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Abstract

In [Kaltofen and Yang, Proc. ISSAC 2014] we give an algorithm based algebraic error-
correcting decoding for multivariate sparse rational function interpolation from evalua-
tions that can be numerically inaccurate and where several evaluations can have severe
errors (“outliers”). Our 2014 algorithm can interpolate a sparse multivariate rational
function from evaluations where the error rate is 1/q is quite high, say q = 5.

For the algorithm with exact arithmetic and exact values at non-erroneous points,
one avoids quadratic oversampling by using random evaluation points. Here we give the
full probabilistic analysis for this fact, thus providing the missing proof to Theorem 2.1
in Section 2 of our ISSAC 2014 paper. Our argumentation already applies to our
original 2007 sparse rational function interpolation algorithm [Kaltofen, Yang and Zhi,
Proc. SNC 2007], where we have experimentally observed that for T unknown non-zero
coefficients in a sparse candidate ansatz one only needs T + O(1) evaluations rather
than O(T 2) (cf. Candès and Tao sparse sensing), the latter of which we have proved in
2007. Here we prove that T +O(1) evaluations at random points indeed suffice.

1. Our Vector-of-Functions Recovery Setting

We now present the setting of our theorem on the required number of samples for rational
function recovery. For the full background including the references to the extant literature and
our error-tolerant multivariate rational function interpolation algorithm, its implementation
and observed experimental data we refer to our paper (Kaltofen and Yang 2014).

∗This research was supported in part by the National Science Foundation under Grant CCF-1115772 (Kaltofen).
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We interpolate a vector of multivariate sparse rational functions with a common denom-
inator:

[

f 〈1〉

g
, . . . ,

f 〈s〉

g

]

∈ K(x1, . . . , xn)
s, g 6= 0. (1)

Note that the fractions f 〈σ〉/g are not necessarily reduced, and that may even have GCD(g,
GCDσ(f

〈σ〉)) 6= 1, because reduction by GCD can affect the sparsity of the fraction, such
as (xd

1 − xd
2)/(x1 − x2). We assume that we have for all σ, 1 ≤ σ ≤ s, sets of terms

D
〈σ〉
f ⊇ supp(f 〈σ〉) that constitute maximal sparse supports, and a maximal sparse support

set Dg ⊇ supp(g) for the terms in the common denominator g. See the Appendix (Section 3
below) for a definition of the support and the meaning of all used symbols. Our algorithms
(Kaltofen et al. 2007; Kaltofen and Yang 2013, 2014) follow the variable-by-variable process
by Zippel (Zippel 1979), which yield those sparse support supersets in each iteration. We
suppose that we can evaluate the vector (1) (“probe the black box”) at values for the variables,
(x1, . . . , xn) ← (ξ1,ℓ, . . . , ξn,ℓ) ∈ K

n, for all L evaluations 0 ≤ ℓ ≤ L − 1, where the ξµ,ℓ are
chosen in a certain way, e.g., selected randomly and uniformly from a finite subset S ⊆ K.
As in (Kaltofen and Yang 2013), the obtained vector [ β

〈1〉
ℓ , . . . , β

〈s〉
ℓ ] ∈ (K ∪ {∞})s can be

incorrect in one or more components for k ≤ E evaluations ℓ = λ1, . . . , λk, that is

∀κ, 1 ≤ κ ≤ k : ∃σ, 1 ≤ σ ≤ s :
f 〈σ〉

g
(ξ1,λκ

, . . . ξn,λκ
) 6= β

〈σ〉
λκ

, (2)

∀ℓ 6∈ {λ1, . . . , λk} : ∀σ, 1 ≤ σ ≤ s :
f 〈σ〉

g
(ξ1,ℓ, . . . ξn,ℓ) = β

〈σ〉
ℓ . (3)

Here E is predetermined, for instance from the error rate (Kaltofen and Yang 2014, Re-
mark 1.1), and the locations of the errors are unknown. As in (Kaltofen and Yang 2013) we
set all components of a vector = ∞ if g(ξ1,ℓ, . . . , ξn,ℓ) = 0, that even for those components
with f 〈σ〉(ξ1,ℓ, . . . , ξn,ℓ) = 0, but false vectors full of∞’s can appear for g(ξ1,λκ

, . . . , ξn,λκ
) 6= 0.

We can identify vectors that contain both ∞ and a field element as erroneous. Errors are
dealt with by interpolating (f 〈σ〉Λ)/(gΛ) à la (Kaltofen and Pernet 2013; Kaltofen and Yang
2013) where Λ = (xn1

− ξn1,λ1
) · · · (xn1

− ξn1,λk
) is an error locator polynomial for a chosen

n1 with 1 ≤ n1 ≤ n. We have the maximal supports

D
〈σ〉
f,E;n1

= {τxν
n1
| τ ∈ D

〈σ〉
f , 0 ≤ ν ≤ E} ⊇ supp(f 〈σ〉Λ),

Dg,E;n1
= {τxν

n1
| τ ∈ Dg, 0 ≤ ν ≤ E} ⊇ supp(gΛ).

}

(4)

Now we limit the sparse supports of polynomials with unknown coefficients Φ〈σ〉 and Ψ to the
term sets (4). From (2) and (3) we obtain linear homogeneous equations for the coefficients
of Φ〈σ〉, Ψ:

Φ〈σ〉(ξ1,ℓ, . . . , ξn,ℓ)− β
〈σ〉
ℓ Ψ(ξ1,ℓ, . . . , ξn,ℓ) = 0,

for 0 ≤ ℓ ≤ L− 1, 1 ≤ σ ≤ s with β
〈σ〉
ℓ 6=∞,

Ψ(ξ1,ℓ, . . . , ξn,ℓ) = 0,

for 0 ≤ ℓ ≤ L− 1 with β
〈1〉
ℓ = · · · = β

〈s〉
ℓ =∞,

with supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

for 1 ≤ σ ≤ s, supp(Ψ) ⊆ Dg,E;n1
.



























(5)
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Note that Φ〈σ〉 ← f 〈σ〉Λ, Ψ← gΛ solve (5). We call any solution (Φ〈1〉, . . . ,Φ〈s〉,Ψ) of (5) an
interpolant. We seek a (minimal) L and ξµ,ℓ such that all solutions of (5) satisfy

∀σ, 1 ≤ σ ≤ s : Φ〈σ〉g = f 〈σ〉Ψ, with supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

, supp(Ψ) ⊆ Dg,E;n1
. (6)

We call (6) the Welch-Berlekamp property. Then any non-zero solution vector to (6) satisfies

[

Φ〈1〉

Ψ
, . . . ,

Φ〈s〉

Ψ

]

=

[

f 〈1〉

g
, . . . ,

f 〈s〉

g

]

.

The equation Φ〈σ〉g = f 〈σ〉Ψ is the equivalence test for the field of quotients construction for
K[x1, . . . , xn], which works for any integral domain and does not require a greatest common
divisor operation. That is the underpinning reason why the sparse fractions in (1) can be
left unreduced.

The key theorem below states that at random points the Welch-Berlekamp property is
achieved from almost square systems. The following Theorem 1.1 is Theorem 2.1 in (Kaltofen
and Yang 2014).

Theorem 1.1. Let

L = |Dg,E;n1
|+ (max

1≤σ≤s
|D

〈σ〉
f,E;n1

|)− 1, M 〈σ〉 = |Dg,E;n1
|+ |D

〈σ〉
f,E;n1

|, (7)

and let all ξµ,ℓ, where 1 ≤ µ ≤ n and 0 ≤ ℓ ≤ L − 1, be randomly and uniformly selected
from a finite subset S ⊆ K. Then the probability that all (s+1)-tuples (Φ〈1〉, . . . ,Φ〈s〉,Ψ) that
are interpolants to (5) satisfy the Welch-Berlekamp property (6) is bounded from below as

≥ 1−
1

|S|

s
∑

σ=1

(M 〈σ〉 − E − 1) (max{deg(τf ) | τf ∈ D
〈σ〉
f }+max{deg(τg) | τg ∈ Dg}+ E).

Theorem 1.1 as stated is a five-fold generalization to Cauchy interpolation: multivariate
instead of univariate (µ and n in Theorem 1.1), sparse instead of dense (the D’s in Theo-
rem 1.1), vector instead of a single function (σ and s in Theorem 1.1), error-correction instead
of always correct values (E and n1 in Theorem 1.1), values at poles indicated by ∞ instead
of disallowed (equation for Ψ in (5)).

Before giving our proof to the above Theorem 1.1, we demonstrate our technique on a
simpler problem, the non-singularity of sparse Fourier matrices.

Lemma 1.2. Let 0 ≤ d1 < d2 < · · · < dt < d̄ be integers, and let η1, . . . , ηt be uniformly ran-
domly selected integers with 0 ≤ ηℓ ≤ d̄−1 for all 1 ≤ ℓ ≤ t. Then the matrix [e2πi djηℓ/d̄]1≤j,ℓ≤t

is non-singular with probability ≥ 1− (d1 + · · ·+ dt)/d̄.

Proof. The matrix A(v1, . . . , vt) = [v
dj
ℓ ]1≤j,ℓ≤t ∈ C[v1, . . . , vt]

t×t is non-singular because the
variable substitution vℓ ← vℓ−1

1 yields A(1, v1, v
2
1, . . . , v

t−1
1 ) as a (transposed) Vandermonde

matrix and the terms vd11 , . . . , , vdt1 are distinct. Another argument would be that the term
vd11 vd22 · · · v

dn
n in the minor expansion of the determinant of A(v1, . . . , vt) does not cancel, but

in our proof of Theorem 1.1 we will make use of a similar substitution as the one above. The
total degree deg(det(A)) ≤ d1 + · · · + dt, so by the DeMillo-Lipton-Schwartz-Zippel Lemma
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applied to the sample set S = {e2πi η/d̄ | 0 ≤ η ≤ d̄ − 1} we obtain the stated probability.
�

Note that Lemma 1.2 generalizes the well-known non-singularity for prime d̄ (see (Tao 2005,
Lemma 1.3)) to composite d̄ under the assumption of random ηℓ.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 must account for several complications, two of which are: 1. the
vector of fractions (1) is sparse and unreduced, so given degree bounds and term-supersets
for the numerators and the denominator on input, one may have several sparse interpolants:
for instance x1/x2 and x2

1/(x1x2); 2. not only are the error locations λκ unknown, the actual
number of errors, k, is also unknown. On input, one has a bound E ≥ k.

We split the proof into 3 auxiliary lemmas followed by the main argument. Our first
auxiliary lemma relates solutions with the Welch-Berlekamp property (6) to interpolants of
(5); it appeared first for s = 1 in (Kaltofen and Yang 2013, Note added to Remark 2.2, in
the posting on Kaltofen’s web site on July 14, 2013).

Lemma 2.1. For any L ≥ k ≥ 0, any E ≥ 0 and any evaluations ξµ,ℓ ∈ K, where 1 ≤ µ ≤ n,
0 ≤ ℓ ≤ L − 1, consider the solution (s + 1)-tuples (Φ〈1〉, . . . ,Φ〈s〉,Ψ) to the homogeneous
linear equations in their coefficients

∀σ, 1 ≤ σ ≤ s : Φ〈σ〉g = f 〈σ〉Ψ (that is, (6)) (8)

Φ〈σ〉(ξ1,λκ
, . . . , ξn,λκ

)− β
〈σ〉
λκ

Ψ(ξ1,λκ
, . . . , ξn,λκ

) = 0,

for 1 ≤ κ ≤ k, 1 ≤ σ ≤ s with β
〈σ〉
λκ
6=∞, (9)

Ψ(ξ1,λκ
, . . . , ξn,λκ

) = 0, for 1 ≤ κ ≤ k with β
〈1〉
λκ

= · · · = β
〈s〉
λκ

=∞, (10)

Ψ(ξ1,ℓ, . . . , ξn,ℓ) = 0,

with ℓ 6∈ {λ1, . . . , λk} and g(ξ1,ℓ, . . . , ξn,ℓ) = 0, ∀σ : f 〈σ〉(ξ1,ℓ, . . . , ξn,ℓ) = 0. (11)

with supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

for 1 ≤ σ ≤ s, supp(Ψ) ⊆ Dg,E;n1
.

All those solution tuples must be interpolants of (5).

Proof of Lemma 2.1. For ℓ 6∈ {λ1, . . . , λk} and β
〈σ〉
ℓ 6=∞ we have for all σ:

β
〈σ〉
ℓ (g Ψ)(ξ1,ℓ, . . . , ξn,ℓ) = (f 〈σ〉 Ψ)(ξ1,ℓ, . . . , ξn,ℓ) (by the definition (3))

= (Φ〈σ〉 g)(ξ1,ℓ, . . . , ξn,ℓ) (by (8)).

Dividing by g(ξ1,ℓ, . . . , ξn,ℓ) 6= 0 yields (5) for this case. For ℓ ∈ {λ1, . . . , λk} and β
〈σ〉
ℓ = ∞

(“false pole”) we have (5) from (10). Finally, for ℓ 6∈ {λ1, . . . , λk} and β
〈σ〉
ℓ =∞ (“true pole”)

we have (f 〈σ〉 Ψ)(ξ1,ℓ, . . . , ξn,ℓ) = (Φ〈σ〉 g)(ξ1,ℓ, . . . , ξn,ℓ) = 0 by (8) and g(ξ1,ℓ, . . . , ξn,ℓ) = 0. If
one f 〈σ〉(ξ1,ℓ, . . . , ξn,ℓ) 6= 0 we get Ψ(ξ1,ℓ, . . . , ξn,ℓ) = 0 of (5). Otherwise we use (11). �

Our second auxiliary lemma gives an upper bound on L so that all interpolants of (5)
for certain ξµ,ℓ are in the described subspace of Lemma 2.1, meaning that they satisfy the
Welch-Berlekamp property (6). The argument for s = 1 is already in (Kaltofen et al. 2007,
Section 4.1).
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Lemma 2.2. Let L× = |Dg,E;n1
|× (max1≤σ≤s |D

〈σ〉
f,E;n1

|) and let ξµ,ℓ = ξℓµ ∈ K, where 1 ≤ µ ≤

n and 0 ≤ ℓ ≤ L× − 1, such that for D
〈σ〉
f,E;n1

× Dg,E;n1
= {τfτg | τf ∈ D

〈σ〉
f,E;n1

, τg ∈ Dg,E;n1
}

we have

τ1(ξ1, . . . , ξn) 6= τ2(ξ1, . . . , ξn) for all τ1, τ2 ∈ D
〈σ〉
f,E;n1

×Dg,E;n1
, τ1 6= τ2, (12)

(see (Kaltofen and Yang 2013, Assumption 4)). Then all interpolants (s + 1)-tuples (Φ〈1〉,
. . ., Φ〈s〉, Ψ) of (5) satisfy the Welch-Berlekamp property (6).

Proof of Lemma 2.2. Because for β
〈σ〉
ℓ 6=∞ we have

(f 〈σ〉Λ)(ξℓ1, . . . , ξ
ℓ
n) = β

〈σ〉
ℓ (gΛ)(ξℓ1, . . . , ξ

ℓ
n)

we get from (5) for β
〈σ〉
ℓ 6=∞ that (Φ〈σ〉gΛ− f 〈σ〉ΛΨ)(ξℓ1, . . . , ξ

ℓ
n) = 0. For β

〈σ〉
ℓ =∞ we have

at both true or false poles (Λg)(ξℓ1, . . . , ξ
ℓ
n) = Ψ(ξℓ1, . . . , ξ

ℓ
n) = 0, the latter by (5), and hence

again (Φ〈σ〉gΛ− f 〈σ〉ΛΨ)(ξℓ1, . . . , ξ
ℓ
n) = 0. Thus the coefficient vectors of Φ〈σ〉gΛ− f 〈σ〉ΛΨ are

nullspace vectors of the matrix with entries τ(ξ1, . . . , ξn)
ℓ where τ ∈ D

〈σ〉
f,E;n1

× Dg,E;n1
. By

our assumption (12) the matrix is transposed Vandermonde with distinct entries in each row,
and has L× rows, which is ≥ the number of terms in supp(Φ〈σ〉gΛ− f 〈σ〉ΛΨ). Therefore for
all σ the coefficient vectors of Φ〈σ〉gΛ− f 〈σ〉ΛΨ are zero. �

Remark 2.1. For n = 1 and dense support setsD
〈σ〉
f,E;n1

= {1, x1, x
2
1, . . .},Dg,E;n1

= {1, x1, x
2
1,

. . .} we may choose ξ1,ℓ = ξ̂ℓ ∈ K with ξ̂ℓ1 6= ξ̂ℓ2 for all ℓ1 6= ℓ2. Then the coefficient matrix

for (Φ〈σ〉gΛ− f 〈σ〉ΛΨ)(ξ̂ℓ) is a non-zero Vandermonde matrix and the Lemma holds. See also
(Olshevsky and Shokrollahi 2003). �

The third lemma is the crucial idea in (Kaltofen and Yang 2013, Note added to Remark 2.2,
in the posting on Kaltofen’s web site on July 14, 2013) that reduces L× of Lemma 2.2. We
will evaluate the black box for (1) at symbols vµ,ℓ ∈ K(. . . , vµ,ℓ, . . .). It is not required from
the black box to allow such elements (in transcendental extensions of K) as arguments, we
solely use it for purpose of proof.

Lemma 2.3. Let L+ = |Dg,E;n1
|+(max1≤σ≤s |D

〈σ〉
f,E;n1

|)−E− 1. Suppose ξµ,ℓ = vµ,ℓ is a new
symbol (variable), for each 1 ≤ µ ≤ n, 0 ≤ ℓ ≤ L+− 1. We assume that k = 0, that is, there

are no erroneous evaluations, so that β
〈σ〉
ℓ = (f 〈σ〉/g)(v1,ℓ, . . . , vn,ℓ) ∈ K(v1,0, . . . , vn,L+−1)

for all ℓ. Note that at vectors of n distinct variables there cannot be true poles. Then all
interpolants (s + 1)-tuples of (5) for L = L+ over K(v1,0, . . . , vn,L+−1) satisfy the Welch-
Berlekamp property (6).

Proof of Lemma 2.3. If ξµ,ℓ = vℓµ, where vµ are symbols for variables (transcendental el-

ements), and L× = |Dg,E;n1
| × (max1≤σ≤s |D

〈σ〉
f,E;n1

|) evaluations are used, Lemma 2.2 gives
(6) for all interpolants of (5) over K(v1, . . . , vn). Note that (12) is satisfied for the vari-
ables vµ. We first show the same for ξµ,ℓ = vµ,ℓ. As in the proof of Lemma 2.2 we have
(Φ〈σ〉g − f 〈σ〉Ψ)(v1,ℓ, . . . , vn,ℓ) = 0 for all ℓ, 0 ≤ ℓ ≤ L× − 1; note that k = 0⇒ Λ = 1. Solv-
ing for the coefficient vector of Φ〈σ〉g − f 〈σ〉Ψ over K(v1,0, . . . , vn,L×−1), the arising coefficient

matrix has entries τ(v1,ℓ, . . . , vn,ℓ) for τ ∈ D
〈σ〉
f,E;n1

×Dg,E;n1
. The matrix has full column rank
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because it does so when substituting vµ,ℓ ← vℓµ (cf. the proof of Lemma 1.2 above), which

are evaluations in the form of Lemma 2.2. Therefore the coefficient vector of Φ〈σ〉g − f 〈σ〉Ψ
is zero.

We now can reduce the number of equations in (5) (for ξµ,ℓ = vµ,ℓ) without enlarging the
set of interpolants of (5). Fix a σ, that is, the case s = 1: we have shown just above that all
solution pairs (Φ〈σ〉,Ψ〈σ〉) to the equations

Φ〈σ〉(v1,ℓ, . . . , vn,ℓ)− β
〈σ〉
ℓ (v1,ℓ, . . . , vn,ℓ)Ψ

〈σ〉(v1,ℓ, . . . , vn,ℓ) = 0, for 0 ≤ ℓ ≤ L
〈σ〉
× − 1,

L
〈σ〉
× = |Dg,E;n1

×D
〈σ〉
f,E;n1

|, supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

, supp(Ψ〈σ〉) ⊆ Dg,E;n1
(13)

satisfy
Φ〈σ〉g − f 〈σ〉Ψ〈σ〉 = 0, supp(Φ〈σ〉) ⊆ D

〈σ〉
f,E;n1

, supp(Ψ〈σ〉) ⊆ Dg,E;n1
. (14)

That linear system (13) has M 〈σ〉 = |Dg,E;n1
|+ |D

〈σ〉
f,E;n1

| unknown coefficients of (Φ〈σ〉,Ψ〈σ〉),
and since we assume k = 0, that is, there are no erroneous evaluation (Λ = 1), in the supports
(4) we have at least E+1 linearly independent solutions: (f 〈σ〉xν

n1
, g xν

n1
) with 0 ≤ ν ≤ E. We

now can select r
〈σ〉
v ≤M 〈σ〉−E− 1 linearly independent equations and preserve the solution.

The crucial argument is that each of those rows is formed from a vector of new variables
(v1,ℓ, . . . , vn,ℓ), so by variable substitution we conclude that the first r

〈σ〉
v rows in (13) already

have maximal rank and yield (14), that over any field extension of K(v1,0, . . . , vn,r〈σ〉
v
). Here

we use k = 0: for symbolic evaluations there are no (true) poles, so all equations have the
same form.

The case s ≥ 1 and k = 0 follows by using the first maxσ r
〈σ〉
v ≤ (maxσ M

〈σ〉) − E −
1 equations in (13) simultaneously for all σ. Note that for each individual σ the block
of equations (13) produces solutions with a Ψ〈σ〉 component that satisfies (14), which are
restricted to Ψ〈1〉 = · · · = Ψ〈s〉, and (13) remains valid for the restriction. �

We return to the proof of Theorem 1.1.
We seek conditions on the ξµ,ℓ ∈ S ⊆ K so that the interpolants of (5) do not form a

proper superspace to (8)–(11) of Lemma 2.1. There are at least L − E = L+ = |Dg,E;n1
| +

(max1≤σ≤s |D
〈σ〉
f,E;n1

|) − E − 1 equations in (5) without erroneous β
〈σ〉
ℓ . Let 0 ≤ ℓ1 < · · · <

ℓL+
≤ L− 1 be indices for good evaluations. Note that the ℓθ are not known on input.

By r
〈σ〉
v ≤ M 〈σ〉 − E − 1 ≤ L+ we have denoted for a given σ the rank of the symbolic

(generic) interpolation system (13) in the proof of Lemma 2.3, which is the minimum number
of symbolic equations necessary to obtain the Welch-Berlekamp property (14). For each σ
we consider 4 solution spaces:

Y
〈σ〉
ξ = {(Φ〈σ〉,Ψ〈σ〉) | Φ〈σ〉(ξ1,ℓθ , . . . , ξn,ℓθ)− β

〈σ〉
ℓθ

Ψ〈σ〉(ξ1,ℓθ , . . . , ξn,ℓθ) = 0,

for all 1 ≤ θ ≤ r〈σ〉v , β
〈σ〉
ℓθ
6=∞, (15)

Ψ〈σ〉(ξ1,ℓθ , . . . , ξn,ℓθ) = 0, for all 1 ≤ θ ≤ r〈σ〉v , β
〈σ〉
ℓθ

=∞, (16)

Φ〈σ〉,Ψ〈σ〉 ∈ K[x1, . . . , xn],

supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

, supp(Ψ〈σ〉) ⊆ Dg,E;n1
},
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Z
〈σ〉
K

= {(Φ〈σ〉,Ψ〈σ〉) | Φ〈σ〉g − f 〈σ〉Ψ〈σ〉 = 0, Φ〈σ〉,Ψ〈σ〉 ∈ K[x1, . . . , xn], (17)

supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

, supp(Ψ〈σ〉) ⊆ Dg,E;n1
},

Y 〈σ〉
v = {(Φ〈σ〉,Ψ〈σ〉) | g(v1,ℓθ , . . . , vn,ℓθ)Φ

〈σ〉(v1,ℓθ , . . . , vn,ℓθ)−

f 〈σ〉(v1,ℓθ , . . . , vn,ℓθ)Ψ(v1,ℓθ , . . . , vn,ℓθ) = 0 for all 1 ≤ θ ≤ r〈σ〉v , (18)

Φ〈σ〉,Ψ〈σ〉 ∈ K(v1,ℓ1 , . . . , vn,ℓρ)[x1, . . . , xn], ρ = r〈σ〉v ,

suppx1,...,xn
(Φ〈σ〉) ⊆ D

〈σ〉
f,E;n1

, suppx1,...,xn
(Ψ〈σ〉) ⊆ Dg,E;n1

},

Z
〈σ〉
K(v) = {(Φ

〈σ〉,Ψ〈σ〉) | Φ〈σ〉g − f 〈σ〉Ψ〈σ〉 = 0, (19)

Φ〈σ〉,Ψ〈σ〉 ∈ K(v1,ℓ1 , . . . , vn,ℓρ)[x1, . . . , xn], ρ = r〈σ〉v ,

supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

, supp(Ψ〈σ〉) ⊆ Dg,E;n1
}.

Note that (18) has the equations of (13) multiplied by the polynomial denominator of

β
〈σ〉
ℓθ

(v1,ℓθ , . . . , vn,ℓθ), namely g(v1,ℓθ , . . . , vn,ℓθ). The coefficient matrix of (18), which has r
〈σ〉
v

rows, has full rank r
〈σ〉
v and there is a non-singular r

〈σ〉
v ×r

〈σ〉
v submatrix, denoted by A

〈σ〉
v (v1,ℓ1 ,

. . ., vn,ℓρ), whose determinant is not zero,

∆〈σ〉
v (v1,ℓ1 , . . . , vn,ℓρ) = det(A〈σ〉

v (v1,ℓ1 , . . . , vn,ℓρ)) 6= 0, ρ = r〈σ〉v . (20)

We shall assume that for ξµ,ℓθ , 1 ≤ µ ≤ n, 1 ≤ θ ≤ r
〈σ〉
v we have

∆〈σ〉
v (ξ1,ℓ1 , . . . , ξn,ℓρ) 6= 0, ρ = r〈σ〉v . (21)

We now apply Lemma 2.1 for s = 1 to (17) and (15, 16), which have L = r
〈σ〉
v and k = 0,

the latter of which renders (9) and (10) vacuous. Because by (21) no row in A
〈σ〉
v (ξ1,ℓ1 , . . .,

ξn,ℓρ) can be a zero row, we have

∀ θ, 1 ≤ θ ≤ r〈σ〉v : f 〈σ〉(ξ1,ℓθ , . . . , ξn,ℓθ) 6= 0 or g(ξ1,ℓθ , . . . , ξn,ℓθ) 6= 0. (22)

So (11) is also vacuous. Thus Lemma 2.1 applies, and we obtain Y
〈σ〉
ξ ⊇ Z

〈σ〉
K

.

By (21) the coefficient matrix of (15,16) also has maximal rank r
〈σ〉
v : a special case are

the rows corresponding to the equations (16) for true poles g(ξ1,ℓθ , . . . , ξn,ℓθ) = 0, which in

A
〈σ〉
v (ξ1,ℓ1 , . . . , ξn,ℓρ) are multiplied by f 〈σ〉(ξ1,ℓθ , . . . , ξn,ℓθ), which by (22) is a non-zero scalar

in K. Therefore, the vector space dimension of Y
〈σ〉
ξ is M 〈σ〉 − r

〈σ〉
v , where M 〈σ〉 = |Dg,E;n1

|+

|D
〈σ〉
f,E;n1

| is the number of unknown coefficients in (15,16). The vector space dimension of

Z
〈σ〉
K

is equal to the dimension of Z
〈σ〉
K(v), because the entries of the coefficient matrix of (17)

and (19) depend only on f 〈σ〉 and g. The vector space dimension of Y
〈σ〉
v is M 〈σ〉 − r

〈σ〉
v by

definition of r
〈σ〉
v , and Y

〈σ〉
v = Z

〈σ〉
K(v) by the arguments in the proof of Lemma 2.3, so Z

〈σ〉
K

also has dimension M 〈σ〉 − r
〈σ〉
v . Since Y

〈σ〉
ξ ⊇ Z

〈σ〉
K

and the two vector spaces have the same

dimension, we finally get Y
〈σ〉
ξ = Z

〈σ〉
K

.
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Next, we restrict the solutions (Φ〈σ〉,Ψ〈σ〉) ∈ Y
〈σ〉
ξ by all remaining equational constraints

for true evaluations in (5):

Φ〈σ〉(ξ1,ℓ, . . . , ξn,ℓ)− β
〈σ〉
ℓ Ψ〈σ〉(ξ1,ℓ, . . . , ξn,ℓ) = 0, for all 0 ≤ ℓ ≤ L− 1 with

ℓ 6= ℓθ (for all 1 ≤ θ ≤ r〈σ〉v ), ℓ 6= λκ (for all 1 ≤ κ ≤ k), β
〈σ〉
ℓ 6=∞, (23)

Ψ〈σ〉(ξ1,ℓ, . . . , ξn,ℓ) = 0, for all 1 ≤ ℓ ≤ L with

ℓ 6= ℓθ (for all 1 ≤ θ ≤ r〈σ〉v ), ℓ 6= λκ (for all 1 ≤ κ ≤ k), β
〈σ〉
ℓ =∞, (24)

Because Y
〈σ〉
ξ = Z

〈σ〉
K

, all (Φ〈σ〉,Ψ〈σ〉) satisfy (17) and therefore (23) and (24), the latter

provided f 〈σ〉(ξ1,ℓ, . . . , ξn,ℓ) 6= 0. If f 〈σ〉(ξ1,ℓ, . . . , ξn,ℓ) = g(ξ1,ℓ, . . . , ξn,ℓ) = 0, the constraints
(24) restrict the solution space, but (17) remains valid for the solutions.

We conclude as at the end of the proof of Lemma 2.3, assuming that the condition (21) is
simultaneously satisfied for all σ. The system (5), excluding all erroneous ℓ ∈ {λ1, . . . , λk},
solves (15) simultaneously for all σ and a common denominator Ψ〈1〉 = · · · = Ψ〈s〉, which

restricts the solution pairs (Φ〈σ〉,Ψ〈σ〉) to a further subspace of Z
〈σ〉
K

, and the Welch-Berlekamp
property (8) remains valid.

We finally include all remaining erroneous equations in (6) at ℓ ∈ {λ1, . . . , λk}. From the
determinantal conditions (21) for all σ, as we have just shown, all solutions (Φ〈1〉, . . . ,Φ〈s〉,Ψ)
of the (good) equations in (6) at all ℓ with 0 ≤ ℓ ≤ L − 1 and ℓ 6∈ {λ1, . . . , λk} satisfy the
Welch-Berlekamp property (8), which is (17) for all σ. Hence we must have

∀σ : (Φ〈σ〉g)(ξ1,λκ
, . . .) = (f 〈σ〉Ψ)(ξ1,λκ

, . . .). (25)

The equations with erroneous β
〈σ〉
λκ
6=∞ have

∀σ : Φ〈σ〉(ξ1,λκ
, . . .) = β

〈σ〉
λκ

Ψ(ξ1,λκ
, . . .), ∃σ1 : f

〈σ1〉(ξ1,λκ
, . . .) 6= β

〈σ1〉
λκ

g(ξ1,λκ
, . . .). (26)

Thus,
(f 〈σ1〉Ψ)(ξ1,λκ

, . . .) = (Φ〈σ1〉g)(ξ1,λκ
, . . .) = β

〈σ1〉
λκ

(Ψg)(ξ1,λκ
, . . .),

which by (26) forces
∀σ : Ψ(ξ1,λκ

, . . .) = 0 = Φ〈σ〉(ξ1,λκ
, . . .). (27)

For the equations with erroneous β
〈σ〉
λκ

= ∞ we have the equations Ψ(ξ1,λκ
, . . .) = 0, but

g(ξ1,λκ
, . . .) 6= 0, which with (25) completes (27). We conclude that all erroneous equations

restrict the interpolation solution space by (27), and the Welch-Berlekamp property (8) stays
preserved. Again, there is at least one non-zero solution (f 〈1〉Λ, . . . , f 〈s〉Λ, gΛ).

The probabilistic analysis for condition (21) uses the DeMillo-Lipton-Schwartz-Zippel

Lemma. Let H =
∏s

σ=1∆
〈σ〉
v . Then H(ξ1,ℓ1 , . . . , ξn,ℓρ) 6= 0, ρ = maxσ{r

〈σ〉
v }, yields (21) for

all σ, that for uniformly sampled random ξµ,ℓθ ∈ S ⊆ K with a probability ≥ 1−deg(H)/|S|,
where |S| is the number of elements in the finite set S. Note that the black box can produce
erroneous equations adaptively to the evaluation points (ξ1,ℓ, . . . , ξn,ℓ), akin to the adaptive
cipher text attack in public key crypto systems. But our evaluations are random for each ℓ,
so they are random for those (unknown) equations at ℓθ in (21).

The proof of Theorem 1.1 concludes by bounding deg(H) =
∑s

σ=1 deg(∆
〈σ〉
v ). Each entry

in the coefficient matrix A
〈σ〉
v in (20) is either a term inD

〈σ〉
f,E;n1

at the variables v1,ℓθ , . . . , vn,ℓθ ×
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g(v1,ℓθ , . . . , vn,ℓθ) or a term in Dg,E;n1
at the variables v1,ℓθ , . . . , vn,ℓθ × (−f 〈σ〉(v1,ℓθ , . . . , vn,ℓθ)).

We have deg(f 〈σ〉) ≤ max{deg(τf ) | τf ∈ D
〈σ〉
f } = max{deg(τf ) | τf ∈ Df,E;n1

} − E and
deg(g) ≤ max{deg(τg) | τg ∈ Dg} = max{deg(τg) | τg ∈ Dg,E;n1

} − E. Therefore, in (20) we
have

deg(∆〈σ〉
v ) ≤ r〈σ〉v ×max{deg(f 〈σ〉) + max{deg(τg) | τg ∈ Dg,E;n1

},

deg(g) + max{deg(τf ) | τf ∈ D
〈σ〉
f,E;n1

} }

≤ (M 〈σ〉 − E − 1)× (max{deg(τf ) | τf ∈ D
〈σ〉
f }+max{deg(τg) | τg ∈ Dg}+ E).

Thus ends the proof of Theorem 1.1. �

Remark 2.2. The condition g 6= 0 in (1) is not essential, which is useful when we inadver-
tently have projected the denominator to 0 during a Zipple-sytle iteration (Kaltofen and Yang
2014, Section 3). If g = 0, all non-faulty evaluation vectors are by definition [∞, . . . ,∞]. If

for all σ: D
〈σ〉
f = ∅ ⇒ f 〈σ〉 = 0, then the Welch-Berlekamp property (6) is satisfied for any

solution (Φ,Ψ). Otherwise, if for one σ1 we have D
〈σ1〉
f 6= ∅, we must have Ψ = 0 for all

solutions of (5). We obtain Ψ = 0 for the symbolic evaluations in Lemma 2.2: from g = 0 we

have β
〈σ〉
ℓ =∞ for all ℓ and the (shortened) (13) is Ψ〈σ1〉(v1,ℓ, . . . , vn,ℓ) = 0, for 0 ≤ ℓ ≤ L+−1,

where L+ ≥ |D
〈σ1〉
f,E;n1

| + |Dg,E;n1
| − E − 1 ≥ |Dg,E;n1

|, the latter because D
〈σ1〉
f,E;n1

contains at

least E + 1 terms. Therefore Ψ〈σ1〉 = 0 = Ψ; Theorem 1.1 follows as in the rest of the proof.
�

Remark 2.3. The system of linear equations (6) is not entirely square: there can be as many

as s×L equations in at most (s×max1≤σ≤s |D
〈σ〉
f,E;n1

|) + |Dg,E;n1
| unknown coefficients of the

Φ〈σ〉 and Ψ. With the bound (7) of L those are (s−1)|Dg,E;n1
| more equations than unknows.

If f 〈1〉 = · · · = f 〈s〉 and β
〈1〉
ℓ = · · · = β

〈s〉
ℓ for all ℓ, the number of evaluations L constitutes

the case s = 1, which is a square system, and therefore cannot be reduced. However,
reduction can be possible for dense univariate rational function recovery (see Remark 2.1)
when the vector of rational functions is the solution of a linear system (Cabay 1971; Olesh and
Storjohann 2007). In (Pernet 2014, Section 2.4) such reductions are cited for collaborative
decoding Reed-Solomon codes (Schmidt et al. 2006) under genericity assumption of the vector
of fractions, and for solutions to linear systems the precise condition is known (Kaltofen et al.
2015). For sparse multivariate rational function recovery and decoding, we do not know what

genericity would yield reduction to L = (max1≤σ≤s |D
〈σ〉
f,E;n1

|) + ⌈ |Dg,E;n1
|/s⌉. �

Remark 2.4. Theorem 1.1 and Lemma 1.2 state the probability of obtaining maximal rank
for exact arithmetic. With floating point arithmetic, a lower bound of the expected condition
number or first non-zero singular value is necessitated in the probabilistic analysis. The
numeric counterpart of the DeMillo-Lipton-Schwartz-Zippel Lemma, namely Lemma 3.1 in
(Kaltofen et al. 2007), can be applied to that task. �

Acknowledgements: We thank Clément Pernet for comments inducing Remark 2.3 and
Terence Tao for comments inducing Lemma 1.2.

Note added on March 16, 2016: added DeMillo-Lipton to the “DeMillo-Lipton-Schwartz-
Zippel Lemma.”
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3. Appendix

Notation (in alphabetic order):
β the possibly erroneous values returned by the black box for f/g
γ the correct evaluations for f/g
dj,µ the degree of variable xµ in the j-th term in f
d̄f ≥ deg(f), bounds that are input
d̄g ≥ deg(g), bounds that are input
D sets of terms (non-zero monomials)
∆ a matrix determinant
em,µ the degree of variable xµ in the m-th term in g
E ≥ k, an upper bound on the number of errors that is input to the algorithm
f, f 〈σ〉 the numerator polynomial, polynomials with 1 ≤ σ ≤ s
Φ,Φ〈σ〉 the numerator(s) of the computed interpolant
g the (common) denominator polynomial
k the actual number of errors, to be determined by the algorithms
K an arbitrary field with exact arithmetic
L the length of the list of a batch of evaluations
λκ 1 ≤ κ ≤ k, are the positions of the erroneous evaluations in the list of evaluations
Λ the error locator polynomial
M the number of unknowns in our linear systems
µ a subscript that corresponds to the µ-th variable xµ, 1 ≤ µ ≤ n
n is the number of variables
n1 Λ(xn1

) is the univariate error locator polynomial with 1 ≤ n1 ≤ n
Ψ the common denominator of the computed interpolant
q 1/q is the error rate;
r the rank of a matrix
s the number of fractions in vector recovery

supp(f) support of f : the set of terms {x
d1,j
1 · · · x

dn,j
n | j = 1, . . . , t} in f =

∑t
j=1 ajx

d1,j
1 · · · x

dn,j
n occurring with non-zero coefficients ∀j : aj 6= 0.

σ a component in a vector of fractions, 1 ≤ σ ≤ s
τ a placeholder symbol for any term ∈ D: τf for terms in the term-supersets of f , τg

for terms in the term-supersets of g.
t denotes the actual number of terms
T ≥ t, an upper bound that is input
xi the variables of f/g
ξ values for the variables from a field ∈ K

Y the vector space of interpolants
Z the vector space of equal fractions
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