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ABSTRACT

Consider solving a black box linear system, A(u)x = b(u), where
the entries are polynomials in u over a field K, and A(u) is full
rank. The solution, x = 1

д(u) f (u), where д is always the least com-

mon monic denominator, can be found by evaluating the system

at distinct points ξℓ ∈ K. The solution can be recovered even if

some evaluations are erroneous. In [Boyer and Kaltofen, Proc. SNC

2014] the problem is solved with an algorithm that generalizes

Welch/Berlekamp decoding of an algebraic Reed-Solomon code.

Their algorithm requires the sum of a degree bound for the numer-

ators plus a degree bound for the denominator of the solution. It

is possible that the degree bounds input to their algorithm grossly

overestimate the actual degrees. We describe an algorithm that

given the same inputs uses possibly fewer evaluations to compute

the solution.

We introduce a second count for the number of evaluations re-

quired to recover the solution based on work by Stanley Cabay. The

Cabay count includes bounds for the highest degree polynomial in

the coefficient matrix and right side vector, but does not require so-

lution degree bounds. Instead our algorithm iterates until the Cabay

termination criterion is reached. At this point our algorithm returns

the solution. Assuming we have the actual degrees for all necessary

input parameters, we give the criterion that determines when the

Cabay count is fewer than the generalized Welch/Berlekamp count.

Incorporating our two counts we develop a combined early ter-

mination algorithm. We then specialize the algorithm in [Boyer

and Kaltofen, Proc. SNC 2014] for parametric linear system solving

to the recovery of a vector of rational functions,
1

д(u) f (u), from its

evaluations. Thus, if the rational function vector is the solution

to a full rank linear system our early termination strategy applies

and we may recover it from fewer evaluations than generalized

Welch/Berlekamp decoding. If we allow evaluations at poles (roots

of д) there are examples where the Cabay count is not sufficient

to recover the rational function vector from just its evaluations.
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This problem is solved if in addition to indicating that an evalu-

ation point is a pole, the black box gives information about the

numerators of the solution at the evaluation point.

1 INTRODUCTION

Consistent linear systems of the form A(u)x = b(u), where A(u) ∈
K[u]m×n and full rank, b(u) ∈ K[u]m ,m ≥ n, and K is a field, have

as their solution rational functions xi = f [i](u)/д[i](u), 1 ≤ i ≤ n.
In particular there is a solution

1

д(u) f (u),
1
where д(u) is the monic,

least common denominator, that is

GCD(f ,д)
def

= GCD(GCDi (f
[i]),д) = 1.

The solution of such a system can be determined by evaluating the

system at distinct points ξℓ ∈ K and interpolating the evaluated

solution [7]. The solution can be found even if some evaluations

are erroneous. The matrices of the systems we consider have full

column rank, so their solution in the form
1

д(u) f (u) is unique. Note
that for full rank matrices with univariate polynomial entries there

are finitely many ξℓ ∈ K that may cause the evaluated matrix to be

rank deficient. If for each evaluation that causes the matrix with

scalar entries to be rank deficient an extra evaluation is included,

then techniques from algebraic error correcting codes can be used

to compute the solution [2, 4–6, 9]. Furthermore in [2] it is shown

that for non-erroneous evaluation points, ξℓ , it is not necessary to

have A(ξℓ) and b(ξℓ) in order to interpolate the solution. Rather it

is enough to have a scalar matrix Â[ℓ ] and right side vector
ˆb[ℓ ]

that have the evaluated solution
1

д(ξℓ )
f (ξℓ) as a solution.

Consider the following model. Suppose there exists an oracle,

which we will refer to as the black box. If we supply the black box

with a value, ξℓ , from the field K the black box returns to us Â[ℓ ]

and
ˆb[ℓ ] with entries from the field K. The scalar matrix, Â[ℓ ], and

right side vector,
ˆb[ℓ ], which are returned may not be A(ξℓ) and

b(ξℓ). Nevertheless, if we query the black box L times we assume

that ≤ E times we get Â[λ] and ˆb[λ] such that Â[λ]f (ξλ) , д(ξλ) ˆb[λ].
Such evaluations are considered to be erroneous. Furthermore we

assume that fewer than R times the black box returns Â[ℓ ] and ˆb[ℓ ]

such that Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb[ℓ ] but rank(Â[ℓ ]) < n. The objective
is to find the solution x = 1

д(u) f (u) of the system A(u)x = b(u)

from as few queries of the black box as possible.

The count for the number of ξℓ

L ≥ Lbk
def

= df + dд + R + 2E + 1 (1)

1
We write

1

д f if f is a vector of polynomials and
1

д a rational function scalar.
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is employed by [2] to recover the solution
1

д(u) f (u). The input

parameters must satisfy the following specifications:

df ≥ deg(f )
def

= max

1≤i≤m
{deg(f [i])}, dд ≥ deg(д), (2)

E ≥
�� { λ | Â[λ]f (ξλ) , д(ξλ) ˆb[λ] for 0 ≤ λ ≤ L − 1 }

��, 2 (3)

R ≥
�� { ℓ | Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb[ℓ ]

and rank(Â[ℓ ]) < n for 0 ≤ ℓ ≤ L − 1 }
��. (4)

Here | · | denotes the cardinality of a set. The bounds E and R
can be derived from an error and singularity rate; see below. If

n = m = 1 and Â[ℓ ] = I1 and
ˆb[ℓ ] = 1

д(ξℓ )
f (ξℓ) the algorithm is

Welch/Berlekamp decoding of an algebraic (rational function) Reed-

Solomon code [12]. We prove that for the vector rational function

case if the input bounds in (2, 3, 4) are exact then the bound Lbk is

tight; see Lemma 3.2.

If the bounds df and dд on input significantly overestimate the

degrees, by early termination we can reduce the number of required

evaluations to

L∗
bk

def

= max{df + deg(д),dд + deg(f )} + 2E∗ + R∗ + 1, (5)

where

E∗ ≥
�� { λ | Â[λ]f (ξλ) , д(ξλ) ˆb[λ] for 0 ≤ λ ≤ L∗

bk
− 1 }

��, (6)

R∗ ≥
�� { ℓ | Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb[ℓ ]

and rank(Â[ℓ ]) < n for 0 ≤ ℓ ≤ L∗
bk
− 1 }

��. (7)

The number of evaluations L∗
bk

in (5) is determined iteratively,

without deg(f ) and deg(д) as input, but has to meet the conditions

(6, 7) for the number of erroneous and rank-deficient systems at

evaluation points ξℓ . One can use the estimate E∗ = E and R∗ = R
from (3,4) before, but we will show in Algorithm 2.2 below how

to dynamically adjust E∗ and R∗ from an error and singularity

rate associated with the black box for Â[ℓ ], ˆb[ℓ ], as is originally
suggested in [6, Remark 1.1].

Following Stanely Cabay’s [3] early termination strategy (see

also [8]), we can derive a second count of number of evaluations.

The new input parameters are specified as follows:

dA ≥ deg(A)
def

= max1≤i≤m,1≤j≤n {deg(ai, j )},

db ≥ deg(b)
def

= max1≤i≤m {deg(bi )}.

 (8)

Because in our algorithms we do not reconstruct A and b, for the
bounds dA and db we can use that pair (A(u),b(u))withA(u)f (u) =
д(u)b(u) with a minimum deg(A). We derive a second evaluations

count,

L∗
cab
= max{dA + deg(f ),db + deg(д)} + 2E∗ + R∗ + 1, (9)

for recovering the solution. Here E∗ and R∗ bound from above the

corresponding counts for erroneous and singular systems in (3,

4) with L∗
cab

replacing L∗
bk
. We prove that if all input parameter

bounds are exact and deg(д) > deg(A) then L∗
cab
< L∗

bk
.

Next we combine the L∗
bk

count and the L∗
cab

count into a general

early termination strategy. This algorithm computes the solution

using as few evaluations as possible when it is unclear how the

deg(д) compares to the deg(A).
We also show that rational function vector recovery with errors

is a special case of the algorithm in [2] for parametric linear system

solving with errors. If we consider
ˆb[ℓ ] = 1

д(ξℓ )
f (ξℓ) and Â[ℓ ] = In

then we can recover the rational function vector
1

д(u) f (u) from its

evaluations, when some evaluations are erroneous, using the [2]

2
Note that the condition (3) on the error bound E rules out inconsistent systems.

algorithm. Thus we can apply our early termination algorithms

to the problem of rational function vector recovery with errors.

There is just one caveat; for rational functions
1

д(u) f (u) where the
deg(д) > deg(A) we need more information at poles (when ξℓ is

a root of д). There are examples where it is not enough to just

indicate that an evaluation point is a pole when attempting early

termination. If we are to recover the rational function vector when

some evaluations are poles then we need the black box to provide

information about the numerators of the solution. We discuss in

detail the additional information we require from the black box

when it indicates that an evaluation is a pole.

2 EARLY TERMINATION

We describe and prove an early termination algorithm for the exact

vector of function solving algorithm in [2]. Their algorithm solves

a system of linear equations

A(u) x = b(u) (10)

where A(u) ∈ K[u]m×n ,b(u) ∈ K[u]m ,m ≥ n and K is a field. The

system is assumed to have a unique solution

x =


...

1

д(u) f
[i](u)

...

 ∈ K(u)
n , д , 0, (11)

where д is the monic least common denominator. If for all i, f [i] = 0

then д is set to 1. The solution vector x is computed by:

1. Selecting L = df + dд + R + 1 distinct elements ξℓ ∈ K where

a. 0 ≤ ℓ ≤ L − 1 and ξℓ1
, ξℓ2

for ℓ1 , ℓ2.
b. df ≥ deg(f ).
c. dд ≥ deg(д).

d. R ≥
��{ℓ | rank(A(ξℓ)) < n = rank(A(u))}

��
.

2. Solving the homogeneous linear system

A(ξℓ)


...

Φ[i](ξℓ)
...

 − Ψ(ξℓ)b(ξℓ) = 0, (12)

where for all i, deg(Φ[i]) ≤ df and deg(Ψ) ≤ dд . The system (12) is

linear in the coefficients of Φ[i](u) and Ψ(u). There are n(df + 1) +

dд + 1 unknown coefficients for Φ[i] and Ψ andmL equations.

Theorem 2.1. [2] We suppose that for ≥ df + dд + 1 of the ξℓ we
have rank(A(ξℓ)) = rank(A(u)) = n. Let Ψmin be the denominator
component of a solution of (12) with Ψmin , 0 and scaled to have
leading coefficient 1 in u, and of minimal degree of all such solutions,
and let Φ[i]

min
be the corresponding numerator components of that

solution. Then for all i we have Φ[i]
min
= f [i] and Ψmin = д.

The linear system (12) uses evaluations of A(u) and b(u) to solve

for x = 1

д f . The authors in [2] show that it is not necessary to have

the evaluations of A(u) and b(u) in order to solve (10). Rather it is

enough, for each ξℓ , to have a scalar matrix Â[ℓ ] ∈ Km×n and right

side vector
ˆb[ℓ ] ∈ Km such that Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb

[ℓ ]. They also

show that the solution can be computed even if some of the scalar

matrices Â[ℓ ] and/or right side vectors ˆb[ℓ ] are erroneous. That is
for some 0 ≤ λ ≤ L − 1,

Â[λ]f (ξλ) , д(ξλ) ˆb
[λ]. (13)

The solution is computed by:

1. Selecting L ≥ Lbk = df +dд +R+2E+1 distinct elements ξℓ ∈ K
where
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a. R ≥
��{ℓ | rank(A(ξℓ)) < n and Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb

[ℓ ], 0 ≤

ℓ ≤ L − 1}
��
, that is (4).

b. E ≥
��{λ | Â[λ]f (ξλ) , д(ξλ) ˆb[λ], 0 ≤ λ ≤ L − 1}

��
, that is (3).

2. Solving the homogeneous linear system

Â[ℓ ]


...

Φ[i](ξℓ)
...

 − Ψ(ξℓ)
ˆb[ℓ ] = 0, 1 ≤ i ≤ m, 0 ≤ ℓ ≤ L − 1, (14)

where for all i, deg(Φ[i]) ≤ df + E and deg(Ψ) ≤ dд + E. The

system (14) is linear in the coefficients of Φ[i](u) and Ψ(u). There

are n(df + E + 1) + dд + E + 1 unknown coefficients of Φ[i](u) and
Ψ(u) andmLbk equations.

Theorem 2.2. [2] We suppose that for ≤ E of the ξℓ we have
Â[ℓ]f (ξℓ) , д(ξℓ) ˆb

[ℓ] and for ≥ df + dд + E + 1 of the ξℓ we have
rank(Â[ℓ ]) = n and Â[ℓ]f (ξℓ) = д(ξℓ) ˆb

[ℓ]. Let Ψmin be the denom-
inator component of a solution of (14) with Ψmin , 0 and scaled
to have leading coefficient 1 in u, and of minimal degree of all such
solutions, and let Φ[i]

min
be the corresponding numerator components

of that solution. Furthermore, let Λ(u) =
∏

µ subj. to (13)(u − ξλµ ) be

an error locator polynomial. Then for all i we have Φ[i]
min
= Λf [i] and

Ψmin = Λд.

Remark 2.1. We assume we have a black box that we can probe

with ξℓ ’s. For each ξℓ the black box returns Â
[ℓ ]

and
ˆb[ℓ ]. The scalar

matrix Â[ℓ ] and scalar right-side vector
ˆb[ℓ ] may not be A(ξℓ) nor

b(ξℓ) respectively, but we are guaranteed that fewer than E are

subject to condition (13). By Theorem 2.2, we can find the solution

x = 1

д f as well as an error locator polynomial Λ(u) that has as its

roots the ξλ ’s that satisfy inequation (13). □

In the black box model it is not possible to determine degree

bounds for the solution a-priori. Thus it is possible that the degree

bounds df and dд are much larger than max1≤i≤n deg(f [i]) and
deg(д) respectively. We describe next an algorithm that either finds

the solution or determines that we need more evaluations. This

allows us to design Algorithm 2.2, that computes the solution with

possibly fewer evaluations than is required by the Lbk bound.

Algorithm 2.1: Compute
1

д f and Λ or determine degree

bounds are too small.

Input: df ≥ deg(f ), dд ≥ deg(д), 0 ≤ d∗f ≤ df , 0 ≤ d∗д ≤ dд ,

R∗ ≥
�� { ℓ | Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb[ℓ ]

and rank(Â[ℓ ]) < n for 0 ≤ ℓ ≤ L∗
bk
− 1 }

��
,

E∗ ≥
�� { λ | Â[λ]f (ξλ) , д(ξλ) ˆb[λ] for 0 ≤ λ ≤ L∗

bk
−1 }

��,
with L∗

bk
from Step 1 below,

a stream (Â[ℓ ], ˆb[ℓ ]), ℓ = 0, 1, . . . which is static on multiple

calls and extensible in length on demand.

Output:
1

д f and Λ or “deg(f ) > d∗f and/or deg(д) > d∗д .”

1: L∗
bk
← max{df + d

∗
д ,dд + d

∗
f } + R

∗ + 2E∗ + 1

2: Determine the null space of

Â[ℓ ]Φ∗(ξℓ) − Ψ
∗(ξℓ) ˆb

[ℓ ] = 0, ℓ = 0, 1, . . . ,L∗
bk
− 1, (15)

where deg(Φ∗) ≤ d∗f + E
∗, deg(Ψ∗) ≤ d∗д + E

∗

3: if only trivial solution then

return “deg(f ) > d∗f and/or deg(д) > d∗д”; end if

4: Compute a basis, B, for the null space.
5: Compute the column echelon form for B,CEF(B).

Retrieve the last column,

CEF(B)∗,r ←



−−−→
Ψ∗

min

−−−−→

Φ
∗ [1]

min

...
−−−−→

Φ
∗ [m]
min


, which has Ψ∗

min
, 0.

Here ®· are coefficient vectors.

6: Λ∗ ← GCD(Φ∗
min
,Ψ∗

min
); k∗ ← deg(Λ∗).

7: (f ∗,д∗) ← ( 1

Λ∗ Φ
∗
min
,Ψ∗

min
/Λ∗).

8: if deg(f ∗) > d∗f or deg(д∗) > d∗д or k∗ > E∗ then

return “deg(f ) > d∗f and/or deg(д) > d∗д”; end if

9: return f ← f ∗, д← д∗, Λ← Λ∗; end if

Observe that Algorithm 2.1 is similar to the algorithm implied by

Theorem 2.2. Themain difference is that it uses the L∗
bk
≤ Lbk count.

Recall that Theorem 2.2 requires ≥ Lbk evaluations to find the

solution. We use the results of Theorem 2.2 to prove the correctness

of our algorithm. That is our algorithm either determines that we

just computed an interpolant of the evaluation points or that we

have indeed found the solution. Recall that we assume there exists

a unique solution to equation (10).

In Step 2 we compute a solution similar to (14). The difference

being that we use the starred bounds. Observe that if deg(f ) ≤ d∗f
and deg(д) ≤ d∗д and we were to substitute df = d∗f , dд = d∗д in

Lbk, then with L∗
bk
≥ d∗f + d

∗
д + 2E∗ + R∗ by Theorem 2.2 we are

guaranteed to find the solution (Λf ,Λд). So if B indicates there is

only the trivial solution then it must be the case that deg(f ) > d∗f
and/or deg(д) > d∗д .

In Step 5 we compute a non-zero polynomial Ψ∗ of minimal

degree (Ψ∗
min
, 0). We claim that the last column of CEF(B) contains

Ψ∗
min

. The fact that the degree of Ψ∗
min

is minimum is clear from the

form of the CEF(B). To see why Ψ∗
min
, 0, assume that Ψ∗

min
= 0.

Then for all ξℓ , Â
[ℓ ]Φ∗

min
(ξℓ) = Ψ∗

min
(ξℓ) ˆb

[ℓ ] = 0
m
. On ≥ max{df +

d∗д ,dд+d
∗
f }+E

∗+1 evaluations rank(Â[ℓ ]) = n, that isΦ∗
min
(ξℓ) = 0,

which implies by deg(Φ∗
min
) ≤ d∗f + E

∗
that Φ∗

min
= 0. This cannot

be since CEF(B) is a basis for the solution space of equation (15)

and thus cannot contain the zero vector. Hence Ψ∗
min
, 0.

In Step 7 we define
1

д∗ f ∗ = 1

Ψ∗
min

Φ∗
min

. We think of
1

д∗ f ∗ as our
candidate solution. Next in Step 8 we check if the candidate solution

agrees with our starred bounds. We know from Theorem 2.2 that if

d∗f ≥ deg(f ) and d∗д ≥ deg(д) the bounds for the minimal solutions

must be satisfied, so if they fail at least one bound is wrong.

Finally, we claim that if Algorithm 2.1 returns at Step 9 then

we have computed the solution
1

д f . Of the L
∗
bk

points ξℓ at Step 9

we discard ≤ R∗ “good” rank drops and ≤ E∗ erroneous points for
the solution (f ,д) and ≤ k∗ = deg(Λ∗) ≤ E∗ points ξℓ that have

Λ∗(ξℓ) = 0. The remaining ≥ max{df + d
∗
д ,dд + d

∗
f } + 1 distinct ξℓ

satisfy

1. rank(Â[ℓ ]) = n,
2. Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb[ℓ ],
3. Â[ℓ ]f ∗(ξℓ) = д∗(ξℓ) ˆb[ℓ ], because

Â[ℓ ]Φ∗
min
(ξℓ) = Â[ℓ ]Λ∗(ξℓ)f

∗(ξℓ)

= Ψ∗
min
(ξℓ) ˆb

[ℓ ] = Λ∗(ξℓ)д
∗(ξℓ) ˆb

[ℓ ],

and Λ∗(ξℓ) , 0.

From Items 2 and 3 we get Â[ℓ ](д(ξℓ)f ∗(ξℓ) − д∗(ξℓ)f (ξℓ)) = 0

which by Item 1 yields д(ξℓ)f ∗(ξℓ) − д∗(ξℓ)f (ξℓ) = 0, that for at
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least max{df +d
∗
д ,dд +d

∗
f }+1 distinct ξℓ . The vector (дf ∗−д∗f )(u)

has polynomials of degree ≤ max{df +d
∗
д ,d
∗
f +dд} and is therefore

equal 0, which proves
1

д∗ f ∗ = 1

д f .
We observe that d∗f ≤ df and d∗д ≤ dд implies that L∗

bk
≤ Lbk.

Now Algorithm 2.1 guarantees that with L∗
bk

many evaluations

we either compute the solution
1

д f or we determine that deg(f ) >
d∗f and/or deg(д) > d∗д . Thus L

∗
bk

count can be used in an early

termination strategy. We give the details in the following algorithm.

Algorithm 2.2: Early Termination Strategy.

Input: df ≥ deg(f ), dд ≥ deg(д),
ρE < 1/2, a rational number with denominator qE ,

// the error rate.

ρR < 1 − 2ρE , a rational number with denominator qR ,
// the rank drop rate, see Remark 2.2.

// qE = qR = ∞ is permissible but may require

// more evaluations.

Output:
1

д f and Λ.

1: d∗f ← 0; d∗д ← 0.

2: D ← max{df +d
∗
д ,dд+d

∗
f }+1.

3: E∗ ← ⌊Ē∗⌋;R∗ ← ⌊R̄∗⌋ with

Ē∗ =
1

1−2ρE−ρR

(
ρE

(
D+1−

1

qR

)
+(1−ρR )

(
1−

1

qE

) )
. (16)

R̄∗ =
1

1−2ρE−ρR

(
ρR

(
D+2−

2

qE

)
+(1−2ρE )

(
1−

1

qR

) )
. (17)

4: if Algorithm 2.1(df ,dд ,d
∗
f ,d
∗
д ,E
∗,R∗) returns at Step 9

then return
1

д f ; end if

5: while(true) D ← D + 1.

// returns below for D = max{df + deg(д),dд+ deg(f )}+1

6: Reassign E∗,R∗ as in Step 3 using the updated D in (16,17).

7: forall (d∗f ,d
∗
д) with D = max{df + d

∗
д ,dд + d

∗
f } + 1 do

8: if Algorithm 2.1(df ,dд ,d
∗
f ,d
∗
д ,E
∗,R∗)

returns at Step 9 then return (f ,д,Λ); end if

end for end while

Remark 2.2. Algorithm 2.2 saves evaluations is two ways. The

first way we save evaluations is by probabilistic computation of E∗

and R∗ based on the size of D rather than using fixed bounds. Like

[5] we view evaluations as probing a black box, thus we can also

relate the error rate of the black box to E∗. Also given the number

of evaluation and a strategy for choosing the evaluation points one

may have a rate at which the problem drops rank. Such a rate for

the rank drop can then be related to R∗. If there is no such rate

then R from the Lbk count can always be substituted for R∗ without
affecting Algorithm 2.2.

We make the following assumption on the input error rates:

Assumption 2.1. Suppose that for L ≥ Lmin

E the number of er-
roneous evaluations, kE , always satisfies kE ≤ ⌈ρEL⌉, and also for
L ≥ Lmin

R : kR ≤ ⌈ρRL⌉ evaluations give rise to valid but rank
deficient systems.

Here Lmin

E and Lmin

R are sufficiently large numbers of evalua-

tions for which the assumptions on kE and kR are sensible. Let

Lmin = max{Lmin

E ,L
min

R }, then Lmin is a minimum on the num-

ber of evaluations our algorithm can work with. Assumption 2.1

differs from the rate assumptions in [5, Remark 1.1] and [6, Re-

mark 1.1, Lemma 3.1] in that there we suppose kE ≤ ⌊ρEL⌋,

which implies no error for L < 1/ρE . Our assumption here al-

lows 1 error. Note that for ρR = 0, qR = ∞ and ρE = 1/qE we

get Ē∗ = D/(qE − 2) + qE/(qE − 2) whereas in [5, 6] we have

Ē∗ = D/(qE − 2). In [6, Remark 1.1] the assumptions are probabilis-

tically validated by adjusting the error rate upwards and bounding

the probability of failure via Chernoff bounds.

We now show that Assumption 2.1 and the computation of E∗ and
R∗ in (16, 17) guarantee the input specifications for Algorithm 2.1.

We have

L̄∗ = D + 2

(
ρE L̄
∗ + 1 −

1

qE

)
+ ρR L̄

∗ + 1 −
1

qR

=
1

1−2ρE−ρR

(
D + 3 −

2

qE
−

1

qR

)
and for Ē∗, R̄∗ in (16,17) we have

Ē∗ = ρE L̄
∗ + 1 −

1

qE
, R̄∗ = ρR L̄

∗ + 1 −
1

qR
, L̄∗ = D + 2Ē∗ + R̄∗.

Therefore we have

k∗E ≤ ⌈ρEL
∗
bk
⌉ = ⌈ρE (D + 2E∗ + R∗)⌉

≤ ρE (D + 2E∗ + R∗) + 1 −
1

qE

≤ ρE (D + 2Ē∗ + R̄∗) + 1 −
1

qE

= ρE L̄
∗ + 1 −

1

qE
= Ē∗,

which implies by the integrality of k∗E that k∗E ≤ ⌊Ē
∗⌋ = E∗, as is

required by Algorithm 2.1. Similarly, one proves k∗R ≤ R∗.
We discuss now the second way Algorithm 2.2 saves evaluations.

The algorithm initializes d∗f and d∗д to zero. Thus L∗
bk
≤ Lbk. The

fewest number of evaluations we can use in Algorithm 2.1 is D +
R∗+E∗ whereD = max{df ,dд}+1. Note this is the first bound used

by Algorithm 2.2. We assume that D ≥ L, we can always adjust df
and/or dд so that D ≥ L. If L∗

bk
has too few evaluations to return

the solution, D is incremented by 1 and R∗ and E∗ are adjusted if

needed. The algorithm then tries all possible combinations of d∗f
and d∗д such that D = max{df + d

∗
д ,dд + d

∗
f } + 1. Thus we find the

solution while incrementing D as slowly as possible. □

3 CABAY EARLY TERMINATION

We now describe the count L∗
cab

that incorporates degree bounds

for the system being solved. The count is based on work in [3] (see

also [8]). In Theorem 3.1, given exact values for degree parameters,

we give the criteria and proof for when L∗
cab
< L∗

bk
.

Consider another count L∗
cab

,

L∗
cab
= max{dA + d

∗
f ,db + d

∗
д} + R

∗ + 2E∗ + 1,

where dA ≥ deg(A) and db ≥ deg(b). See (8) for the definitions

of deg(A) and deg(b). Similar to Algorithm 2.1 we present next an

algorithm that uses the L∗
cab

bound and either determines one of

the starred bounds is too small or returns the solution.

Algorithm 3.1: Cabay Early Termination

Input: dA ≥ deg(A), db ≥ deg(b),
d∗f , d

∗
д , with 0 ≤ d∗f ≤ deg(f ), 0 ≤ d∗д ≤ deg(д)

// same as in Algorithm 2.1

R∗ ≥
�� { ℓ | Â[ℓ ]f (ξℓ) = д(ξℓ) ˆb[ℓ ]

and rank(Â[ℓ ]) < n for 0 ≤ ℓ ≤ L∗
cab
− 1 }

��
,

E∗ ≥
�� { λ | Â[λ]f (ξλ) , д(ξλ) ˆb[λ] for 0 ≤ λ ≤ L∗

cab
−1 }

��,
Output:

1

д f and Λ or "deg(f ) > d∗f and/or deg(д) > d∗д".
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1: L∗
cab
← max{dA + d

∗
f ,db + d

∗
д} + R

∗ + 2E∗ + 1.

2: Determine the null space of the system

Â[ℓ ]Φ∗(ξℓ) − Ψ
∗(ξℓ) ˆb

[ℓ ] = 0, ℓ = 0, 1, . . . ,L∗
cab
− 1, (18)

where deg(Φ∗) ≤ d∗f + E
∗, deg(Ψ∗) ≤ d∗д + E

∗.

3: if only the trivial solution then

4: return deg(f ) > d∗f and/or deg(д) > d∗д ; end if

5: Compute a basis, B, for the null space
6: Compute the column echelon form for B,CEF(B). See Step 7 in

Algorithm 2.1.

7: Λ∗ ← GCD(Φ∗
min
,Ψ∗

min
); k∗ ← deg(Λ∗).

8: (f ∗,д∗) ← ( 1

Λ∗ Φ
∗
min
,Ψ∗

min
/Λ∗).

9: return f ← f ∗, д← д∗, and Λ← Λ∗.

In Step 2 we again compute a similar object to (14) using our new

starred degree bounds . We now justify Steps 3 and 4. We prove

that if the computation in Step 2 produces only the trivial solution

then deg(f ) > d∗f and/or deg(д) > d∗д . Assume deg(f ) ≤ d∗f and

deg(д) ≤ d∗д . Then (Φ
∗,Ψ∗) = (Λf ,Λд) solves (18). Thus equation

(18) cannot only contain the trivial solution. This implies that if (18)

has only the trivial solution then deg(f ) > d∗f and/or deg(д) > d∗д .

We now justify Step 9. We prove that
1

д∗ f ∗ is the solution of

our system. Furthermore, the GCD(Φ∗
min
,Ψ∗

min
) is the error locator

polynomial. If we are at Step 9 of our algorithm then we have that

on at least max{dA +d
∗
f ,d
∗
д +db } + E

∗ + 1 evaluations Â[ℓ ]f (ξℓ) =

д(ξℓ) ˆb
[ℓ ]

and rank(Â[ℓ ]) = n. The latter implies that д(ξℓ) , 0, for

otherwise f (ξℓ) = 0 and
1

д f would not be reduced. For those ℓ we

have computed Φ∗ and Ψ∗ such that Â[ℓ ]Φ∗(ξℓ) = Ψ∗(ξℓ) ˆb
[ℓ ]

.

We show first that Â[ℓ ]Φ∗(ξℓ) = Ψ∗(ξℓ) ˆb
[ℓ ]

implies A(ξℓ) ×

Φ∗(ξℓ) = Ψ∗(ξℓ)b(ξℓ). If Ψ(ξℓ) = 0 then Φ(ξℓ) = 0 because Â[ℓ ]

has linearly independent columns. If on the other hand Ψ(ξℓ) , 0

we get Φ∗(ξℓ)/Ψ
∗(ξℓ) = f (ξℓ)/д(ξℓ) since the solution is unique.

Now A(ξℓ)(f (ξℓ)/д(ξℓ)) = A(ξℓ)(Φ
∗(ξℓ)/Ψ

∗(ξℓ)) = b(ξℓ). So the

computed Φ∗ and Ψ∗ must satisfy A(ξℓ)Φ
∗(ξℓ) = Ψ∗(ξℓ)b(ξℓ).

Since A(u)Φ∗(u) − Ψ∗(u)b(u) is a polynomial vector of degree

≤ max{dA + d∗f ,db + d∗д} + E∗ it is uniquely determined by

max{dA + d∗f ,db + d∗д} + E∗ + 1 distinct evaluation points so

we have A(u)Φ∗(u) = Ψ∗(u)b(u). So 1

д f = 1

Ψ∗
min

Φ∗
min
= 1

д∗ f ∗.

This implies there is a polynomial Λ∗(u) with Λ∗f = Φ∗
min

and

Λ∗д = Ψ∗
min

. For each λ we have Â[λ]f (ξλ) , д(ξλ) ˆb
[λ]

and

Â[λ](Λ∗f )(ξλ) = Â[λ]Φ∗
min
(ξλ) = Ψ∗

min
(ξλ) ˆb

[λ] = (Λ∗д)(ξλ) ˆb
[λ]

which implies Λ∗(ξλ) = 0. Thus Λ = Λ∗.

Remark 3.1. Any non-zero solution computed in Step 5 of the

previous algorithm has the property
1

д f = 1

Ψ∗Φ
∗
. Nevertheless,

only the pair (Φ∗
min
,Ψ∗

min
) = (Λf ,Λд). So if there is no need to

compute the error locator polynomial then Step 6 is unnecessary.

Remark 3.2. If we implement Algorithm 2.2 replacing Algo-

rithm 2.1 with Algorithm 3.1 then we then get an early termination

strategy for Cabay Termination. □

Remark 3.3. The matrix A(u) having full rank implies by

Cramer’s rule that we can set df = (n − 1)dA + db and dд = ndA.
So Lcab ≥ ndA + db + R + 2E + 1 = df + dд/n + R + 2E + 1 in

comparison to Theorem 2.2, which has Lbk ≥ df + dд + R + 2E + 1.

In Theorem 3.1 we generalize when Lcab is better than Lbk. □

Theorem 3.1. If all bounds are exact then Lcab < Lbk if and only
if deg(д) > deg(A).

Proof.Af = дb implies deg(Af ) = deg(дb) = deg(д)+deg(b). Since
some terms can cancel due to the matrix vector multiplication, Af ,
we have deg(Af ) ≤ deg(A) + deg(f ). This implies that deg(д) +
deg(b) ≤ deg(A) + deg(f ).
Assume deg(д) + deg(b) < deg(A) + deg(f ). Then Lcab = deg(f ) +
deg(A) + R + 2E + 1 < Lbk = deg(f ) + deg(д) + R + 2E + 1if and

only if deg(д) > deg(A).
Now assume deg(д)+ deg(b) = deg(A)+ deg(f ), then there are two

cases.

Case 1: Lcab = deg(f ) + deg(A) + R + 2E + 1.

Case 2: Lcab = deg(д) + deg(b) + R + 2E + 1.

We have already dealt with case 1. Consider case 2, Lcab = deg(д)+
deg(b)+R+ 2E + 1 < Lbk = deg(f )+deg(д)+R+ 2E + 1 if and only

if deg(b) < deg(f ). This implies deg(д) > deg(A) since we assumed

that deg(д) + deg(b) = deg(A) + deg(f ). □

Remark 3.4. If n =m = 1 then the Cramer rule bound in Remark

3.3 yields, in the exact case, Lcab = Lbk. In fact the linear system

A(u)x = b(u) is actually of the form a(u)x = b(u)where a(u),b(u) ∈
K[u]. This implies x = b(u)/a(u) = f /д which implies a(u) =
h(u)д(u) andb(u) = h(u)f (u), whereh(u) ∈ K[u]. Thus if we use the
exact degrees for our bounds we get Lbk ≤ Lcab, since in this case

deg(д) ≤ deg(A). Furthermore, if one uses fewer than L = deg(f )+
deg(д)+2k +1 evaluations then one loses the guarantee of a unique

solution. In Lemma 3.2 below, given only L = deg(f ) + deg(д) + 2k
we construct a second solution. □

Lemma 3.2. Let n = m = 1 and K a field. For all f ,д ∈ K[u]
with deg(д) ≥ 1 and GCD(f ,д) = 1 and for all ξ0, . . . , ξL−1 with
L = deg(f )+deg(д)+2k, ξℓ , 0, ξℓ1

, ξℓ2
for ℓ1 , ℓ2, 0 ≤ ℓ, ℓ1, ℓ2 ≤

L−1 and д(ξℓ) , 0 for all ℓ with 0 ≤ ℓ ≤ deg(f )+deg(д)−1 and for
all k ≥ 0 we have: if |K| ≥ 2(deg(f )+deg(д)+k)+ 1 then there exist
f̄ , д̄ ∈ K[u] and there exist â[ℓ ], ˆb[ℓ ] ∈ K for all ℓ with 0 ≤ ℓ ≤ L − 1

such that

1. f /д , f̄ /д̄, GCD(f̄ , д̄) = 1, deg(f ) = deg(f̄ ) and deg(д) =
deg(д̄).

2. д̄(ξℓ) , 0 for all ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) − 1.

3. â[ℓ ] f (ξℓ) = д(ξℓ) ˆb
[ℓ ] for all ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) +

k − 1,

â[ℓ ] f̄ (ξℓ) = д̄(ξℓ) ˆb
[ℓ ] for all ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) −

1 or deg(f ) + deg(д) + k ≤ ℓ ≤ L − 1.

4. â[ℓ1]f (ξℓ1
) , д(ξℓ1

) ˆb[ℓ1] for all ℓ1 with deg(f ) + deg(д) + k ≤
ℓ1 ≤ L − 1 and
â[ℓ2] f̄ (ξℓ2

) , д̄(ξℓ2
) ˆb[ℓ2] for all ℓ2 with deg(f ) + deg(д) ≤ ℓ2 ≤

deg(f ) + deg(д) + k − 1.

Proof. Recall the system we solve is given by equation (14) and we

solve â[ℓ ]Φ(ξℓ) = Ψ(ξℓ) ˆb
[ℓ ]

. Let

Φ(u) = ydu
d + yd−1

ud−1 + . . . + y0 and

Ψ(u) = ue + ze−1u
e−1 + . . . + z0,

where d = deg(f ) + k and e = deg(д) + k . For all ℓ such that

0 ≤ ℓ ≤ deg(f ) + deg(д) − 1 let â[ℓ ] = д(ξℓ) and ˆb[ℓ ] = f (ξℓ).
Assume first k = 0, i.e., there are no errors. We set up and solve the

non-homogeneous linear system

â[ℓ ]Φ(ξℓ) − Ψ
∗(ξℓ) ˆb

[ℓ ] = ˆb[ℓ ]ξ eℓ , (19)

where Ψ∗ = ze−1u
e−1 + ze−2u

e−2 + . . . + z0.

Let B

[
y
z∗

]
= v be the matrix representation of our system in (19).

We have for the right side vector v that v , 0 since
ˆb[ℓ ] = f (ξℓ)

cannot be zero for all 0 ≤ ℓ ≤ deg(f ) + deg(д) − 1 since deg(д) ≥ 1
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and ξℓ , 0 for all 0 ≤ ℓ ≤ L − 1. Our system then has L equations

and L + 1 unknowns, so B ∈ KL×(L+1)
. By construction

[
f
д∗

]
is a

solution to our system. Since our system is underdetermined there

must be other solutions [
f̄c
д̄∗c

]
=

[
f
д∗

]
+ cw

where w , 0 is in the null space of B and c , 0. Let p = resu (f +
cwf ,д + cwд∗ ),p is a polynomial in c,p , 0 since p(0) , 0. Note

deg(p) ≤ deg(f ) + deg(д) and |K| ≥ 2(deg(f ) + deg(д) + k) + 1.

Thus there must be c1 ∈ K such that c1 , 0,p(c1) , 0 and lc(f ) ,
−lc(c1wf ). Consider f̄ = f̄c1

and д̄ = д̄c1
. Then by construction

deg(f ) = deg(f̄ ) and deg(д) = deg(д̄). Also since p(c1) , 0 we have

that GCD(f̄ , д̄) = 1.

Next we show that f /д , f̄ /д̄. We show first that[
f
д∗

]
and

[
f̄
д̄∗

]
are linearly independent. Assume

[
f
д∗

]
and[

f̄
д̄∗

]
are linearly dependent, then there exits α , 0

such that α

[
f
д∗

]
=

[
f̄
д̄∗

]
, which implies α

[
f
д∗

]
=

[
f
д∗

]
+

c1w, which further implies (α − 1)

[
f
д∗

]
= c1w,α , 1 since c1 ,

0 and w , 0. So α−1

c1

[
f
д∗

]
= w, but 0 , α−1

c1

v =

α−1

c1

B

[
f
д∗

]
= Bw = 0, which is a contradiction. Thus[

f
д∗

]
and

[
f̄
д̄∗

]
are linearly independent, which implies that[

f
д

]
,

[
f̄
д̄

]
are linearly independent. Which further implies that

f /д , f̄ /д̄.
To see why д̄(ξℓ) , 0 for all ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) − 1,

assume д̄(ξℓ) = 0 for all ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) − 1. Since

GCD(f̄ , д̄) = 1 and â[ℓ ] f̄ (ξℓ) = д̄(ξℓ) ˆb
[ℓ ]

then д̄(ξℓ) = 0 implies

that â[ℓ ] = 0. This is a contradiction since â[ℓ ] = д(ξℓ) , 0 for all

ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) − 1. Thus д̄(ξℓ) , 0 for all ℓ with

0 ≤ ℓ ≤ deg(f ) + deg(д) − 1.

Now assume k > 0. By construction for all ℓ with 0 ≤ ℓ ≤

deg(f )+deg(д)−1we have â[ℓ ]f (ξℓ)−д(ξℓ) ˆb[ℓ ] = 0 and â[ℓ ] f̄ (ξℓ)−
д̄(ξℓ) ˆb

[ℓ ] = 0. Thus â[ℓ ](д̄(ξℓ)f (ξℓ) −д(ξℓ)f̄ (ξℓ)) = 0. Since â[ℓ ] ,
0 it must be that д̄(ξℓ)f (ξℓ) − д(ξℓ)f̄ (ξℓ) = 0. Since f /д , f̄ /д̄, and
GCD(f ,д) = GCD(f̄ , д̄) = 1 then д̄f − дf̄ ∈ K[u] is not identically
zero. Since deg(f ) = deg(f̄ ) and deg(д) = deg(д̄) and (д̄f −дf̄ )(ξℓ) =
0 for all ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) − 1 we must have that

deg(д̄ f − д ¯f ) = deg(f ) + deg(д). Observe that ξℓ for 0 ≤ ℓ ≤

deg(f )+deg(д)−1 are deg(f )+deg(д) distinct roots of (д̄f −дf̄ )(u),
so (д̄f −дf̄ )(u) can have no other roots. Let â[ℓ ] = д(ξℓ) and ˆb[ℓ ] =
f (ξℓ) for all ℓ with deg(f ) + deg(д) ≤ ℓ ≤ deg(f ) + deg(д) + k − 1.

Then for all ℓ with 0 ≤ ℓ ≤ deg(f ) + deg(д) + k − 1 we have

â[ℓ ] = д(ξℓ) and ˆb[ℓ ] = f (ξℓ) and therefore â[ℓ ]f (ξℓ) −д(ξℓ) ˆb[ℓ ] =
0. By construction â[ℓ ] f̄ (ξℓ) − д̄(ξℓ) ˆb

[ℓ ] = 0 for all ℓ with 0 ≤

ℓ ≤ deg(f ) + deg(д) − 1. Let â[ℓ ] = д̄(ξℓ) and ˆb[ℓ ] = f̄ (ξℓ) for
all ℓ with deg(f ) + deg(д) + k ≤ ℓ ≤ L − 1 then have we have

â[ℓ ] f̄ (ξℓ) − д̄(ξℓ) ˆb[ℓ ] = 0 for all ℓ with deg(f ) + deg(д) + k ≤ ℓ ≤
L − 1.

Assume there exist ξℓ for some ℓ with deg(f ) + deg(д) ≤ ℓ ≤

deg(f ) + deg(д) + k − 1 such that â[ℓ ] f̄ (ξℓ) − д̄(ξℓ) ˆb[ℓ ] = 0. Then

(д̄ f −д ¯f )(ξℓ) = 0 for that ξℓ .Which is a contradiction since we have

already shown that if ξℓ is a root of (д̄f − дf̄ )(u) then ℓ < deg(f ) +
deg(д). Thus for all ℓ with deg(f )+ deg(д) ≤ ℓ ≤ deg(f )+ deg(д)+

k − 1 we must have â[ℓ ] f̄ (ξℓ) , д̄(ξℓ) ˆb
[ℓ ]. A similar argument

shows that for all ℓ with deg(f ) + deg(д) + k ≤ ℓ ≤ L − 1 we have

â[ℓ ]f (ξℓ) , д(ξℓ) ˆb[ℓ ]. Thus â[ℓ1]f (ξℓ1
) , д(ξℓ1

) ˆb[ℓ1]
for all ℓ1 with

deg(f ) + deg(д) + k ≤ ℓ1 ≤ L − 1 and â[ℓ2] f̄ (ξℓ2
) , д̄(ξℓ2

) ˆb[ℓ2]
for

all ℓ2 with deg(f ) + deg(д) ≤ ℓ2 ≤ deg(f ) + deg(д) + k − 1. □

We now show that if the solution
1

д f is such that f [i1] = f [i2] , 0

for all 1 ≤ i1 < i2 ≤ n then deg(д) ≤ deg(A). Thus, by Theorem 3.1,

if our parameters are exact we have that Lbk ≤ Lcab.

Lemma 3.3. IfA is full rank, and the vector f has the property that
f [i1] = f [i2] , 0 for all 1 ≤ i1 < i2 ≤ n, and Af = дb then b , 0

m .

Proof. A full rank implies rank(A(u)) = n. Assume b = 0
m
, this

implies f [1]
∑n
j=1

ai, j = 0, i = 1, . . . ,m. Since f , 0 this is equiva-

lent to

∑n
j=1

Aj = 0, which implies the columns of A are linearly

dependent. Thus A is not full rank, which is a contradiction. □

Corollary 3.4. If A is full rank and f [i1] = f [i2] , 0 for all
1 ≤ i1 < i2 ≤ n then deg(д) ≤ deg(A), thus by Theorem 3.1 in the
exact case Lbk ≤ Lcab.

Proof. Let A full rank and A( 1д f ) = b,д , 0. This implies Af = дb,

which further implies f [1]
∑
j ai, j = дbi for all i . We know by

Lemma 3.3 that bi , 0 for all i . Recall that if 1

д f is the solu-

tion to Ax = b then GCD(f ,д) = 1. Thus f [1]
∑
j ai, j = дbi

implies д divides

∑
j ai, j for all i . For those i such that bi , 0,

deg(д) ≤ deg

(∑
ai, j

)
≤ max1≤i≤m,1≤j≤n deg(ai, j ) = deg(A).

Thus deg(д) ≤ deg(A). □

We now have two counts that we can use to solve the problem

we describe in Remark 2.1. Theorem 3.1 tells us that whenever

deg(д) > deg(A) then the Lcab count uses fewer evaluations than
the Lbk count if all parameter values are exact. Lemma 3.2 shows

however, that if n =m = 1 we cannot do better than the Lbk count.

Lemma 3.3 and Corollary 3.4 tell us that if the solution
1

д f is such

that f [i1] = f [i2] for all 1 ≤ i1 < i2 ≤ n then it must be the case

that the deg(A) > deg(д). In the following section we combine

the two counts to get a general early termination strategy. Such a

termination strategy would be useful when little is known about

the degree of the system and/or solution, since in such cases it is

likely that the bounds one chooses are much larger than the actual

value of the parameters.

4 COMBINED EARLY TERMINATION

We now describe an algorithm that combines the early termination

strategy for the Lbk count with early termination strategy for the

Lcab count. This strategy can be implemented when we are unsure

how the deg(д) compares to the deg(A) and we suspect that our

degree bounds significantly overestimates the actual values of their

respective parameters.

Algorithm 4.1: Early Termination with L∗
bk

and L∗
cab

Input: df ≥ deg(f ),dд ≥ deg(д),dA ≥ deg(A),db ≥ deg(b)
ρE < 1/2, a rational number with denominator qE ,

// the error rate

ρR < 1 − 2ρE , a rational number with denominator qR ,
// the rank drop rate, see Remark 2.2.

Output: f ,д, and Λ.
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1: d∗f ← 0; d∗д ← 0.

2: D ← min

{
max{df +d

∗
д ,dд +d

∗
f },max{dA +d

∗
f ,db +d

∗
д}

}
+ 1.

3: E∗ ← ⌊Ē∗⌋;R∗ ← ⌊R̄∗⌋ where Ē∗ and R̄∗ are as defined in

equations (16) and (17) respectively.

4: if max{df + d
∗
д ,dд + d

∗
f } ≤ max{dA + d

∗
f ,db + d

∗
д} then

5: if Algorithm 2.1(df ,dд ,d
∗
f ,d
∗
д ,E
∗,R∗)

returns at Step 9 then return (f ,д,Λ); end if

else

6: if Algorithm 3.1(dA,db ,d
∗
f ,d
∗
д ,E
∗,R∗)

returns at Step 9 then return (f ,д,Λ); end if

end if

7: while(true) D ← D + 1.

8: Reassign E∗,R∗ as in Step 3 using the updatedD in equations

(16) and (17) respectively.

9: forall (d∗f ,d
∗
д) with D = min

{
max{df + d

∗
д ,dд + d

∗
f },

max{dA + d
∗
f ,db + d

∗
д}

}
+ 1 do

10: if D = max{df + d
∗
д ,dд + d

∗
f } then

11: if Algorithm 2.1(df ,dд ,d
∗
f ,d
∗
д ,E
∗,R∗)

returns at Step 9 then return (f ,д,Λ); end if

else

12: if Algorithm 3.1(dA,db ,d
∗
f ,d
∗
д ,E
∗,R∗)

returns at Step 9 then return (f ,д,Λ); end if

end if; end for; end while

Remark 4.1. The justification for Algorithm 4.1 follows from the

justification for Algorithm 2.2. If values fordA anddb are not known

they can be set to infinity and Algorithm 4.1 becomes Algorithm

2.2. Similarly if values for df and dд are not known they can be

set to infinity and Algorithm 4.1 is the Cabay early termination

algorithm.

5 RATIONAL VECTOR RECOVERY

Suppose that there is a vector of rational functions
1

д f we wish

to recover, and assume that this vector of rational functions is the

unique solution to a system of linear equations

A(u) x = b(u), A(u) ∈ K[u]m×n ,b(u) ∈ K[u]m ,
where K is a field. See (10).

Let

γ
[ℓ]
i =

{
f [i](ξℓ)/д(ξℓ) if д(ξℓ) , 0

∞ if д(ξℓ) = 0.

We further assume that we have a black box that takes ξℓ ∈ K
as inputs and returns vectors β

[ℓ]
i such that β

[ℓ]
i = γ

[ℓ]
i for ℓ <

{λ1, . . . , λk } and all 1 ≤ i ≤ n and β
[ℓ]
i , γ

[ℓ]
i for ℓ ∈ {λ1, . . . , λk }

on at least one i , 1 ≤ i ≤ n. The remainingm − n entries of the

vector is filled with zeros. We show that using the model in [2] as

defined in Section 2, one can recover the rational vector
1

д f . Recall

that in the model Â[ℓ] and ˆb[ℓ] do not necessarily equal A(ξℓ) or
b(ξℓ) respectively. We only need on sufficiently many evaluations

to have Â[ℓ]f (ξℓ) = д(ξℓ) ˆb[ℓ], and rank(Â[ℓ]) = n.
Thus if we let

Â[ℓ] =


In

0 . . . 0
...
. . .
...

0 . . . 0


and

ˆb[ℓ] =



β
[ℓ]
1

...

β
[ℓ]
n
0

...

0


, (20)

for all ξℓ such that д(ξℓ) , 0, and

Â[ℓ] = 0
m×n

and
ˆb[ℓ] =


1

0

...

0


, (21)

whenever д(ξℓ) = 0 we can recover the vector of rational functions.

We shall call the ξℓ ’s such that д(ξℓ) = 0 the poles of the rational

function. If none of our black box evaluations indicate that we have

evaluated at a pole then Â[ℓ] is always full rank. We know that we

can recover the rational vector with L = df + dд + 2E + R + 1 and

L = max{df +dA,dд+db }+2E+R+1 evaluations respectively. Note

R = 0 since rank(Â[ℓ]) = n for all 0 ≤ ℓ ≤ L − 1. Now there must

be a matrix A(u) of minimal degree for which the vector
1

д f is the

solution of the systemA(u)x = b(u). We have proved in Theorem 3.1

that in the cases where the deg(д) > deg(A), L = max{deg(f ) +
deg(A), deg(д) + deg(b)} + 2k + 1 < L = deg(f ) + deg(д) + 2k + 1

so we can achieve Cabay early termination.

Suppose that on some evaluations of ξℓ ’s the black box indicates,
by the value ∞, that we have encountered a pole. We show that

the count L = df + dд + 2E + 1 evaluations suffices to recover

the rational function vector. Ideally, we would like to say that this

follows directly from Theorem 2.2, however we cannot guarantee

that we have rank(Â[ℓ]) = n on ≥ df + dд + E + 1 many points for

which Â[ℓ]f (ξℓ) = д(ξℓ) ˆb[ℓ], one of the assumptions of Theorem 2.2.

This full rank assumption is used in the proof of Theorem 2.2

only to establish that the vector of field elements Ψ(ξℓ)f (ξℓ) −
д(ξℓ)Φ(ξℓ) = 0. Thus if we can establish that the vector of field

elements Ψ(ξℓ)f (ξℓ) − д(ξℓ)Φ(ξℓ) = 0 without using the fact that

the rank(Â[ℓ]) = n on ≥ df + dд + E + 1 many points we would

establish our claim as all other assumptions of Theorem 2.2 remain

the same.

Proof. There are two possibilities on non-erroneous evaluations of

ξℓ , that is ℓ < {λ1, . . . , λk }:

1. д(ξℓ) = 0 which implies Ψ(ξℓ) = 0. See (21).

2. д(ξℓ) , 0 which implies Φ(ξℓ) = Ψ(ξℓ)
1

д(ξℓ )
f (ξℓ).

Recall that we solve equation (14). Note that in both cases we indeed

have the vector of field elements Ψ(ξℓ)f (ξℓ) −д(ξℓ)Φ(ξℓ) = 0. Thus

our claim is established. □

Remark 5.1. The system formed by using Â[ℓ ] and ˆb[ℓ ] as de-
scribed in (20) and (21) above is overdetermined. We show in

Lemma 3.2 that without additional information about the errors

we can always construct a second solution that has the same char-

acteristics as the actual solution. Nevertheless, given appropriate

assumptions about the error locations one can reduce the number

of necessary equations. For instance, in decoding interleaved Reed-

Solomon codes it is assumed that the errors occur in bursts, that

is errors occur in blocks [1, 11]. In a forthcoming paper we will

give the analysis for a semi-deterministic scenario, that is where

the actual errors do not need to be random field elements. Note

that Theorem 3.1 describes a second scenario where the number of

evaluations is less for interleaved codes, namely when the vector
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encodes a rational function that is the solution to a parametric

linear system (see also [10]). □

5.1 Cabay Early Termination with poles

Suppose deg(д) > deg(A) and that on evaluation at some ξℓ ’s, ℓ <
{λ1, . . . , λk }, the black box indicates that д(ξℓ) is a pole. There are
examples where Lcab = max{df +dA,dд +db }+ 2E + 1 evaluations

are not sufficient to recover the rational function vector using our

current model for rational vector recovery. To prove that Lcab was
sufficient to recover the rational function vector

1

д f we needed

the rank(Â[ℓ]) = n for all ξℓ , ℓ < {λ1, . . . , λk }. We needed this

to establish that A(ξℓ)Φ(ξℓ) = Ψ(ξℓ)b(ξℓ) and the pair (Λf ,Λд) is
a solution to our linear system, where Λ(u) is the error locator

polynomial. However in our rational vector recovery model we

set Â[ℓ] = 0 whenever д(ξℓ) = 0 for all ℓ, see (21). Note that

in the current rational vector recovery model when д(ξℓ) = 0

we set Ψ(ξℓ) = 0 and lose all information about Φ(ξℓ), see (21).

Consequently wemay not be able to recover
1

д f as we may not have

enough information about f . To remedy the lack of information we

adjust our black box output to gain some information about f at

poles. Let

γ
[ℓ]
i =



1

д(ξℓ )
f (ξℓ) if д(ξℓ) , 0

w[1], . . . ,w[rℓ ], a basis for the
null space of A(ξℓ),

or
cℓf (ξℓ), a non-zero scalar multiple

of the evaluated numerator vector,

both with an indication that д(ξℓ) = 0


if д(ξℓ) = 0

be what the black box returns. We show that if at the poles we

add the equations Φ(ξℓ) = Θℓ,1w[1] + . . . + Θℓ,rℓ w[rℓ ], or Φ(ξℓ) =
Θℓcℓf (ξℓ), cℓ , 0, to the set of equations produced by the original

rational vector recovery model then we can recover
1

д f with Lcab =

max{df + dA,dд + db } + 2E + 1 evaluations, where Θj ∈ K for all j
are new unknowns.

Theorem 5.1. Suppose that for ≥ max{df +dA,dд +db } + E + 1,

ξℓ we have β
[ℓ]
i = γ

[ℓ]
i for all i . If we add

Ψ(ξℓ) = 0 and (22)

Φ(ξℓ) = Θℓ,1w[1] + . . . + Θℓ,rℓ w[rℓ ] or (23)

Φ(ξℓ) = Θℓcℓf (ξℓ), cℓ , 0. (24)

to the system we solve, whenever γ [ℓ]i = ∞ for all i, 1 ≤ i ≤ m, and
if Φ ∈ K[u]n ,Ψ ∈ K[u], and Θℓ,1, . . . ,Θℓ,rℓ ∈ K, or Θℓ ∈ K is a
solution of the system, then for the pair (Φ,Ψ) that we compute we
have A(ξℓ)Φ(ξℓ) = Ψ(ξℓ)b(ξℓ), and (Λf ,Λд) solve (22), and (23) or
(24).

Proof. Note that the black box can return w[1], . . . ,w[rℓ ] for some

poles and cℓf (ξℓ), cℓ , 0 for others. If д(ξℓ) = 0 then we add two

sets of equations, (22), and (23) or (24). Clearly Ψ(ξℓ)b(ξℓ) = 0
m
,

and for (23) we have

A(ξℓ)Φ(ξℓ) = A(ξℓ)(Θℓ,1w[1] + . . . + Θℓ,rℓ w[rℓ ])

= Θℓ,1A(ξℓ)w
[1] + . . . + Θℓ,rℓA(ξℓ)w

[rℓ ] = 0
m ,

or for (24) we have

A(ξℓ)Φ(ξℓ) = A(ξℓ)(Θℓcℓf (ξℓ))

= ΘℓcℓA(ξℓ)f (ξℓ) = д(ξℓ)b(ξℓ) = 0
m .

Thus we indeed have A(ξℓ)Φ(ξℓ) = Ψ(ξℓ)b(ξℓ) whenever д(ξℓ) = 0.

Consider Λ(ξℓ)A(ξℓ)f (ξℓ) = Λ(ξℓ)д(ξℓ)b(ξℓ) = 0
m
. We always

have A(ξℓ)f (ξℓ) = д(ξℓ)b(ξℓ) = 0
m

when д(ξℓ) = 0. This im-

plies that f (ξℓ) must be in the null space of A(ξℓ). Thus f (ξℓ) =∑
j dℓ, jw[j],dℓ, j ∈ K. So if at a pole we add equation (23), then

Λ(ξℓ)f (ξℓ) = Λ(ξℓ)
∑
j dℓ, jw[j], so Θℓ, j = Λ(ξℓ)dℓ, j implies that

Λ(ξℓ)f (ξℓ) solves (23). If we add (24) at a pole, observe that

Λ(ξℓ)f (ξℓ) = Θℓcℓf (ξℓ) implies Θℓ = Λ(ξℓ)/cℓ . So Λ(ξℓ)f (ξℓ)
solves (24). Clearly Λ(ξℓ)д(ξℓ) is a solution to (22). □
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