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ABSTRACT
Ankur Moitra in his paper at STOC 2015 has given an in-
depth analysis of how oversampling improves the condition-
ing of the arising Prony systems for sparse interpolation and
signal recovery from numeric data. Moitra assumes that
oversampling is done for a number of samples beyond the
actual sparsity of the polynomial/signal. We give an algo-
rithm that can be used to compute the sparsity and estimate
the minimal number of samples needed in numerical sparse
interpolation. The early termination strategy of polynomial
interpolation has been incorporated in the algorithm: by
oversampling at a small number of extra sample points we
can diagnose that the sparsity has not been reached.

Our algorithm still has to make a guess, the number ζ of
oversamples, and we show by example that if ζ is guessed too
small, premature termination can occur, but our criterion is
numerically more accurate than that by Kaltofen, Lee and
Yang (Proc. SNC 2011, ACM [12]), but not as efficiently
computable. For heuristic justification one has available the
multivariate early termination theorem by Kaltofen and Lee
(JSC vol. 36(3–4) 2003 [11]) for exact arithmetic, and the
numeric Schwartz-Zippel Lemma by Kaltofen, Yang and Zhi
(Proc. SNC 2007, ACM [13]). A main contribution here is
a modified proof of the Theorem by Kaltofen and Lee that
permits starting the sequence at the point (1, . . . , 1), for
scalar fields of characteristic 6= 2 (in characteristic 2 counter-
examples are given).

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices, Computations on polynomials; G.1.1
[Interpolation]; I.1.2 [Algorithms]: Algebraic algorithms,
Analysis of algorithms
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1. INTRODUCTION
The sparse interpolation problem has been studied and

widely used in many different areas of science and engineer-
ing since the work of Prony (1795). The classical Prony’s
method aims to solve the exponential interpolation problem

f(x) =

t∑
j=1

cj exp(dj2πix),

where the frequencies di ∈ [0, 1). By sampling f at f(0), . . .,
f(2t−1) and solving a Hankel linear system to compute the
term locator polynomial whose roots are = exp(dj2πi), 1 ≤
j ≤ t. The amplitude coefficients cj can be computed by
solving a Vandermonde linear system. With highly accu-
rate big floating point precision, Prony’s method is straight-
forward to implement.

When there is inaccuracy (noise) in the measurements,
both the Hankel matrix and Vandermonde matrix appear-
ing in Prony’s method can have exponentially large condi-
tion numbers [2, 9]. Moreover, as shown by Moitra in [17,
Theorems 2.3, 3.1] there is a sharp phase transition for the
condition number of the Vandermonde matrix and the min-
imum number of samples needed, the place of which essen-
tially depending on the minimum separation in the presence
of noise. In Moitra’s algorithm [17, Algorithm 1], both the
sparsity and the minimal number of samples are input as
known values. However, without knowing the structure of
sparsity, it is unclear how to estimate the condition num-
ber of the Vandermonde matrix and determine the minimal
measurements needed. The arising Hankel matrix Hm can
only be used to bound the conditioning of the Vandermonde
matrix after m reaches the sparsity t (see (26), i.e., Vm has
full column rank). As shown by Example 4.1, an arising
Hankel matrix can be nearly-singular before m reaches t
for unluckily chosen samples. Therefore, a well-conditioned
Vandermonde matrix may correspond to a nearly-singular
Hankel matrix when m ≤ t. That phenomenon motivates
us to investigate how to reliably determine the number of
terms t of f and how many number of measurements are
minimally needed in the entire process of numerical sparse
interpolation with unknown sparsity.

In exact arithmetic, the early termination strategy [11]
has been introduced as a means to determine the number
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of terms t: one terminates the interpolation algorithm af-
ter consecutively encountering singular Hankel matrices ζ
times for a pre-chosen threshold ζ ≥ 1. It has been shown
in [11] that with a high probability that grows with ζ, one
does not stop before the sparsity is reached. However, in
numerical cases, as we have explained above, the Hankel
matrices could be extremely ill-conditioned, and one may
not be able to detect the number of terms by observing the
first several nearly-singular Hankel matrices. Based on the
precise quantitative bounds given in [17], we present a lower
bound on the t-th singular value σt(Hm) of the m-th aris-
ing Hankel matrix Hm and an upper bound on the ratio
of σ1(Hm)/σt(Hm), which give us the criterion (24), which
computes the sparsity t of f by checking whether the first t
singular values of all Hankel matricesHm, Hm+1, . . . , Hm+ζ−1

are larger than 1 − ε and the remaining singular values are
less than ε and none lie in between. We show by experiments
that the criterion is quite tolerant to noise in the samples.
In particular, in Example 4.1 from [2] we can avoid prema-
ture termination by a moderately large number ζ (≥ 6) of
oversamples.

Finally, in Section 4.1 we prove the Early Termination
Theorem [11, Theorem 4] for the (unshifted)-sequence start-
ing at the point (1, . . ., 1) for coefficient fields of character-
istic 6= 2 (see Theorem 4.1) and give counterexamples for
characteristic = 2, which resolves an open question in [11].

2. PRELIMINARIES
We consider the polynomial version of Prony’s method

with coefficients from an arbitrary field K. Let f ∈ K[x],
where

f =

t∑
i=1

cix
ei , ci 6= 0,

and K is an arbitrary field. p is a prime number larger than
deg(f). Let ai = f(ωi) where ω is selected as a random p-th
root of unity. Let Hm be the Hankel matrix defined by the
sequence of a0, . . . , a2m−2:

Hm =


a0 · · · am−1

a1 · · · am
...

...
...

am−1 · · · a2m−2

 . (1)

We have the following well-known decomposition of Hm:

Hm = Vm ·D · V T
m , (2)

where Vm is the m× t Vandermonde matrix:

Vm =


1 · · · 1
ωe1 · · · ωet

...
...

...

ωe1(m−1) · · · ωet(m−1)

 (3)

and D is a t× t diagonal matrix:

D =

c1 . . .

ct

 . (4)

By V T
m we denote the transpose of the Vandermonde matrix

Vm.

In exact arithmetic, the early termination strategy can
determine the number of terms with high probability, i.e.,
with high probability, all j × j leading principle minors of
Ht are non-singular for 2 ≤ j ≤ t. Moreover, Hj must be
singular for all j > t. Hence the number of terms is de-
tected as follows: for j = 2, 3, . . . , the first time Hj becomes
singular is when j = t + 1. Strictly speaking, one needs
that the characteristic of the field is 6= 2 and our new The-
orem 4.1 (see Section 4.1 for more detail). It is known that
the Hankel matrices can become extremely ill-conditioned:
[12] investigates how to estimate the spectral norm of the
inverse of a Hankel matrix Ht and how to employ several
randomization ideas of [9] for heuristically achieving a rel-
atively well-conditioned Hankel matrix Ht. Then one can
detect the number of terms by observing a sharp increase in
the condition number of Ht+1.

Oversampling is another popular method to improve the
conditioning of the Hankel matrix [6]. There are many excit-
ing new results on sparse signal recovering from noisy data,
see [4, 5, 15, 17] and the references there. Especially, in [17],
Ankur Moitra provides an explicit formula to estimate the
condition number of the Vandermonde matrix provided that
m > (1/∆) + 1, where ∆ is the minimum separation of the
evaluated terms in f . Moreover, a lower bound of the condi-
tion number of Vm was also given to show that in the noisy
case, if m = (1−ε)/∆ there is a pair of t point sources x and
x′, each with separation ∆, which allow only exponentially
small noise to tell them apart. Such extreme ill-posedness
has also been illustrated in [5] based on the work of David
Slepian [18].

In the following, we will show how to apply quantitative
bounds for singular values of Hankel matrices and the early
termination strategy for the unshifted case in order to de-
termine the sparsity of the polynomial f in the presence of
noise.

3. NUMERIC SPARSITY DETERMINATION
We extend Theorem 2.3 in [17] to give a lower bound on

the t-th singular value of Hm for m > 1
∆

+1, which provides
us a new criterion to estimate the number of terms of f by
checking whether the singular values of oversampled Hankel
matrices are separated into those > 1− ε and those < ε and
none lie in between. In this section K is specialized as the
complex field.

Definition 3.1 (see [5]). Let B be the unit circle obtained
by identifying the endpoints on [0, 1]. For a family of points
B ⊂ B, the minimal separation is defined as the closest dis-
tance between any two elements from B:

∆(B) = inf
(b,b′)∈B:b 6=b′

|b− b′|, (5)

where |b−b′| is the wrap-around distance. That is the length
of the minor arc between b and b′ divided by 2π.

Let

ω = e2πij/p, 0 ≤ j < p, (6)

where the integer j can be chosen randomly or fixed. Let

∆ = ∆(ωe1 , . . . , ωet).

It is clear that

1 +
1

∆
> t.

The following theorem has been proved in [17].
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Theorem 3.1. Let σ1 ≥ σ2 ≥ · · · ≥ σt be singular values
of Vm, provided m > 1 + 1

∆
, we have

m− 1 +
1

∆
≥ σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

t ≥ m− 1− 1

∆
. (7)

The condition number κ of Vm satisfies

κ2 ≤ m+ 1/∆− 1

m− 1/∆− 1
. (8)

The upper and lower bounds given in (7) and (8) can be
used to bound σt(Hm) and σ1(Hm) for m > 1 + 1

∆
. First,

let us see how to bound σt(Hm) by the t-th singular value
σt(Vm) of Vm.

Lemma 3.2. For m > t, we have

σt(Hm) ≥ σ2
t (Vm) · min

1≤i≤t
|ci|. (9)

Proof. Rewrite Hm = Vm ·D
1
2 ·D

1
2 · V T

m and set

Wm = Vm ·D
1
2 ∈ Cm×t.

If ωei 6= ωej for i 6= j, and m ≥ t, then Vm ∈ Cm×t has full
column rank t. Moreover, since ci 6= 0, the diagonal matrix
D ∈ Ct×t is invertible. Hence we have

rank(Hm) = rank(D) = rank(Wm) = rank(Vm) = t.

Claim 3.3. σt(Hm) > σ2
t (Wm).

Indeed, let Wm = U · Σ · V be the singular value decompo-
sition of Wm, where U ∈ Cm×m, Σ ∈ Cm×t, V ∈ Ct×t. De-
note by W †m the Moore-Penrose pseudoinverse of Wm, which
has been proved to be unique [10], and W †m = V H ·Σ† ·UH ,
where V H and UH represent the Hermitian transpose of the
matrix V and U respectively and Σ† is constructed by sub-
stituting the non-zero items in Σ by their inverse. It is clear
that

H†m = (Wm ·WT
m)† = (WT

m)† ·W †m, (10)

see [19]. This indicates that:

σ1(H†m) 6 σ1((WT
m)†) · σ1(W †m) = σ2

1(W †m). (11)

By noticing that:

σ1(H†m) =
1

σt(Hm)
, σ1(W †m) =

1

σt(Wm)
, (12)

we obtain Claim 3.3.
Now we consider the t-th singular value of Wm. According

to the property of singular values, we have

σt(Wm) = min
rank(A)<t

‖Wm −A‖2. (13)

Let A0 be a minimizer in (13), then A0 · D−
1
2 is of rank

smaller than t. Therefore, we have:

σt(Vm) = min
rank(B)<t

‖Vm −B‖2,

≤ ‖Vm −A0 ·D−
1
2 ‖2

= ‖(Vm ·D
1
2 −A0) ·D−

1
2 ‖2

≤ ‖Wm −A0‖2 · ‖D−
1
2 ‖2

= σt(Wm) · ‖D−
1
2 ‖2.

By noticing that 1

‖D−1/2‖22
= min1≤i≤t |ci|, we have

σ2
t (Wm) ≥ σ2

t (Vm) · min
1≤i≤t

|ci|. (14)

Combining with Claim 3.3, we complete the proof. 2

Remark 3.1. It should be noted that σt(Ht) = σ2
t (Wt)

when Wt is a real matrix. Otherwise, we may have σt(Ht) >
σ2
t (Wt). For instance, suppose:

V2 =

[
1 1
1 2

]
, D =

[
−1 0
0 2

]
, (15)

then

H2 =

[
1 3
3 7

]
, W2 =

[
i
√

2

i 2
√

2

]
, (16)

therefore

σ2(H2) = 0.243 > σ2
2(W2) = 0.169.2 (17)

Remark 3.2. Lemma 3.2 is only correct for m ≥ t. For
m < t, there exists a well-conditioned Vandermonde matrix
Vm which corresponds to a singular Hankel matrix Hm =
Vm ·D · V T

m , see Example 4.1. 2

Theorem 3.4. For given f and ω, when m > 1 + 1
∆

, we
have

σt(Hm) ≥
(
m− 1− 1

∆

)
· min

1≤i≤t
|ci|, (18)

and

σ1(Hm)

σt(Hm)
≤
m− 1 + 1

∆

m− 1− 1
∆

· max1≤i≤t |ci|
min1≤i≤t |ci|

. (19)

Proof. When m > 1 + 1
∆

, according to Theorem 3.1,

m− 1 +
1

∆
≥ σ2

1(Vm) ≥ σ2
t (Vm) ≥ m− 1− 1

∆
. (20)

When m > 1 + 1
∆
≥ t, by (9), we have

σt(Hm) ≥ σ2
t (Vm) · min

1≤i≤t
|ci| ≥

(
m− 1− 1

∆

)
· min

1≤i≤t
|ci|.

On the other hand, σ1(Hm) is the 2-norm of Hm, we have

σ1(Hm) ≤ σ1(Vm) · σ1(D) · σ1(V T
m )

= σ2
1(Vm) · max

1≤i≤t
|ci|

≤
(
m− 1 +

1

∆

)
· max

1≤i≤t
|ci|.

Therefore we can derive (19). 2

Theorem 3.4 gives us an estimation on how many evalua-
tions we need to get a Hankel matrix with the t-th singular
value larger than or equal to 1.

Theorem 3.5. When m satisfies

m ≥ 1 +
1

∆
+ max

1≤i≤t

1

|ci|
, (21)

we have σt(Hm) ≥ 1.

Proof. According to Theorem 3.4, when m ≥ 1+ 1
∆

, we have

σt(Hm) ≥
(
m− 1− 1

∆

)
· min

1≤i≤t
|ci|.

Therefore, if m satisfies (21), then

σt(Hm) ≥ max
1≤i≤t

1

|ci|
· min

1≤i≤t
|ci| = 1. 2

The following perturbation theorem about the singular
values can be found in [20, 16].
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Theorem 3.6. Let σj(A) be the j-th singular value of A.
Let E be a small perturbation matrix. For 1 ≤ i ≤ dim(A),
we have

|σi(A+ E)− σi(A)| ≤ ‖E‖2. (22)

Remark 3.3. In the noise-free case, for m ≥ t+ 1, we have

σj(Hm) = 0, t+ 1 ≤ j ≤ m.

Therefore, according to Theorem 3.6, we have

|σj(Hm + E)| ≤ ‖E‖2
def
= ε. (23)

The constant 1 in Theorem 3.5 can be an arbitrary number
τ > 2ε, and we can always separate the singular values of
Hm + E into two groups; σj(Hm + E) ≥ τ − ‖E‖2 > ε for
j ≤ t and σj(Hm + E) ≤ ε for j > t. However, choosing
τ = 1 means the Hankel matrix Hm is far from being of rank
t− 1. 2

Theorem 3.5 and inequality (23) provide us a robust cri-
terion to detect the sparsity t in the numeric case when no
premature termination occurs.

Before we state the main algorithm for detecting the spar-
sity t, we introduce some quantities first.

• m: size of the current Hankel matrix;
• ε: error bound for Hankel matrices;
• nσ≥1−ε: the number of the singular values of Hm−1 that

are larger than or equal to 1− ε;
• nσ≤ε: the number of the singular values of Hm−1 that are

smaller than or equal to ε;
• ζ: the algorithm will be terminated if the condition{

nσ≥1−ε(Hm+i) = nσ≥1−ε(Hm−1),

nσ≤ε(Hm+i) = m+ i− nσ≥1−ε(Hm−1),
(24)

is satisfied for any i with 0 ≤ i ≤ ζ − 1.

Algorithm 1 Sparsity determination

Input:
f(x): a univariate black box polynomial;
ζ: a positive integer, the threshold for early termination;
ε: an error bound for Hankel matrices;

Output:
t: the sparsity of f(x).

1: Estimate a prime upper bound p of deg(f).
2: For a randomly chosen integer j ∈ [1, p − 1], set ω ←
e2πij/p, nσ≥1−ε ← 0, nσ≤ε ← 0, k ← 0, m ← 1, H1 ←
f(1).

3: while k < ζ do
4: Compute the singular values of Hm;

l1 ← the number of singular values larger than 1− ε;
l2 ← the number of singular values smaller than ε.

5: if l1 + l2 = m and l1 = nσ≥1−ε then
6: k ← k + 1.
7: else
8: k ← 0.
9: end if

10: nσ≥1−ε ← l1, nσ≤ε ← l2, m← m+ 1.
11: Update Hm by evaluating f(x) at ω2m−3 and ω2m−2.
12: end while
13: t← nσ≥1−ε.

Theorem 3.7. Suppose the errors in Hankel matrices are
bounded by ε. The algorithm terminates when m satisfies

m ≥ 1 +
1

∆
+ max

1≤i≤t

1

|ci|
+ (ζ − 1). (25)

With high probability, Algorithm 1 returns the number of
terms t in f .

Proof. According to Theorem 3.5, when m satisfies

m ≥ 1 +
1

∆
+ max

1≤i≤t

1

|ci|
,

σt(Hm) will be at least 1. Moreover, according to Theorem
3.6, we have

|σt(Hm + E)| ≥ |σt(Hm)| − ‖E‖2 ≥ 1− ε.

For m ≥ t+ 1, we have

σj(Hm) = 0, t+ 1 ≤ j ≤ m.

According to Theorem 3.6 and inequality (23), for j = t +
1, . . . ,m, we have

|σj(Hm + E)| ≤ ‖E‖2 ≤ ε.

Hence the condition (24) will be satisfied ζ times.
A heuristic probabilistic analysis for Algorithm 1 return-

ing the number of terms t in f will be given in Section 4.1.
2

Remark 3.4. Since the minimum number of measurements
given in (25) depends on min1≤i≤t |ci|, if the minimum value
is much smaller than 1, then we need a large number of
evaluations to bound the singular value σt(Hm) from 1. In
this case, the inequality (19) may give us a better criterion
to stop the algorithm. 2

The following theorem shows that the t-th singular value
of the Vandermonde matrix Vm is bounded below by the t-th
singular value of Hm too.

Theorem 3.8. For m > t, we have

σt(Vm) ≥ σt(Hm)

2mmax1≤i≤t |ci|
. (26)

Proof. Suppose Vm = U · Σ · V is the singular value decom-
position of Vm, where Σ ∈ Cm×t, U ∈ Cm×m, V ∈ Ct×t.
We have

σt(Vm) = min
rank(B)<t

‖Vm −B‖2,

= ‖Vm − V̄m‖2,

where

V̄m = U · diag(σ1(Vm), . . . , σt−1(Vm), 0) · V.

Hence, we have:

σt(Hm) = min
rank(A)<t

‖VmDV T
m −A‖2

≤ ‖VmDV T
m − V̄mDV̄ T

m‖2

= ‖VmDV T
m − VmDV̄ T

m + VmDV̄
T
m − V̄mDV̄ T

m‖

≤ ‖VmD(V T
m − V̄ T

m )‖2 + ‖(Vm − V̄m)DV̄ T
m‖2

≤ σt(Vm)‖Vm‖2‖D‖2 + σt(Vm)‖V̄m‖2‖D‖2

≤ 2σt(Vm)‖Vm‖2‖D‖2

≤ 2m max
1≤i≤t

|ci|σt(Vm). 2
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The minimum number of measurements given in (25) de-
pends also on the minimum separation ∆. In [9], several
randomization strategies are proposed to enlarge the mini-
mum separation. The following theorem extends results in
[9, Theorem 4.3].

Theorem 3.9. Suppose p is a prime number and p > deg(f).
For a uniformly and randomly chosen integer j with 0 < j <
p in (6), with probability at least 1− 1

2k
, we have

∆ >
1

2kt2
, ∀k ∈ Z>0. (27)

Proof. We extend the proof in [9, Theorem 4.3]. Assume
eu > ev for u < v, by Definition 3.1, we have

∆ =
1

p
· min

1≤u<v≤t
min{δu,v, p− δu,v}, (28)

where
δu,v = eu · j − ev · j mod p.

There are at most
(
t
2

)
≤ t2

2
distinct values of (eu − ev)

mod p. For any k ∈ Z>0, let

l =
p

2kt2
, (29)

then for all
c ∈ {1, . . . , blc} ∪ {p− blc+ 1, . . . , p},

where the floor function blc denotes the largest integer ≤ l,
there is only one j ∈ Zp such that

δu,v = c.
Indeed, as p is a prime number larger than deg(f), [eu− ev]
is invertible in Zp, which indicates

j = (eu − ev)−1 · c mod p,
Therefore for any given eu and ev, there are 2 · blc values of
j such that

min{δu,v, p− δu,v} ≤ l. (30)

There are totally at most (t2/2) ·2 · blc values of j, such that
(30) is satisfied by some δu,v. Therefore with probability

≤ t2

2
· 2 · blc · 1

p
≤ t2

2
· 2l · 1

p
=

1

2k
,

we can have ∆ ≤ blc
p
≤ l

p
≤ 1

2kt2
, by (28) and (29). 2

Example 3.1. Let f = 2x109 − 5x59 + x58 + 2x47 + 3x35

and set ζ = 5.

1. Set ω = e2πi/119, and assume the evaluation error in Hm
is bounded by ε = 0.05. The wrap-around distance is

∆(ω109, . . . , ω35) =
1

119
.

When m becomes larger than 16, there are always 5 sin-
gular values of Hm that are larger than 1 and all other
singular values of Hm are less than 0.05. Therefore the
algorithm will stop after 21 = 16 + 5 steps and return
t = 5.

We have σ1(H4)
σ4(H4)

≈ 48.7, σ1(H5)
σ5(H5)

≈ 4387. Therefore, if we

use the sharp increase in the condition number of Hm to
detect the sparsity, we may mistakenly take t = 4.

We also notice that our algorithm can terminate much
earlier than the worst case bound 1

∆
+ 1 = 120 to detect

the sparsity and get a well-conditioned Vandermonde ma-
trix (the condition number of V16 is 8.6).

2. We take a random rotation of ω, for instance, set ω =
e2πi·9/119. The minimal separation increases and the wrap-
around distance is

∆(ω109, . . . , ω35) ≈ 1/13.

The termination of the algorithm is made 8 steps earlier,
i.e., the condition (24) will be satisfied at m = 8. 2

Figure 1: Terms in Example 3.1

4. EARLY TERMINATION STRATEGIES
It should be noted that Algorithm 1 may terminate before

m reaches the number of terms t in f .

Example 4.1. [2] Let f =
∑t
j=1 cjx

ej , where t = 61, cj =
1 for j = 1, . . . , t,

ej =


2(j − 1) j = 1, . . . , 41,

63 + 2(j − 42) j = 42, . . . , 51,

1 + 2(j − 52) j = 52, . . . , 61.

Figure 2 shows all terms in f evaluating at ω = e2πi/82.

1. The smallest singular value of the Hankel matrix Hm is
less than 10−11 for any m larger than 23. It is an example
used in [2] to show that the Hankel matrices can have
exponentially large condition numbers.

2. For m from 37 to 41, the first 22 singular values of Hm
are larger than 1, and the rest singular values of Hm are
smaller than 10−10. Therefore if we set ζ ≤ 5, ε = 10−10,
according to the criterion (24), the algorithm will termi-
nate wrongly and return t = 22. However, if we continue
to m = 42, the Hankel matrix H42 has 23 singular values
larger than 1, which does not satisfy the criterion (24).

3. For this example, we have

∆(ωe1 , . . . , ωet) =
1

82
.

For any m ≥ 76, the first 61 singular values of Hm are
larger than 1 while the remaining singular values are
smaller than 10−13. Therefore, Algorithm 1 will return
t = 61 successfully if we set ζ > 5 or ε = 10−13.

4. It is noted that the Vandermonde matrices Vm are well-
conditioned for 1 ≤ m ≤ 41, with condition numbers
being about 1.41. The condition number of Vm increases
to 1.9 · 109 when m reaches 61, and then decreases to
1.976 for m going from 62 to 81.
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Figure 2: Terms in Example 4.1.

In the following, we will show that with high probabil-
ity, the algorithm will not terminate before it reaches the
sparsity t.

4.1 Kaltofen-Lee Early Termination Revisited
For exact coefficient fields, the probabilistic analysis that

checking termination conditions with high probability pre-
vents a sparsity computation where t is smaller than the
actual sparsity is due to [11]. The randomized algorithm in
[11] is said to terminate early because the number of eval-
uations is 2t + 1 with high probability, which is the mini-
mum number of evaluations necessary without knowing the
sparsity t on input. The setting by Kaltofen and Lee is the
multivariate polynomial version by Ben-Or and Tiwari [3] of
Prony’s algorithm with coefficients from an arbitrary field K.
Let

f(x1, . . . , xn) =

t∑
j=1

cj x
ej,1
1 · · ·xej,nn , cj ∈ K, cj 6= 0 (31)

be a t-sparse polynomial in K[x1, . . . , xn], let

αi = f(xi1, . . . , x
i
n) ∈ K[x1, . . . , xn], i = 1, 2, 3, . . .

α0 = c1 + · · ·+ ct

}
(32)

be the evaluations of f at the i-th powers of a generic point
with the j-th component being the variable xj , and let

Hm(h1, . . . , h2m−1) =



h1 h2 . . . hm

h2 h3 . .
.

hm+1

h3 h4 . .
.

hm+2

...
... . .

. ...
hm hm+1 . . . h2m−1


(33)

be an m ×m Hankel matrix formed by the entries h1, . . .,
h2m−1. Theorem 4 in [11] states that

∀m, 1 ≤ m ≤ t : det(Hm(α1, . . . , α2m−1)) 6= 0.

One always has det(Hm′(α1, . . . , α2m′−1)) = 0 for all m′ ≥
t+1. Thus, by the DeMillo-Lipton/Schwartz/Zippel Lemma,
by substituting field elements ωj ∈ S ⊆ K that are uniformly
and randomly chosen from the finite set S one has with prob-
ability

≥ 1−
(
t3 +

3

2
t2 +

1

2
t
)

deg(f)
1

3 |S| (34)

(|S| denoting the number of elements in S) that the determi-
nants of Hm(a1, . . . , a2m−1) 6= 0 for ai = αi(ω1, . . . , ωn) and

all m with 1 ≤ m ≤ t [11, Theorem 5]. Therefore, the first
singular Hankel matrix that appears has with high probabil-
ity dimension (t+1)×(t+1), yielding the sparsity t. The en-
tire sequence of determinants (det(Hm(a1, ..., a2m−1))1≤m≤t+1

can be computed one after another from the sequence a1,a2,
a3, . . . by the fraction-free Berlekamp/Massey Algorithm [7,
14] in a total of O(t2) arithmetic operations. We recall that
in our numerical Algorithm 1 above the termination crite-
rion is that singular values are separated into those > 1− ε
and those < ε and none in between in a matrix Hm+ζ that
has 2ζ additional evaluations for each m.

Our univariate algorithm with floating point arithmetic
above and the multivariate Ben-Or and Tiwari Algorithm
with exact scalar arithmetic start the sequence at (ω0

1 , . . .,
ω0
n) = (1, 1, . . . , 1), in which case H1(α0) = c1 + · · ·+ ct can

be = 0. If the coefficient field K has characteristic = 2, then
for c1 = · · · = ct = 1 one has for all m with 0 ≤ m ≤ t − 1
and t−m an odd integer that det(Hm(α0, . . . , α2m−2)) = 0
(see Appendix Section 6). That fact shows that the shift in
[11] starting at α1 is necessary to have all Hm with m ≥ 2
non-singular, for coefficient fields of characteristic = 2.

It also follows from the Proof of Theorem 4 in [11] (see
(46) below) that for coefficient fields K of any characteristic
we have

∀m, 1≤m≤t− 1:

 det(Hm(α0, ..., α2m−2))6=0
and/or
det(Hm+1(α0, ..., α2m))6=0.

 (35)

Therefore, if one stops when one has encountered ζ = 2
consecutive singular Hankel matrices, the upper bound on
the probability of premature failure can be reduced at the
cost of 2 additional evaluations.

For coefficient fields K of characteristic 6= 2 we can im-
prove Theorem 4 in [11] unconditionally, giving a positive
answer to the question raised in Footnote 2 in [11, Proof of
Theorem 4].

Theorem 4.1. Let K be a field of characteristic 6= 2, let αi
be as in (32) and let Hm be as in (33). Then

det(H1(α0)) = c1 + · · ·+ ct,
det(Hm(α0, . . . , α2m−2)) 6= 0 for all 2 ≤ m ≤ t.

}
(36)

Proof. Our proof gives a finer analysis of the term structure
in the expansion of the formula for det(Hm(α0, . . ., α2m−2))
given in [11, cf. Equ. (9)] (see also (2) above). Let J =
{1, 2, . . . , t}, let

F (y1, . . . , yt) =
∑

{j1,...,jm}⊆J

cj1 · · · cjm
∏

1≤v<u≤m

(yju−yjv )2

∈ K[y1, . . . , yt], (37)

and let βj = x
ej,1
1 · · ·xej,nn be the j-th term in (31). Then

we have

det(Hm(α0, . . . , α2m−2)) = F (β1, . . . , βt). (38)

There are
(
t
m

)
summands in (37) and each product in (37)

has
(
m
2

)
squared factors.

We will use admissible total term orders on both K[x1, . . .,
xn] for the terms in F (β1, . . . , βt) and on K[y1, . . . , yt] for the
terms in F (y1, . . . , yt) and denote them by �x and �y , re-
spectively. We write �x and �y when the terms are strictly
in order, that is, in order and not equal. The term orders
can be pure lexicographical term orders. Note that all terms

252



in F in (37), if F 6= 0, have total degree 2
(
m
2

)
= m(m − 1)

in y1, . . . , yt. We order the terms βj in f in (31) as

β1 �x β2 �x . . . �x βt (39)

and the variables yj as

y1 �y y2 �y · · · �y yt. (40)

The leading term with respect to the term order �y among
all terms in all products

∏
1≤v<u≤m(yju − yjv )2 in (37) is

M1 = y2m−2
1 y2m−4

2 · · · y4
m−2y

2
m−1 ∈ K[y1, . . . , yt], (41)

which we will prove below. We shall consider a third, partial
order wy on the terms ∈ K[y1, . . . , yt] of F :

Definition 4.1. Let M ∈ K[y1, . . . , yt] be a term of degree
D = m(m − 1). By vlist(M) we denote the list of factors
that are variables in order sorted with respect to (40):

vlist(M)
def
= [yj1 , . . . , yj1︸ ︷︷ ︸

e1 times

, . . . , yjk , . . . , yjk︸ ︷︷ ︸
ek times

]

for M=ye1j1 ···y
ek
jk
, e1≥1, ..., ek≥1, j1<j2< · · ·<jk.

By vlist(M)[`] we denote the `-th component in the list,
which is a variable yη, j1 ≤ η ≤ jk. Now let M ′ be an-
other term in K[y1, . . . , yt] of degree D. We define

M wy M ′

def⇐⇒ ∀`, 1≤`≤D : η≤η′ for

{
yη=vlist(M)[`],
yη′=vlist(M ′)[`]

}
⇐⇒ ∀`, 1≤`≤D : vlist(M)[`] �y vlist(M ′)[`]. (42)

We write M =y M ′
def⇐⇒M wy M ′ and M 6= M ′, which

means that in (42) vlist(M)[`] �y vlist(M ′)[`] for at least
one index `. We have

M 6wy M ′

⇐⇒ ∃`, 1≤`≤D : vlist(M ′)[`] �y vlist(M)[`]. (43)

Note that =y is a (strict) partial order: for M = y4
1y

2
3 and

M ′ = y2
1y

4
2 6= M we have both M 6=y M ′ and M ′ 6=y M .

We first claim that

M =y M
′ =⇒M(β1, . . . , βt) �x M ′(β1, . . . βt). (44)

The strict order (44) of the evaluated terms is a consequence
of the (39), (40), definition (42) and the admissibility prop-
erty of �x: for terms β, β′, γ, γ′ in K[x1, . . . , xn] we have
β �x β′ and γ �x γ′ =⇒ βγ �x β′γ′ with βγ �x β′γ′ if
β �x β′ and/or γ �x γ′.

Now let M ∈ K[y1, . . . , yt] be any term in any of the prod-
ucts

∏
1≤v<u≤m(yju−yjv )2 in (37). For the term M1 in (41)

we have

M1 wy M for all such terms M . (45)

The reason is the following: for µ = 1, 2, . . . ,m − 1, the

largest position index `
[max]
µ that yµ can reach in vlist(M) is

`
[max]
µ = 2(m− 1) + 2(m− 2) + · · ·+ 2(m− µ), because the

maximum total degree in y1, . . . , yµ in M is = `
[max]
µ : there

are least 2
(
m−µ

2

)
= (m−µ)(m−µ−1) factors (yju−yjv ) with

ju > µ and jv > µ whose variables contribute to M a total
degree ≥ (m−µ)(m−µ−1), so the maximum total degree in

y1, . . . , yµ is ≤ m(m−1)−(m−µ)(m−µ−1) = `
[max]
µ . Those

maxima are achieved for all µ in vlist(M1). In particular, yµ

appears first at position `
[max]
µ−1 +1 in vlist(M1). Suppose now

that M1 6wy M ⇐⇒ there exists an ` with 1 ≤ ` ≤ D and
vlist(M)[`] �y vlist(M1)[`] (see (42)), meaning µ′ ≤ µ−1 for
yµ′ = vlist(M)[`] and yµ = vlist(M1)[`]. For yµ in vlist(M1)

we have ` > `
[max]
µ−1 . This means that yµ′ is in a position

> `
[max]
µ−1 in vlist(M), for which µ′ ≤ µ− 1 is too small to be

reachable, which proves (45).
From (44) and (45) we conclude that for all M 6= M1

we have M1(β1, . . . , βt) �x M(β1, . . . , βt), which in [11, 1]
was argued directly. Our argument here is more detailed
and will be used again below. Next we observe that the
term M1 in (41) occurs in (37) precisely in the products∏

1≤v<u≤m(yju − yjv )2 for all {j1, . . . , jm} = {1, . . . ,m −
1, τ} with τ = m,m + 1, . . . , t. Therefore we have the ex-
pansion

F (β1, . . . , βt) = c1 · · · cm−1

( t∑
τ=m

cτ
)
M1(β1, . . . , βt)

+ lower order terms in x1, . . . , xn.

Thus we conclude from (38) and cj 6= 0 that( t∑
τ=m

cτ
)
6= 0 =⇒ det(Hm(α0, . . . , α2m−2)) 6= 0 (46)

(see [1, Remark 4.2]). Two consecutive sums
∑t
τ=m cτ and∑t

τ=m+1 cτ cannot both be = 0, for then cm = 0, which
implies (35) above.

Now suppose that (
∑t
τ=m cτ ) = 0 for 2 ≤ m ≤ t. We

then consider the second highest term with respect to the
order �y in the expansion of (37), namely,

M2 = y2m−2
1 y2m−4

2 · · · y4
m−2ym−1ym ∈ K[y1, . . . , yt]. (47)

The term has variables y1, . . . , ym and therefore occurs in
only one product, namely,

∏
1≤v<u≤m(yju − yjv )2 with {j1,

. . ., jm} = {1, . . . ,m}, and there with coefficient −2, and
thus in (37) has a coefficient −2c1 · · · cm. We shall prove
that (

∑t
τ=m cτ ) = 0 implies that the term M2(β1, . . . , βt) ∈

K[x1, . . . , xn] in the expansion of (38) has the same coeffi-
cient.

By (44), all terms M ∈ K[y1, . . . , yt] in (37) with M2 =y
M have M2(β1, . . . , βt) �x M(β1, . . . , βt) and therefore can-
not additively contribute to the coefficient of M2(β1, . . . , βt)
in the expansion (38). All remaining terms satisfy M2 6wy
M (M1 is such a term). Now let M be a term in (37)
with M2 6wy M . We have for all ` with 1 ≤ ` ≤ D − 1
that vlist(M2)[`] = vlist(M1)[`] �y vlist(M)[`], the latter
being true by (45). Therefore, M2 6wy M implies that
vlist(M)[D] = ym−1, because no yµ with µ ≤ m − 2 can

reach position D > `
[max]
m−2 ≥ `

[max]
µ and we must by (43)

have vlist(M)[D] �y vlist(M2)[D] = ym.
We finally show that all terms M with M2 6wy M have a

coefficient = 0 in (37). In the previous paragraph we have
shown that vlist(M)[D] = ym−1. We claim that M can only
occur in products

∏
1≤v<u≤m(yju−yjv )2 with {j1, . . . , jm} =

{1, . . . ,m − 1, τ} and m ≤ τ ≤ t. For suppose the set
{j1, . . . , jm} contains two τ , τ ′ with m ≤ τ ≤ t and τ <
τ ′ ≤ t. Then the product

∏
1≤v<u≤m(yju−yjv )2 has a factor

(yτ − yτ ′)2, so the total degree in the variables y1, . . . , ym−1

of each term M in the expansion of that product is < m(m−
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1), which implies that ym−1 cannot reach position D in
vlist(M). Now suppose that a term M with M2 6wy M oc-
curs in a product

∏
1≤v<u≤m(yju−yjv )2 with {j1, . . . , jm} =

{1, . . . ,m−1, τ} for at least one τ with m ≤ τ ≤ t (otherwise
it cannot occur in the full expansion of (37) at all). Then
M occurs in those products for all τ with m ≤ τ ≤ t, there
with the same coefficient aM (by setting yτ = 0 in all prod-
ucts) and therefore in the expansion of (37) with coefficient
aMc1 · · · cm−1(

∑t
τ=m cτ ) = 0, the “= 0” by our assumption

that (
∑t
τ=m cτ ) = 0.

Therefore, the only non-zero scalar coefficient for the term
M2(β1, . . . , βt) in (38) can come from M2 in (37), which
as argued above has a coefficient −2c1 · · · cm, which is 6= 0
because cj 6= 0 and the the field is of characteristic 6= 2.
We conclude that for all m and t with 2 ≤ m ≤ t we have
(
∑t
τ=m cτ ) = 0 =⇒ det(Hm(α0, . . . , α2m−2)) 6= 0, which

together with (46) proves Theorem 4.1. 2

Theorem 4.1 yields a slightly better estimate on the early
termination success probability than (34) for fields of char-
acteristic 6= 2, namely,

≥ 1− (t3 − t+ 3) deg(f)
1

3|S| (48)

after 2t+1 evaluations. The estimate (48) includes testing if
a1 = f(ω1, . . . , ωn) is = 0 first, in which case f is with high
probability the zero polynomial (t = 0). If the test fails, our
algorithm computes a0 = f(1, . . . , 1) and a2 = f(ω2

1 , . . . , ω
2
n)

and tests det(H2(a0, a1, a2)) = 0 next. We do this so that
the comparison to (34) is proper, where the zero polyno-
mial is returned after a single evaluation by terminating at
det(H1(a1)) = 0, as does ours now.

Remark 4.1. Theorem 4.1 remains valid if some ej,ν in
(31) are negative integers. Then f ∈ K[x1, x

−1
1 , . . . , xn, x

−1
n ],

the ring of Laurent polynomials in x1, . . . , xn. In our prob-
ability estimate (48) with 0 6∈ S one then can use

deg(f) = max1≤j≤t(
∑n
ν=1 ej,ν)−

∑n
ν=1 min1≤j≤t(ej,ν).

Note that for a regular polynomial f that notion of degree
is actually smaller than the total degree of f if a variable xν
divides f . 2
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6. APPENDIX: CHARACTERISTIC = 2
If the coefficient field K has characteristic = 2, c1 = · · · =

ct = 1 and t−m is an odd number, then∏
1≤v<u≤m

(βjv − βju)2 =
∏

1≤v<u≤m

(β2
jv − β

2
ju), (49)

which can be viewed as the determinant of the Vandermonde
matrix V generated by β2

j1 , . . . , β
2
jm . Then each term in the

expansion of (49) must be a product of elements selected
from every column of V . Therefore by (37) and (38), each
term in det(Hm(α0, . . . , α2m−2)) has the form M = β2m−2

j1
·

β2m−4
j2

· · ·β2
jm−1

. Let S = {1, . . . , t} \ {j1, . . . , jm−1}, then

the coefficient of M is cj1 · · · cjm−1 ·
∑
jm∈S cjm = 0for S

having an even number of elements. Therefore, we have
det(Hm(α0, . . . , α2m−2)) = 0. 2
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