the distinct initializations at n = 1,

T1 (x ) = x , U1 (x ) = 2x , V1 (x ) = 2x − 1, W1 (x ) = 2x + 1. (3)

An alternative to (2) is[
Pn (x )
Pn+1 (x )

]
=

[
0 1

−1 2x

]n [
1

P1 (x )

]
for n ∈ Z. (4)

Note that (4) extends the subscript range n to negative integers

and by computing the power of 2 × 2 coefficient matrix gives an

algorithm for evaluating all Pn in O (log(n)) scalar operations. All
four kinds yield a vector space basis for the ring of polynomials over

any field K of characteristic , 2. From now on, we shall speak of

Chebyshev-1, Chebyshev-2, Chebyshev-3 and Chebyshev-4 poly-

nomials and bases in reference to first, second, third and fourth

kind.

The third and fourth kind polynomials are not as common, be-

cause we haveWn (x ) = (−1)nVn (−x ) and Vn (x ) = T2n+1 (z)/z and
Wn (x ) = U2n (z) for z =

√
(x + 1)/2, that is, the two identities are

stated in the algebraic function field K(x )[z]/(z2 − (x + 1)/2).

223

http://www.math.ncsu.edu/~kaltofen/in_memoriam_bob.html
http://www.math.ncsu.edu/~kaltofen/in_memoriam_bob.html
https://doi.org/10.1145/3208976.3208999
http://www.math.ncsu.edu/~kaltofen/bibliography/18/IKY18s.pdf
https://doi.org/10.1145/3208976.3208999


ISSAC’18, July 16–19, 2018, New York, NY, USA E. Imamoglu, E. Kaltofen, Z. Yang

There are some well known properties that are the basis of sparse

interpolation in Chebyshev-1 Basis.

Fact 1.1. Letm,n ∈ Z≥0. Then the following hold:

i. Tn (Tm (x )) = Tmn (x ) = Tm (Tn (x )).

ii. Tn (
x+ 1

x
2

) =
xn+ 1

xn
2

for all n ≥ 0.

Based on Fact 1.1.i, which is that Chebyshev-1 Polynomials com-

mute with respect to composition, Lakshman and Saunders [20]

have mirrored Prony’s algorithm in order to reconstruct the list of

non-zero coefficients c j and the list of corresponding degrees δj
from evaluations of

f (x )=c1Tδ1
(x )+ · · ·+ctTδt (x ),c j,0,0≤δ1<δ2<···<δt (5)

at x = T0 (β ),T1 (β ), . . . for a scalar β (see also [1, 9, 19, Sec. 3]). Their
reconstruction algorithm is thus a sparse interpolation algorithm

in Chebyshev-1 Basis. For sparsity in Chebyshev-2 PolynomialsUn
one obstruction is the lack of the commuting property of term sub-

stitution. However, performing the substitution given in Fact 1.1.ii,

Arnold and Kaltofen [1, Sec. 4] directly reduced the sparse polyno-

mial (5) to a sparse Laurent polynomial in power (standard) basis.

More precisely, for f in (5) we have

д(y)
def

= f ((y + 1

y )/2) =
∑t
j=1

c j
2
(yδj + y−δj ) (6)

and Prony’s algorithm can reconstruct the sparse Laurent polyno-

mial д. Here we use the corresponding properties to Fact 1.1.ii for

Un ,Vn ,Wn , namely,

(y − 1

y ) Un
(
(y + 1

y )/2
)
= yn+1 − 1

yn+1
, (7)

(y + 1

y ) Vn
(
(y2 + 1

y2
)/2
)
= y2n+1 + 1

y2n+1
, (8)

(y − 1

y )Wn
(
(y2 + 1

y2
)/2
)
= y2n+1 − 1

y2n+1
. (9)

Note that the multiplicative preconditioner y ± 1/y is introduced

before interpolating the substituted f ((y+ 1

y )/2) or f ((y
2 + 1

y2
)/2),

thus overcoming the long-known obstruction for sparse interpola-

tion with a Chebyshev-2 Basis. Potts and Tasche [22, Equation 4.2]

have introduced a corresponding trigonometric multiplier: sin(α ) ×
Un (cos(α )) = sin((n+1)α ), which withy = eiα is (7). Our substitu-

tion does not require the evaluation of a transcendental function and

can be realized as an exact algorithm even over a finite field, while

the algorithm in [22] uses floating point arithmetic. We think of the

polynomial f (x ) as a black box polynomial that can be arbitrarily

probed. For Kaltofen and Lee [19] randomized sparse interpolation

from 2t+2 values with early termination, an upper bound of deg( f )
is required on input for achieving success probability ≥ 1/2, for

otherwise the polynomials

∏
j (x − βj ) and 0 are indistinguishable,

where βj ranges over all possible random choices of evaluation

points. For our bases, see Theorem 5.2.

The Lakshman-Saunders [20]method and theArnold-Kaltofen [1,

Sec. 4] substitution (6), which is the approach also here, are related

by the substitution β = (ω + 1/ω)/2 for the base points β and

ω of the evaluations. That substitution has 2 effects: 1. the aris-

ing Toeplitz-plus-Hankel system in Lakshman-Saunders becomes a

Toeplitz system; 2. the degrees of the terms are computed as loga-

rithms with integral output values. The Toeplitz matrix allows for

the use of the Berlekamp-Massey algorithm. The substitution (6)

and (7–9) double the sparsity in the arising Laurent polynomial (an

exception is for Chebyshev-1 Basis with δ1 = 0 when the sparsity

is 2t − 1). Luckily, every evaluation д(ζ ) at ζ ∈ K, ζ , ±1, yields a

second evaluation д(1/ζ ) = д(ζ ) at 1/ζ for (6,8) and a second evalu-

ation д(1/ζ ) = −д(ζ ) at 1/ζ for (7,9). An exception is ζ = ±1, which

is a Prony point, and the algorithm in [1, Sec. 4.1] for Chebyshev-1

Basis used one additional evaluation. Here we show that the extra

evaluation can be avoided by exploiting additional structure in the

arising Prony problem for д(y), thus achieving the optimal number

of evaluations for the new substitution method in all cases; see

Section 4. The conversion to ω also allows for a discrete logarithm-

based computation of all δj , even from values of Tδj (β ) as in the

original Lakshman-Saunders algorithm; see [11].

Finally, we consider bases given by the recurrence

V
[u,v,w]

0
(x )=1,V

[u,v,w]

1
(x )=ux+w ,

V
[u,v,w]

n (x )=vxV
[u,v,w]

n−1
(x )−V

[u,v,w]

n−2
(x ) for n ≥ 2, (10)

where u,v,w∈K, u,0, v,0 and K is a field. Our algorithm here

for the Chebyshev-2 basis generalizes and computes the sparse

representation with terms from (10); see Section 5. One may also

seek for a given polynomial f ∈ K[x] those parameters u,v,w
which yield the maximum sparsity for the corresponding basis. We

show how to compute in polynomial time in deg( f ) the optimal

pairs u,v,w ; see Section 6. The problem is analogous to computing

the sparsest shift [8] in the standard powers of variables basis.

2. CHEBYSHEV-1 BASIS WITH SPARSITY
KNOWN ON INPUT

Let K be a field of char(K) , 2. A black box polynomial f (x ) ∈ K[x]

can be written as a t-sparse linear combination of Chebyshev-1

Polynomials c1Tδ1
(x )+···+ctTδt (x ), see (5). We seek to determine

the coefficients c j ∈ K \ {0} and the term degrees δj ∈ Z≥0 from

evaluations ai = f ( (ωi + ω−i )/2 ), (i = 0,1, . . . ,2t − 1) of the black

box for f (x ), where ω ∈ K, ω , 0. The term values ωδj of the base
point ω are required to be sufficiently distinct, and the δj to be

recoverable from them. We first assume that we know the sparsity

t on input. We also assume that we have a factorization algorithm

over K and can compute integral δ from ωδ .
We define

д(y)
def

= f (
y+y−1

2
) =
∑t
j=1

c j
2
(yδj + y−δj ) ∈ K[y,y−1

]. (11)

The function д(y) is a Laurent polynomial. Let ω ∈ K \ {0} such
that for i ∈ {0,1, . . . ,2t − 1},

ai
def

= д(ωi ) = f (ω
i+ω−i

2
) = f (Ti (β )),β

def

= ω+ω−1

2
, (12)

and for 1≤i1<i2≤t , Tδi
1

(β ),Tδi
2

(β ) if δi1,δi2 . Note that a−i=ai .

Lemma 2.1. If Tδi
1

(β ) , Tδi
2

(β ) for 1 ≤ i1 < i2 ≤ t , then ωδi1 ,
ωδi2 or ωδi1 , ω−δi2 .

Proof. If Tδi
1

(β ) , Tδi
2

(β ), then ωδi1 + ω−δi1 , ωδi2 + ω−δi2 .

Hence (ωδi1ωδi2 − 1) (ωδi1 − ωδi2 ) , 0 and so ωδi1 , ω−δi2 or

ωδi1 , ωδi2 . □

Lemma 2.2. Let 1 ≤ i1 < i2 ≤ t . If the set {ωδi1 ,ωδi2 ,ω−δi1 ,ω−δi2 }
has at least three elements, then Tδi

1

(β ) , Tδi
2

(β ).

Proof. If the set {ωδi1 ,ωδi2 ,ω−δi1 ,ω−δi2 } has at least three ele-
ments, then “ωδi1 , ωδi2 and ωδi1 , ω−δi2 ” and “ωδi1 , ω−δi1 or

ωδi2 , ω−δi2 ”. Then 2Tδi
1

(β ) = (ωδi1 +ω−δi1 ) , (ωδi2 +ω−δi2 ) =
2Tδi

2

(β ). □

Corollary 2.3. If the set {ω−δt ,ω−δt−1 , ...,ω−δ1 ,ωδ1 , ...,ωδt−1 ,ωδt }
has at least 2t−1 elements, then Tδi

1

(β ),Tδi
2

(β ) for 1≤i1<i2≤t .
We can interpolate the Laurent polynomial (11) with Prony’s

algorithm [23] from its 2t evaluations a0, . . . ,a2t−1. We query the

black box polynomial f (x ) to get these evaluations. Since a−i = ai ,
we actually have 4t−1 evaluations ofд(y):a−2t+1, . . . ,a0, . . . ,a2t−1.

Let α be a symbol for a2t . If δ1 = 0, then a value for α is not

needed for computing the term locator polynomial Λ(z) for д(y).
The corresponding 2t × 2t matrix H = [ai+j−(2t−1)]

2t−1

i,j=0
will then
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have been identified by the Berlekamp/Massey algorithm as singu-

lar. If 2t = deg(Λ(z)), then the matrix is identified as non-singular,

and Λ(z) is computed as a linear form Λα (z) = Λ[0] (z) + αΛ[1] (z)
from the system



a−2t+1 a−2t+2...a−t+1... a−1 a0

a−2t+2 a−2t+3...a−t+2... a0 a1

...
...

...
...

...
a−1 a0 ... at−2 ...a2t−3 a2t−2

a0 a1 ... at−1 ...a2t−2 a2t−1





1

λ1

...
λ2t−2

λ2t−1



= −



a1

a2

...
a2t−1

α



. (13)

In this case, the term locator polynomial of (11) is

Λ(z) =
t∏
j=1

((z −ωδj ) (z −ω−δj )) = z2t + λ2t−1z
2t−1 + · · ·+ λ1z + 1

and it is a reciprocal polynomial, i.e., λ2t−j = λj , (λ2t = λ0 = 1). We

show that (in Theorem 2.5 below), if the set {ω−δt ,ω−δt−1 , . . . ,ω−δ1 ,
ωδ1 , . . . ,ωδt−1 ,ωδt } has 2t elements, then α is uniquely determined

by the symmetry conditions of the coefficients of Λ(z). Hence,
to determine the δj , we do not need to evaluate the black box

polynomial f (x ) at T2t (β ) to get a2t .

From the symmetry conditions of the coefficients of Λ(z) the
system (13) collapses to the following system:

H̄ ·



λt /2
λt−1

...
λ1



= −



a1 + a2t−1

a2 + a2t−2

...
2at



(14)

where H̄ is a “fold” of the coefficient matrix of (13):

H̄ =



2at−1 · · · a1 + a2t−3 a0 + a2t−2

2at−2 · · · a0 + a2t−4 a1 + a2t−3

...
...

...
2a0 · · · 2at−2 2at−1



. (15)

We have that H̄ is non-singular:

Lemma 2.4. The matrix H̄ in (15) is non-singular.

Proof. H̄ = Jt ·AwhereA is the non-singular matrix in Lemma

3.2 in [1] (for r = 0 and s = 1) and Jt ∈ Kt×t is the exchange matrix

(row-reversed identity matrix). Note that by our assumptions on ω
the Tδj (β ) are distinct. □

Therefore, we can determine the coefficients λ1=λ2t−1, ...,λt−1=

λt+1, and λt of the term locator polynomial Λ(z) by solving the

folded system (14).

Theorem 2.5. If the set {ω−δt , ...,ω−δ1 ,ωδ1 , ...,ωδt } has 2t elements,
then α is uniquely determined by the symmetry conditions of the
coefficients of the term locator polynomial Λ(z) of (11).

Proof. If there were two values for α , then the folded system

(14) of the system (13) would have two different solutions. Since H̄
is non-singular, this is impossible. Hence α is unique. □

Therefore, to compute the term locator polynomial Λ(z) of (11)
we need 2t evaluations: a0, . . . ,a2t−1. A root ρ of the term locator

polynomial is of the form ρ = ω±δj . We can compute the δj in
(5) from the (possibly discrete) logarithms of the roots of the term

locator polynomial as it is commonly done in [2, 7, 10, 17, 19]. After

determining the δj , (j = 1, . . . ,t ), we compute the coefficients c j in
(5) by solving the non-singular transposed Vandermonde system



1 ... 1 1 ... 1

ρ1 ... ρt ρ−1

t ... ρ−1

1

...
...

...
...

ρ2t−1

1
... ρ2t−1

t ρ−2t+1

t ... ρ−2t+1

1



·



c1...
ct
ct...
c1



=



2a0

2a1

...

2a2t−1



. (16)

Here the ρ j and ρ
−1

j , (j = 1, . . . ,t ), are the roots of the term locator

polynomial Λ(z). An t1+o (1)
-time algorithm is in [18, Sec. 5].

Remark 2.1. If the set {ω−δt ,ω−δt−1 , ...,ω−δ1 ,ωδ1 , ...,ωδt−1 ,ωδt }
has 2t − 1 elements, then we can determine the coefficients of the

term locator polynomial by solving the system



a−2t+2 · · · a−t+1 · · · a0

a−2t+3 · · · a−t+2 · · · a1

...
...

...
a0 · · · at · · · a2t−2



·



1

λ1

...

λ2t−2



= −



a1

a2

...
a2t−1



.

In this case, for only one δj , we have ω
δj = ω−δj . After determin-

ing the roots of the term locator polynomial, we can identify that

specific δj . □
To summarize, we collect the steps of our algorithm as follows:

2.1. Algorithm Sparse Chebyshev-1
Interpolation

Input: ▶
A black box polynomial f (x ) ∈ K[x] where K is a field

with char(K) , 2.

▶
The sparsity t of f (x ).
▶ω ∈ K \ {0} such that the set of term values

{ω−δt ,ω−δt−1 , . . . ,ω−δ1 ,ωδ1 , . . . ,ωδt−1 ,ωδt }

has at least 2t elements or 2t − 1 elements with δ1 = 0.

▶
A factorization algorithm over K.
▶
A integer-valued-logarithm-base-ω algorithm in K.

Output: ▶The coefficients c j and the term degrees δj such that

f (x ) =
∑t
j=1

c jTδj (x ) ∈ K[x].

1. For 0 ≤ i ≤ 2t − 1, get the evaluations ai = д(ωi ), as in (12), of
the Laurent polynomial (11).

2. Solve (13) by the Berlekamp/Massey Algorithm to get the coeffi-
cients of the term locator polynomial Λ(z). Use the symmetry of
the term locator polynomial to find the unique α .

3. Find all roots of the term locator polynomial. The roots are of
the form ω±δj . Compute the δj from integer logarithms (discrete
logarithms if K is a finite field) of the roots of the term locator
polynomial.

4. Solve the system (16) to get the coefficients c j .
5. Return the δj and the c j .

3. CHEBYSHEV-2 BASIS WITH SPARSITY
KNOWN ON INPUT

Let K be a field of char(K) , 2. We now consider the representa-

tion of a black box polynomial f (x ) ∈ K[x] as a t-sparse linear

combination of Chebyshev-2 Polynomials, i.e.,

f (x ) = c1Uδ1
(x ) + · · · + ctUδt (x ) ∈ K[x] (17)

where c j ∈ K \ {0} and δj ∈ Z≥0 such that δ1 < · · · < δt . Again, we
seek to compute the coefficients c j ∈ K \ {0} and the term degrees

δj ∈ Z≥0 from evaluations f ( (ωi + ω−i )/2 ), (i = 0,1, . . . ,2t − 1)

of the black box for f (x ), where ω ∈ K, ω , 0. The term values ωδj

of the base point ω are required to be sufficiently distinct, and the

δj to be recoverable from them. Again, we assume that we know

the sparsity t .
Our algorithm proceeds as the Chebyshev-1 Algorithm in Sec-

tion 2 with the following changes: we define

д(y)
def

= (y − y−1) f (
y+y−1

2
)

=
∑t
j=1

c j
2
(yδj+1 − y−(δj+1) ) ∈ K[y,y−1

] (18)

(see (7)). The function д(y) is a Laurent polynomial. We Prony

interpolate for a base point ω ∈ K \ {0} the values

a0 = 0,ai = −a−i
def

= д(ωi ) = (ω − ω−1) f (ω
i+ω−i

2
), (19)
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i ∈ {1, . . . ,2t }, and assume that the set of shifted term values

{ω−(δt+1) ,ω−(δt−1+1) , . . . ,ω−(δ1+1) ,ωδ1+1, . . . ,ωδt−1+1,ωδt+1}

has 2t or 2t − 1 elements. The difficulties which arose in the Cheby-

shev-1 case due to i = 0 yielding a single evaluation do not occur:

a0 = 0 needs no evaluation, and we compute the term locator

polynomial from 2t black box probes. Algorithm 5.1 below is a

generalized variant, which uses randomization to compute t .

4. DETERMINISTIC EARLY TERMINATION
WITH A SPARSITY BOUND

We now relax the assumption that on input one has the exact

sparsity t , but assume that on input one has an upper bound B ≥ t
for the sparsity. Our objective is to interpolate with exactly t + B
evaluations. Here we assume that the black box for f can be queried

as our algorithm proceeds.

Let ai = д(ω
i ), as in (12), where д(y) is given in (11), and

H =



a−2t−2B+1 . . . a−2 a−1 a0

a−2t−2B+2 . . . a−1 a0 a1

a−2t−2B+3 . . . a0 a1 a2

...
...

...
...

a0 . . . a2t+2B−3 a2t+2B−2 a2t+2B−1



(20)

where B ≥ t . We will consider non-singular square submatrices of

H in the right upper corner.

Remark 4.1. The 0× 0 matrix is called the empty matrix. The empty
matrix is considered to be non-singular. In Algorithm 4.1 Step 2b

below, if r = 0, then HR in Step 3 is the empty matrix. In this case
Λ(z) = z0 = 1.

4.1. Algorithm Chebyshev-1 Term Locator
Polynomial

Input: ▶
A black box polynomial f (x ) ∈ K[x] where K is a field

with char(K) , 2.

▶
An upper bound B ≥ t for the sparsity t of f (x ).
▶ω ∈ K \ {0} such that the set of term values

{ω−δt ,ω−δt−1 , . . . ,ω−δ1 ,ωδ1 , . . . ,ωδt−1 ,ωδt } (21)

has 2t elements or 2t − 1 elements with δ1 = 0.

Output: ▶ Sparsity t and the term locator polynomial Λ(z).

1. Get the evaluations a0, . . . ,aB−1. If a0 = · · · = aB−1 = 0, then
return t = 0 and Λ(z) = 1. Otherwise, proceed to the next step.
Here ai = д(w

i ), as in (12), where д(y) is given in (11). Note that

a−i = ai . In Lemma 4.1 below, we prove that a0 = · · · = aB−1 = 0

implies f (x ) is identically zero, so t = 0 and Λ(z) = z0 = 1.

2. Locate a non-singular leading principal submatrixH2r−1 orH2r
of (20) as follows:

2a. rold ← 0.
2b. For r from rold + 1 to B do the following:

2(b)i. ConstructH2r−1 =



a−2r+2 . . . a0

...
...

a0 . . . a2r−2


.

IfH2r−1 is non-singular, then rold ← r and break the loop. Other-
wise, proceed to the next step.

2(b)ii. ConstructH2r =



a−2r+1 . . . a0

...
...

a0 . . . a2r−1


.

IfH2r is non-singular, then rold ← r and break the loop. Otherwise,
proceed to the next step.
If there is no such non-singular leading principal submatrix,

H2r−1 orH2r , then the given bound B is not correct. Note that, if

the term values (21) collapse, this algorithm can return a wrong

sparsity and a wrong term locator polynomial.

3. LetHR denote the non-singular matrix constructed at the previous

step.
3a. If the rank ofHR is odd (the case R = 2r−1), then do the following:
3(a)i. Solve

HR ·



λ0

...
λ2r−2


= −



a1

...
a2r−1


.

to compute the linear generator z2r−1 + λ2r−2z
2r−2 + · · · + λ0.

3(a)ii. For i from 1 to B − r do the following:
–If
∑

2r−2

k=0
λkak−1+i , −a2r−2+i then go to Step 2b to locate the next

non-singular leading principal submatrix. Otherwise, proceed to
the next step.

3(a)iii. For i from 1 to B − r + 1 do the following:
–If
∑

2r−2

k=0
λkak−2r+3−i , −a2−i then go to Step 2b to locate the next

non-singular leading principal submatrixHR . Otherwise, proceed
to the next step.
At this point, we have found no discrepancies. We prove in The-

orem 4.2 below that, in this situation, t = r .
3(a)iv. Return t = r and Λ(z) = z2r−1 + λ2r−2z

2r−2 + · · · + λ0.
3b. If the rank ofHR is even (the case R=2r ), then do the following:
3(b)i. Compute the linear generator z2r + λ2r−1z

2r−1 + · · · + λ0 of
a−2r+1, . . . , a0, . . . ,a2r−1 as explained in Section 2.

3(b)ii. If λ2r−1 = λ1, . . . ,λr+1 = λr−1, then proceed to the next step.
Otherwise, go to Step 2b to locate the next non-singular leading
principal submatrixHR .

3(b)iii. For i from 1 to B − r do the following:
–(Figure 1) If

∑
2r−1

k=0
λkak−1+i , −a2r−1+i then go to Step 2b to

locate the next non-singular leading principal submatrixHR . Oth-
erwise, proceed to the next step.
At this point, we have found no discrepancies. We prove in The-

orem 4.2 below that, in this situation, t = r .
3(b)iv. Return t = r and Λ(z) = z2r + λ2r−1z

2r−1 + · · · + λ0.

Figure 1: Intermediate step in Algorithm 4.1

ar+B−1

a−2r . . . . . .

a−2r+1 a0 ...
...

...

a−r−1 a−r ar−2

2r + 1a−r+1a−r
...

...

a2r−2a0a−1

a0 a1 . . . a2r−1...
...

...B − r

r

r − 1

a−2r+2 . . ....

. . .

. . . ar−1

...
...

. . .

...

a2r

ar

a1

a0

. . .a−r+B−1 . . .

Lemma 4.1. In Algorithm 4.1 Step 1, if a0 = · · · = aB−1 = 0, then
f (x ) =

∑t
j=1

c jTδj (x ) ∈ K[x] is identically zero.

Proof. Let a0 = · · · = aB−1 = 0. Assume that f (x ) is a t-sparse
non-zero polynomial in the Chebyshev Basis of the first kind. Since

ai = a−i (from (11)), we have a−(B−1) = · · · = a0 = · · · = aB−1 = 0.

Let Λ(z) be the term locator polynomial of the Laurent polynomial

д(y) (11). The roots ρ1, . . . ,ρ2t of Λ(z) are of the form ω±δj , (1 ≤
j ≤ t ). Let ρ1 = ω

−δt , . . . ,ρt = ω
−δ1 ,ρt+1 = ω

δ1 , . . . ,ρ2t = ω
δt
.

From (11) we know д(y) = f (
y+y−1

2
) =
∑t
j=1

c j
2
(yδj + y−δj ). We

can find the coefficients c1, . . . ,ct of the Laurent Polynomial д(y)
by solving the following system (cf. (16)):

[ρij ]−(B−1)≤i≤B−1,1≤j≤2t ·[ct ...c1c1...ct ]
Tr=[2ai ]−(B−1)≤i≤B−1

=0.

From the symmetry conditions of the coefficients of д(y) the above
system folds to R · [c1 . . . ct ]

Tr = [0 . . . 0]
Tr

where

R = [ρ−ij + ρ
i
j ]i=0,1, ...B−1, j=t,t−1, ...,1.
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When B = t , the determinant of R factors as

det(R ) = 2/(ρt−1

1
· · · ρt−1

t ) ·
∏

1≤j<ℓ≤t

(
(ρ j − ρℓ ) · (ρ jρℓ − 1)

)
,

which is , 0 because ρ j , ρℓ and ρ j , ρ−1

ℓ
for 1 ≤ j < ℓ ≤ t .

Therefore, c1 = · · · = ct = 0, contradicting to our assumption.

Hence, f (x ) is identically zero. □

Theorem 4.2. For the largest non-singular matrixHR (where R = 2r
or R = 2r − 1) in Algorithm 4.1, t = r .

Proof. •Case R = 2r : LetHR be the largest non-singular matrix

in Algorithm 4.1. So,HR satisfies the condition in Step 3(b)iii.

– Case δ1 > 0: If r < t , thenHR would not be the last non-singular

matrix in Algorithm 4.1 because H2t is non-singular. If r > t ,
then the folded matrix

¯HR (which is very similar to (15)) ofHR ,

which is needed to compute the linear generator in Step 3(b)i in

Section 2, would not be non-singular. So r = t .
– Case δ1 = 0: In this caseHR would be identified as singular. In

this situationH2r−1 might be non-singular. This is the next item

in the proof.

• Case R = 2r − 1: Let HR be the largest non-singular matrix in

Algorithm 4.1. So, HR satisfies the conditions in Steps 3(a)ii and

Step 3(a)iii. If r < t , then HR would not be the last non-singular

matrix in Algorithm 4.1 becauseH2t−1 is non-singular. If r > t , then
the conditions Step 3(a)ii and Step 3(a)iii would push the sparsity t
beyond the known bound B. So r = t . □

Theorem 4.3. Algorithm 4.1 requires t + B evaluations.

Proof. In Step 1, Algorithm 4.1 looks at B evaluations, namely

a0, . . . ,aB−1 (note that a−i = ai ). Let HR (where R = 2r or R =
2r − 1) be the non-singular matrix constructed in Algorithm 4.1 in

Step 2. If R = 2r , the algorithm uses 2r evaluations in Step 3(b)i

(in Step 3(a)i when R = 2r − 1), namely a0, . . . ,a2r−1. In order to

check the linear dependency, it uses B − r evaluations more in Step

3(b)iii (in Step 3(a)iii when R = 2r −1), namely a2r , . . . ,a2r−1+(B−r )
(a−2r , . . . ,a2−(B−r+1) when R = 2r − 1). So, the total number of

evaluations is 2r + (B − r ) = r + B. Since Algorithm 4.1 terminates

when r = t , it requires t + B evaluations. □

Adifficulty in implementing the algorithmwith structured Toeplitz

solvers poses Step 2b. By discovering a discrepancy in the column

dependency in Steps 3(a)ii, 3(a)iii or 3(b)iii the rank of the 2B×2B
Toeplitz matrix is certified to be larger than the degree R of the

current candidate for the term locator polynomial. However, un-

like in the Berlekamp-Massey algorithm for Hankel matrices, the

dimensions of the new non-singular submatrix can lie beyond the

point of the discrepancy. One locates the new non-singular ma-

trix by incremental row elimination of the Schur complements

[6, 24], which introduces a running time that is cubic in the dis-

tance to the next non-singular Toeplitz submatrix. Alternatively,

one could in soft-linear Monte-Carlo time compute the rank of each

intermediate Schur complement [15], which yields the (t+B)2+o (1)

running time bound cited in the introduction. Note that our ma-

trices can be used to construct symmetric Toeplitz matrices with

rational entries that have arbitrary lookahead: for example, the

Toeplitz matrix whose first row and first column contain the entries

д2 (2),д2 (2
2), ...,д2 (2

11) and whose leading principal submatrices

have ranks 1,2,2,2,2,2,4,6,8,10,11,11, ... Here д2 (x ) is the sym-

metric Laurent polynomial д2 (x )=
32768

5281339833
( 1

x 6
+x6)− 1024

2540327
( 1

x 5
+

x5)+ 64

7227
( 1

x 4
+x4)− 744

8687
( 1

x 3
+x3)+ 62

153
( 1

x 2
+x2)+ 254

189
. To create that

symmetric Toeplitz matrix we started with д1 (x )=x
−1+x and then

constructedд2 (x ) (first with unknown coefficients). Note thatд1 (2
i )=

д2 (2
i ) for 0≤i≤5. A worst-case quadratic-time Toeplitz solver that

in analogy to the Berlekamp-Massey Hankel solver incrementally

steps from non-singular to non-singular leading principal submatrix

is not known to us.

Here we would like to mention about our work in progress [11].

In [11], we give an algorithm for computing the Chebyshev term

degrees in the original algorithm of Lakshman and Saunders [20] for

a very large finite coefficient field Fp ; with a method similar to the

Silver-Pohlig-HellmanAlgorithm [21], one can directly compute the

Chebyshev term degree δ from given ζ = Tδ (β ), β = (ω + 1/ω)/2 ∈
Fp , without precomputing the order of ω ∈ Fp ,ω , 0. In [11],

we also show that the same strategy applies to the Silver-Pohlig-

Hellman [21] discrete logarithm algorithm to compute δ from given

ζ = ωδ ; one does not need to precompute the order of ω.
The Chebyshev-2 Basis, Chebyshev-3 Basis, and Chebyshev-4

Basis cases can be done in the same way by making use of the

properties (7), (8), and (9). Note that in Chebyshev-2 Basis and

Chebyshev-4 Basis cases we have a free evaluation: a0 = 0.

5. SPARSE INTERPOLATIONWITH
PARAMETERIZED RECURSIVE BASES

We now focus on sparse interpolation in more general polynomial

bases, which are defined by the recurrence relation (10), namely

V
[u,v,w]

0
(x ) = 1, V

[u,v,w]

1
(x ) = u x +w ,

V
[u,v,w]

n (x ) = v x V
[u,v,w]

n−1
(x ) −V

[u,v,w]

n−2
(x ) for n ≥ 2, (22)

where u,v ∈ K \ {0},w ∈ K and K is a field. Obviously, Chebyshev-1

through Chebyshev-4 bases are special cases of the above poly-

nomial recurrence bases (22), e.g., Tn (x ) = V
[1,2]

n (x )
def

= V
[1,2,0]

n (x ),

Un (x ) = V
[2,2]

n
def

= V
[2,2,0]

n (x ). Note our notation: from now, we omit

to write aw = 0 in the bracketed superscript. Furthermore, Fact 1.1

can be generalized to the case of the above recurrence bases (22).

Fact 5.1. Let u,v ∈ K \ {0},w ∈ K, K is a field, and let n ∈ Z. Then
the following hold:

i.

(
x − 1

x

)
V

[u,v,w]

0

( x+ 1

x
v

)
= x − 1

x ,(
x − 1

x

)
V

[u,v,w]

1

( x+ 1

x
v

)
= u

v (x2 − 1

x 2
) +w (x − 1

x ).

ii.

(
x − 1

x

)
V

[u,v,w]

n
( x+ 1

x
v

)
= u

v

(
xn+1 − 1

xn+1

)
+w (xn − 1

xn )

+
(
u
v − 1

) (
xn−1 − 1

xn−1

)
for all n ∈ Z.

Remark 5.1. If u = v , 0 ∈ K,w = 0, Fact 5.1 implies(
x − 1

x

)
V

[v,v]

n
( x+ 1

x
v

)
= xn+1 − 1

xn+1
for all n ≥ 1. (23)

From Un (x ) = V
[2,2]

n we obtain (7). The binomial solutions (8,9)

generalize similarly for u = v and w = ±1. Furthermore, given a

recurrence basis V
[u,v,w]

n (x ), then for each σ ∈ K \ {0} and n ∈ Z

we have V
[u,v,w]

n (x ) = V
[
u
σ ,

v
σ ,w]

n (σx ). □
A polynomial f (x ) is represented as

f (x )=
∑t
j=1

c jV
[u,v,w]

δj
(x ) ∈ K[x],0≤δ1<···<δt ,∀j : c j,0. (24)

Here we say that f (x ) is t-sparse in the recurrence basis (with

parameters u,v,w). Suppose a black box of f (x ) is given to return

the evaluation f (ω) for any ω ∈ K. By performing the substitution

in Fact 5.1, we have

д(y)=
(
y− 1

y

)
f
(y+ 1

y
v

)
=
∑t
j=1

c j ×(
u
v

(
yδj+1− 1

yδj +1

)
+w
(
yδj− 1

yδj

)
+
(
u
v −1

) (
yδj−1− 1

yδj −1

))
def

=
∑τ
j=1

дj
(
yγj − 1

yγj
)
∈ K[y, 1

y ], дj , 0 for all j, (25)

where 1≤γ1<γ2<···<γτ and 2τ is the sparsity of the Laurent poly-

nomial д in the power basis with τ≤3t . By (25) the degrees satisfy
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γτ=δt+1. Note that f (x )=д(z)/(z− 1

z ) for z=(vx±(v
2x2−4)1/2)/2.

Now we present an algorithm to interpolate f (x ) from the eval-

uations of the form

ai=−a−i=
(
ωi− 1

ω i

)
f
(
ω i+ω−i

v

)
∈K,ω∈K,ω,0,i=0,1,2, ... (26)

Let ρ j = ω
γj , j = 1, . . . ,τ , and define the term locator polynomial

Λ(z) as

Λ(z) =
∏τ

j=1
(z − ρ j ) (z −

1

ρ j )

= z2τ + λ2τ−1 z
2τ−1 + · · · + λ1 z + λ0 ∈ K[z]. (27)

Note that (27) is a reciprocal polynomial, that is λ0 = 1 and λj =
λ2τ−j . Similar to the fact stated before Lemma 4.1 in [1], we have

that the sequence of values (26) is linearly generated by the poly-

nomial Λ(z), but Λ is the minimal generator only if Λ is squarefree,

that is, if the term values are distinct. We can determine τ by early

termination as in [1, Section 4.2]. Let

αi = −α−i = д(y
i ) =

(
yi − 1

yi
)
f
(yi+ 1

yi

v

)
∈ K

[
y, 1

y

]
, i ∈ Z,

be the evaluations at powers of the variable y for the ωi . For the
evaluations αi , −2τ −1 ≤ i ≤ 2τ +1, we consider the square Hankel

matrix

H =



α−2τ−1 α−2τ . . . α−1 α0

α−2τ α−2τ+1 . . . α0 α1

...
...

...
...

...
α−1 α0 . . . α2τ−1 α2τ
α0 α1 · · · α2τ α2τ+1



(28)

∈ K
[
y,y−1

] (2τ+2)×(2τ+2)
. As in [1, Theorem 4.3.i ], the square sub-

matrices in the right upper corner have the following guaranteed

non-singularities.

Theorem 5.2. Let Hi be the submatrix of H formed by the first i
rows and the last i columns. Then det(Hi ) , 0 for i = 2,4, . . . ,2τ ,
and det(H2τ+1) = det(H2τ+2) = 0, whereH2τ+2 = H in (28).

Proof. The proof of Theorem 4.3.i in [1] is for a Laurent poly-

nomial ∑τ
j=1

дj
(
yδj + y−δj

)
∈ K

[
y,y−1

]
, дj , 0, (29)

which is [1, Eq. (16)] with τ = t and дj = c j/2. Part i of that
Theorem includes det(H2τ ) , 0 for δ1 ≥ 1, which is a property of

the degrees γj of our terms in (25). The coefficients of our terms in

д(y) in (25) are negated for negative term degrees, which is the only

difference to (29). Since the proof of Theorem 4.3.i does not use any

relation between the coefficients other than they being non-zero

(the denominator 2 plays the role of v and could be divided into

the coefficient), Part i also holds for the polynomial (25) here.

The singularities ofH2τ+1 andH follow from the fact that the

polynomial

∏τ
j=1

(z − yγj ) (z − y−γj ) is a linear generator for the
infinite sequence αi and its coefficients yield a column relation for

2τ + 1 consecutive columns inH . □

Before recovering f (x ) in sparse representation in the recurrence
basis, we present an early termination algorithm to interpolate the

Laurent polynomial д(y) = (y − 1/y) f ((y + 1/y)/v ) in (25) from

the univariate black box polynomial f (x ). Suppose ω is selected

randomly and uniformly from a sufficiently large finite set of field

elements S ⊆ K \ {0}. For k = 1,2,3, . . . we compute the two new

values ai = (ωi − ω−i ) f ((ωi + ω−i )/v ), i = 2k − 2,2k − 1, and

the determinants of the (2k ) × (2k ) Hankel matrices which with

H
2k =



−a
2k−1

−a
2k−2

. . . −a1 a0

−a
2k−2

−a
2k−3

. . . a0 a1

...
...

...
...

...
−a1 a0 . . . a

2k−3
a

2k−2

a0 a1 · · · a
2k−2

a
2k−1



, (30)

a−i = −ai are the determinants of H
2k in Theorem 5.2 for the

evaluation y = ω.
We terminate the loop when det(H

2k ) = 0, which implies that

the number of terms in д(y) is 2k − 2 with high probability, i.e.,

τ = k − 1. Suppose now that k − 1 = τ . Then we get the minimal

linear generator Λ(z) in (27) by solving the following non-singular

linear system:



−a2τ−1 −a2τ−2 . . . −a1 a0

−a2τ−2 −a2τ−3 . . . a0 a1

...
...

...
...

...
−a1 a0 . . .a2τ−3 a2τ−2

a0 a1 · · · a2τ−2 a2τ−1

︸                                      ︷︷                                      ︸
H2τ

·



λ0

λ1

...
λ2τ−2

λ2τ−1



=−



a1

a2

...
a2τ−1

a2τ



. (31)

Note that because det(H2τ ) , 0 implies Λ(z) in (27) must be square-

free (cf. Lemma 4.2 in [1]), and with λ1 = λ2τ−1, λ2 = λ2τ−2, . . . the

system (31) is overdetermined.

Next, we compute all 2τ distinct roots of Λ(z), which areωγj and
ω−γj for j = 1, . . . ,τ . Finally, we compute all the coefficients дj in
(25) by solving a (2τ ) × (2τ ) non-singular transposed Vandermonde

system:



1 ... 1 1 ... 1

ρ1 ... ρτ ρ−1

τ ... ρ−1

1

...
...

...
...

ρ2τ−1

1
... ρ2τ−1

τ ρ−2τ+1

τ ... ρ−2τ+1

1



·



д1...
дτ
−дτ...
−д1



=



a0

a1

...

a2τ−1



. (32)

Again, the system (32) is overdetermined. For the given u,v , the
coefficients c j of f (x ) can be obtained by solving a linear system

obtained from (25). Given the recurrence basisV
[u,v,w]

n (x ), for given

u,v,w , Algorithm 5.1 below recovers f (x ) =
∑t
j=1

c jV
[u,v,w]

δj
(x )

from the black box.

5.1. Algorithm Sparse Interpolation in a Given
Recurrence Basis With Early Termination

Input: ▶ f (x ) ∈ K[x] input as a black box.

▶u,v,w : the recursive basis parameters for V
[u,v,w]

n (x ).

Output: ▶ f (x ) =
∑t
j=1

c jV
[u,v,w]

δj
(x ), where c j , 0.

1. Pick a random element ω from a finite set S ⊆ K.
2. Determine the number of terms of д(y).
For i = 1,2,3, . . . do
2a. Get the evaluations ai = (ω − 1

ω ) f (ω
i+ω−i
v ) from the black

box of f (x ), and then construct the Hankel matrix H
2k from

a1, . . . ,a2k−1
.

2b. Check whether H
2k is singular. If det(H

2k ) = 0, and then break
out of the loop.

3. Find the minimal linear generator Λ(z) by solving the system (31).

4. Compute the roots ρ j of Λ(z), and recover the exponents γj of д(y).
5. Obtain the coefficients дj of д(y) by solving the transposed Vander-
monde system (32).

6. Compute the coefficients c j of f (x ) from (25).

6. COMPUTING SPARSEST REPRESENTATION
Given a recursive basis V

[u,v,w]

n (x ) (22), the representation of f (x )

in this given basis V
[u,v,w]

n (x ) is unique. However, different recur-
sive bases, i.e., different u,v,w might change the sparsities of the

corresponding representations. For instance,

f (x )= 1

2
V

[2,2]

99
=V

[1,2]

1
(x )+V

[1,2]

3
(x )+···+V

[1,2]

97
(x )+V

[1,2]

99
(x ). (33)

(note that we write V
[u,v]

n
def

= V
[u,v,0]

n ). Therefore, the sparsity of

the representation of f (x ) depends on the selected u,v,w of the
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recursive basis.

In this section, we focus on the choice of the recursive basis

such that the representation of f (x ) is sparsest, namely, on how

to compute u,v,w such that the number of non-zero terms t is
minimized in (24). Given a black box of f (x ), we first discuss how
to recover the Laurent polynomial д(y) in (25) such that the sparsity
is optimized over the control variable v , 0; since the sparsity of

(25) is only dependent on the ratio u/v , one may set u = 1. Let

д[v] (y) = (y−1/y) f ((y + 1/y)/v ). The sparsity of д[v] (y) is clearly
dependent on the choice of v . For example, if we construct the

Laurent polynomials д[v] (y) from f (x ) = 1

2
V

[1,2]

99
(x ) by selecting

two different v = 1,2, that is,
д[1] (y) = (y − 1

y ) f (y +
1

y ) =
∑

50

j=1
д2i (y

2i − y−2i ), д2i , 0,

д[2] (y) = (y − 1

y ) f (
y+ 1

y
2

) = 1

2
y100 − 1

2
y−100.

It is easy to see that д[1] (y) has 100 non-zero terms, whereas д[2] (y)
has 2 non-zero terms.

In this paper, we also strive to minimize the number of evalu-

ations to interpolate f (x ). To that end, we determine v such that

the number of the non-zero terms in д[v,w] (y) is minimized. Gies-

brecht, Kaltofen and Lee [8] introduces the fraction-free Berlekamp/

Massey algorithm for computing the sparsest shifts of a given poly-

nomial. This method can be easily adapted for tackling the problem

of computing v such that д[v] (y) is sparsest. We now describe a

probabilistic algorithm, given in [8], for recovering the sparsest

Laurent polynomial д[v] (y) by the combination of the fraction-free

Berlekamp/Massey algorithm with a GCD procedure. Let v be an

indeterminate, and choose distinct random values p,q ∈ S ⊆ K. At
first two sequences αi and βi are constructed as following:

αi = д
[

1

v ] (pi ) = (pi − 1

pi ) f (v p
i + v

pi ) ∈ K[v],

βi = д
[

1

v ] (qi ) = (qi − 1

qi ) f (v q
i + v

qi ) ∈ K[v].

For i = 1,2, . . ., the discrepancies ∆i (p) ∈ K[v] and ∆i (q) ∈ K[v]

are obtained by performing the fraction-free Berlekamp/Massey

algorithm on the sequences: αi and βi . We terminate the loop when

Γ = gcd(∆i (p),∆i (q)) has a non-zero root ζ in K, the algebraic

closure of K. In addition, the fraction-free Berlekamp/Massey al-

gorithm yields the corresponding minimal generators of (αi )i≥0

and (βi )i≥0. In the end, we obtain a sparsest Laurent polynomial

д[v∗] (y), with v∗ = 1/ζ by performing Steps 4 and 5 in Algo-

rithm 5.1. The probabilistic analysis can be found in [8].

Given a black box of f (x ), the above method can be applied to

obtainv∗ and the sparsest Laurent polynomialд[v∗] (y) = (y−1/y) ×
f ((y + 1/y)/v∗). The sparseness of д[v∗] (y) is by Fact 5.1.ii no more

than 6 times the sparsity for the optimal u,v,w values. Note that

by (23) the representation of f in the recurrence basis with with

u = v∗ andw = 0 basis has sparsity twice the sparsity of д[v∗] (y)
in standard power basis.

Example 6.1. Consider the polynomial f (x ) = 16x5 − 16x3 + 3x ,
and two representations of f (x ) in two different orthogonal bases:

f (x ) = R1 (x ) = −102V
[− 1

2
,1]

1
(x ) − 32V

[− 1

2
,1]

5
(x ),

f (x ) = R2 (x ) =
1

16
V

[4,2]

1
(x ) − 1

8
V

[4,2]

3
(x ) + 1

4
V

[4,2]

5
(x ).

For the basesV [− 1

2
,1] (x ) andV [4,2] (x ), we can get the corresponding

Laurent polynomials:

д[1] (y)=
(
y− 1

y

)
f
(
y+ 1

y

)
=16

(
y6− 1

y6

)
+48

(
y4− 1

y4

)
+51

(
y2− 1

y2

)
,

д[2] (y)=
(
y− 1

y

)
f
(y+ 1

y
2

)
= 1

2

(
y6− 1

y6

)
. (34)

One can see that the representation R1 (x ) is sparser than the repre-

sentation R2 (x ), even thoughд
[1] (y) has more terms by comparison

with д[2] (y). Of course, by (34) we must have f (x ) = U5 (x )/2. □

We do not know an example of a polynomial f where the spar-

sities in recurrence bases with parameters u,v∗,w , where v∗ , 0

minimizes the sparsity of д[v∗] (y) (25), are larger for all u , 0 and

w than the minimal sparsity that is achieved by a recurrence basis

with parameters u ′,v ′,w ′, u ′ , 0, v ′ , 0 and v∗ , v ′. One may

compute optimal u ′,v ′,w ′ ∈ K, where K is the algebraic closure

of the field K, in time that is polynomial in deg( f ). The algebraic
elementsu ′,v ′,w ′ are represented in terms of the roots of a polyno-

mial. One computes the coefficients c j (u,v,w ) in (24) for symbolic

u,v,w . Because the leading coefficient of V
[u,v,w]

δ is equal uvδ−1
,

the denominator of the rational function c j (u,v,w ) is a power-term

in u,v . We now seek a point (u ′,v ′,w ′) ∈ K
3

that is a zero of a

maximum number of the numerator polynomials of c j (u,v,w ). The
arising polynomial root finding problem is solvable in polynomial-

time in deg( f ). For example, the 0- and 2-dimensional components

that zero a maximal number of coefficients are computed via a GCD-

free basis computation [3, 13] of the numerator polynomials. Those

common factors that occur most often constitute those compo-

nents. We will analyze the actual complexity of zeroing a maximum

number of polynomials in an inconsistent polynomial system else-

where. The defining equations for the algebraic extensions can be

factored lazily by GCDs rather than polynomial factorization over K
(cf. [12]).

Some special cases can be treated by linear algebra. We now

present a theorem to show the feasibility of how to select for a

given v and w = 0 a suitable u in the recurrence basis (22) such

that f (x ) has the sparsest representation, i.e., how to determine

u ∈ K,u , 0 for a fixed v ∈ K,v , 0 such that the representation of

f (x ) in the basis V
[u,v]

n (x ) = V
[u,v,0]

n (x ) is the sparsest.

Theorem 6.1. Let f (x ) =
∑d
j=0

fjx
j ∈ K[x] with d = deg( f ) ≥ 2,

where K is a field, and letv ∈ K,v , 0. For i with 0 ≤ i ≤ d − 2 define

Si
def

= {u ∈ K | f (x ) =
∑d
j=0

c jV
[u,v]

j (x ) with ci = 0}. (35)

i. If d − i ≥ 2 is even, then |Si | ≤ (d − i )/2.

ii. If d − i ≥ 3 is odd and ∃k,1 ≤ k ≤ ⌊(d − i )/2⌋ : fi+2k , 0, then
|Si | ≤ ⌊(d − i )/2⌋.

Proof. We first prove Part i. Let д(y) = (y − 1

y ) f (
y+ 1

y
v ) ∈ K(y).

By (25) and we can see that д(y) is of the form
д(y) =

∑d+1

j=1
дj (y

j − y−j ), (36)

where дj ∈ K for j = 1, . . . ,d + 1, and дd+1
, 0. Let u,c0, . . . ,cd be

parameters, and suppose p (x ,u,c0, . . . ,cd ) =
∑d
j=0

c jV
[u,v]

j (x ). We

have from Fact 5.1 that

(y − 1

y )p (
y+ 1

y
v ,u,c0, . . . ,cd ) = cd

u
v (yd+1 − y−d−1) +

cd−1

u
v (yd − y−d ) +

( ∑d−2

j=1

(
c j

u
v + c j+2 (

u
v − 1)

)
(y j+1 − y−j−1)

)
+ c2 (

u
v − 1) (y − y−1) + c0 (y − y

−1). (37)

According to the definition (35) of Si , we need find u,c0, . . . ,cu ∈ K
that satisfy ci = 0, and the following equation

д(y) − (y − 1

y ) p (
y+ 1

y
v ,u,c0, . . . ,cd ) = 0. (38)

Since ci = 0 andd−i is even, herewe can get the following equations
by selecting the coefficients of (38) corresponding to yi+1,yi+3, . . . ,
yd−1,yd+1

:

( uv − 1)ci+2 − дi+1 = 0, ( uv − 1)ci+4 +
u
v ci+2 − дi+3 = 0, . . . ,

( uv − 1) cd +
u
v cd−2

− дd−1
= 0, uv cd − дd+1

= 0,

whose matrix form is (39) below. Moreover, the dimension of the

matrix in (39) is ( d−i
2
+ 1) × d−i

2
.

In the following, two cases will be discussed:дi+1 = 0 andдi+1,0.
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u
v − 1 0 0 · · · · · · 0

u
v

u
v − 1 0

. . .
. . .

...

0
u
v

u
v − 1 0

. . .
...

...
. . .

. . .
. . .
. . .

...
0 · · · 0

u
v

u
v − 1 0

0 · · · · · · 0
u
v

u
v − 1

0 0 · · · · · · 0
u
v



·



ci+2

ci+4

...

...

cd−2

cd



=



дi+1

дi+3

...

...

дd−1

дd+1



. (39)

We first consider the first case: дi+1 = 0. We shall investigate the

structure of (39). It is easy to check that the above overdetermined

linear system is consistent if u = v , that implies v ∈ Si . Now
let us consider u,v . The above linear system (39), removing the

last equation consists of a square bidiagonal linear system, whose

unique solution is expressed as ci+2 = 0, ci+4 = дi+3/(
u
v − 1), and

so on. Finally, cd must be of the form cd = q1 (u)/(
u
v − 1)l ,where

l = d−i
2
− 1 with q1 (u) ∈ K[u] and deg(q1) ≤ l − 1. Furthermore cd

must satisfy the last equation in (39), that is,

ψ1 (u)
def

= дd+1

(
u
v − 1

)l
− u

v q1 (u) = 0. (40)

Since дd+1
,0,ψ1 (0),0 and thereforeψ1 (u) is a nonzero polynomial

in K[u], and deg(ψ1 (u)) ≤ l . Therefore, for Si we have the subset
relation

Si ⊆ {v} ∪ {ū | ψ1 (ū) = 0,ψ1 ∈ K[u],ψ1,0,

with deg(ψ1 (u)) ≤ (d − i )/2 − 1}, (41)

which implies that |Si | ≤
d−i

2
.

Next, we consider the other case: дi+1,0. A necessary condition

that the linear system (39) is consistent isu,v , by the first row. Simi-

larly, one can obtain ci+2=дi+1/
(
u
v −1

)
, ci+4=

(
(дi+3−дi−1)

u
v −дi+3

)
/

( uv −1)2, and so on. Finally, cd is of the form cd=q2 (u)/(
u
v −1)l+1

,

where q2 (u)∈K[u] with deg(q2 (u))≤l . By substituting the solution

of cd into the last equation of (39), we haveψ2 (u)
def

= дd+1
( uv −1)l+1−

u
v q2 (u)=0. Likewise, for Si we have the subset relation

Si ⊆ {ū | ψ2 (ū) = 0, withψ2 (u) , 0,deg(ψ2 (u)) ≤
d−i

2
}, (42)

which implies that |Si |≤
d−i

2
.

To conclude, we prove Part ii. According to our assumption,

there exists a j such that j−i=2k is a positive even integer and fj,0.

Among all such j , we select the largest j , denote by e . In other words,
for e we have e < d , and fd−1

=fd−3
=···=fe+2=0, fe,0. Therefore,

the polynomial f (x ) can be expressed as f (x )=f [1] (x )+f [2] (x ),
with

f [1] (x ) =
∑ ⌊d/2⌋

κ=0
fd−2κ x

d−2κ , f [2] (x ) =
∑ ⌊e/2⌋

κ=0
fe−2κ x

e−2κ ,

and fd,0, fe,0.Define S
[2]

i
def

= {u∈K | f [2] (x )=
∑e
j=0

c̄ jV
[u,v]

j (x )with

c̄i=0}. Since deg( f [2])−i=e−i is even, and applying Part i to f [2] (x )

indicates that |S
[2]

i |≤
e−i

2
≤⌊ d−i

2
⌋ . Letд[1] (y)=(y− 1

y ) f
[1] (

y+ 1

y
v ) and

д[2] (y)=(y− 1

y ) f
[2] (

y+ 1

y
v ). It can be seen that there are no common

terms between д[1] (y) and д[2] (y), which implies that Si=S
[2]

i . So

|Si |≤⌊
d−i

2
⌋. □

Given a polynomial f (x )=
∑d
j=0

fjx
j
, and i chosen from Part i

or Part ii of Theorem 6.1, one is able to compute all u ∈ K such

that f (x )=
∑d
j=0

c jV
[u,v]

j (x ) with ci=0. The second-highest term

coefficient cd−1
/constant coefficient c0 is zero/non-zero if and only

if дd /д1 in (36) is zero/non-zero, independently of the choice of

u,v (see (37)). The minimal polynomials for the candidate algebraic

number ū from (41, 42) need not be factored and lazy factorization

in the zero tests of elements in the algebraic extensions can be

applied (cf. [12]). For each candidate u one can count the number

of zero coefficients in (24) and select those with smallest sparsity.
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