
Error-Correcting Sparse Interpolation
in the Chebyshev Basis

Andrew Arnold
Symbolic Computation Group

University of Waterloo
Waterloo, Ontario, Canada

a4arnold@uwaterloo.ca
www.andrewarnold.ca

Erich L. Kaltofen
Department of Mathematics,

North Carolina State University,
Raleigh, North Carolina 27695-8205, USA

kaltofen@math.ncsu.edu
www.math.ncsu.edu/ kaltofen

ABSTRACT

We present an error-correcting interpolation algorithm for a
univariate black-box polynomial that has a sparse represen-
tation using Chebyshev polynomials as a term basis. Our
algorithm assumes that an upper bound on the number of er-
roneous evaluations is given as input. Our method is a gener-
alization of the algorithm by Lakshman and Saunders [SIAM
J. Comput., vol. 24 (1995)] for interpolating sparse Cheby-
shev polynomials, as well as techniques in error-correcting
sparse interpolation in the usual basis of consecutive powers
of the variable due to Comer, Kaltofen, and Pernet [Proc.
ISSAC 2012, 2014]. We prove the correctness of our list-
decoder-based algorithm with a Descartes-rule-of-signs-like
property for sparse polynomials in the Chebyshev basis. We
show that this list decoder requires fewer evaluations than
a naive majority-rule block decoder in the case when the
interpolant is known to have at most two terms. We also
give a new algorithm that reduces sparse interpolation in
the Chebyshev basis to that in the power basis, thus mak-
ing the many techniques for the sparse interpolation in the
power basis, for instance, supersparse (lacunary) interpola-
tion over large finite fields, available to interpolation in the
Chebyshev basis. Furthermore, we can customize the ran-
domized early termination algorithms from Kaltofen and Lee
[J. Symb. Comput., vol. 36 (2003)] to our new approach.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; E.4 [Coding and Information Theory]: Error
control codes

General Terms: Algorithms.

Keywords: sparse polynomial interpolation; Prony’s al-
gorithm; Chebyshev polynomials; Descartes’ rule of signs;
orthogonal basis; error-correcting code.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC’15, July 6–9, 2015, Bath, United Kingdom.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3435-8/15/07 ...$15.00.

DOI: http://dx.doi.org/10.1145/2755996.2756652.

1. INTRODUCTION
The sparse univariate interpolation problem is to recon-

struct a polynomial f(x) that can be sparsely represented
in a given term basis from a number of evaluations that is
proportionate to the number of terms t with non-zero co-
efficients, not the degree of the polynomial. The problem
distinguishes the case where the distinct elements at which
the polynomial is evaluated are chosen by the algorithm,
and the case where the evaluation points cannot be adapted
to the interpolation algorithm. The second case constitutes
a computationally much harder problem [4], which we will
not consider further in this paper. In the first case we think
of the polynomial as a black-box function that can be arbi-
trarily probed.

We consider a black-box polynomial f(x) that can be writ-
ten as a t-sparse linear combination of Chebyshev polyno-
mials

f(x) =
t∑

j=1

cjTδj (x) ∈ K[x], 0 ≤ δ1 < δ2 < · · · < δt, (1)

where K is a field of characteristic 6= 2, cj 6= 0 for 1 ≤ j ≤ t,
and Tn ∈ K[x] is the n-th Chebyshev polynomial of the first
kind, defined by:

T0(x) = 1, T1(x) = x, (2)

Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2. (3)

Since deg(Tn) = n the set of Chebyshev polynomials forms
a (vector-space) basis for K[x]. We will use the following
properties of Chebyshev polynomials throughout.

Fact 1.1 Let m,n ∈ Z≥0. Then the following hold:

i.

[
0 1
−1 2x

]n [
1
x

]

=

[
Tn(x)

Tn+1(x)

]

.

ii. Tn(Tm(x)) = Tmn(x) = Tm(Tn(x)).

iii. Tm(x)Tn(x) =
1
2
(Tm+n(x) + T|m−n|(x)).

iv. Tn(
x+x−1

2
) = xn+x−n

2
for all n ≥ 0, as an identity in

the function field K(x).

v. Tn(x) = 1
2

((
x−

√
x2 − 1

)n
+
(
x+

√
x2 − 1

)n)
, as an

identity in the quadratic extension of the function field

K(x).

vi. For K = R and ξ ≤ −1 or ξ ≥ 1, Tm(ξ) 6= 0.

21

mailto:a4arnold@uwaterloo.ca
http://www.andrewarnold.ca
mailto:kaltofen@math.ncsu.edu
http://www.math.ncsu.edu/~kaltofen

Fact 1.1.i allows the evaluation of Tn at elements from a
finite field of characteristic 6= 2 in O(log(n)) operations by
repeated squaring.
We seek to determine t, the term degrees δj , and the coef-

ficients cj from evaluations ai = f(ωi) where our algorithm
chooses which ωi’s to use. Our objective is to require as
few ωi’s as possible, and additionally allow for some of the
evaluations to be incorrect, that is aλκ 6= f(ωλκ), where λκ

with 1 ≤ κ ≤ k are the indices of the error locations. No
algorithm can work without having some bounds: D for the
degree, D ≥ δt; B for the sparsity, B ≥ t; and E ≥ k for the
number of errors in the input.

1.1 Organization of paper
In Section 2 we give an overview of sparse interpolation al-

gorithms. We also discuss previous work on error-correcting
sparse interpolation in the power (i.e., monomial) basis. Fur-
thermore, we give a simple identity test for sparse polynomi-
als with real coefficients in the Chebyshev basis, relying on a
generalization of Descartes’ rule of signs [23]. This identity
test allows us to verify an interpolant produced by a list-
decoding interpolation procedure, such that we can identify
the true interpolant.
In Section 3 we generalize the Chebyshev-basis sparse in-

terpolation algorithm from [21]. This is for the purposes of
adapting interpolation in this setting to list decoding, fol-
lowing previous work on list-decoding interpolation in the
monomial basis [20]. We show that this gives an error-
correcting interpolation procedure that requires fewer eval-
uations than naive “majority rule” decoding in the cases
B = 1, 2. In Section 4 we present an alternate approach
to sparse univariate polynomial interpolation in Chebyshev
basis. The Fact 1.1.iv allows a reduction of the problem of
interpolating a polynomial that is sparse in Chebyshev basis
to interpolating a sparse Laurent polynomial in the power
basis, that is, a polynomial with terms xδ where δ can be a
negative integer. We show this algorithm may be adapted
to use early termination, such that the algorithm can prob-
abilistically determine t and interpolate f from 2t+ 2 eval-
uations in the case when t is not supplied as an input.
Conclusions and discussion of future work are given in

Section 5.

2. PRELIMINARIES
The algorithm by Lakshman and Saunders in [21] inter-

polates f(x) ∈ R[x], f given by (1), in the absence of er-
rors. Their algorithm, given a sparsity upper bound B
interpolates f(x) from evaluation points ωi = Ti(ξ) with
i = 0, 1, . . . , 2B − 1, for an arbitrary ξ > 1. The Monte-
Carlo algorithm of Kaltofen and Lee [18] determines t with
high probability by randomization, using ωi = Ti(ξ) with
i = 0, 1, . . . , 2t + 1 in the worst case, again without errors.
The bounds B and D are needed for guaranteeing an upper
bound on the probability of failure. We have, for instance
for K a finite field with q elements such that q > deg(f) and
such that q− 1 has no large prime factor the bit complexity
t2(log(q) + log(D) + log(B) + log(t))O(1) (see also Section 4
below). In Section 3 we generalize the algorithm of Laksh-
man and Saunders to interpolate f from sets of evaluation
points of the form

ω|r+si|, −B ≤ i < 2B,

provided the middle B evaluation points (0 ≤ i < B) are
distinct and ω|r+si| > 1 for all i. This requires τ evaluations,
where 2B ≤ τ ≤ 3B, depending on how many indices |r+si|
overlap.

2.1 Error-correcting sparse interpolation
Suppose now that for L argument-value pairs (ωi, ai) we

have ai = f(ωi) for all i 6= {λ1, . . . , λk} and k ≤ E with
0 ≤ i ≤ L − 1. Here the upper bound E on the number of
errors is known on input, but the error locations λ1, . . . , λk

are not known.
Our algorithms rely on previous work on error-correcting

sparse interpolation in the monomial basis. A “majority-
rule” interpolation procedure is given in [8]. This is su-
perceded by a procedure based on list-decoding in [20], which
is shown to require fewer evaluations to uniquely determine
the interpolant.

2.1.1 Majority-rule interpolation

If L = (2E + 1)2B we can proceed as in [8]. We interpo-
late 2E + 1 separate segments of 2B argument-value pairs
(Ti(ξℓ), ai,ℓ) for i = 0, 1, . . . , 2B−1 and ℓ = 1, 2, . . . , 2E+1.
If all Ti(ξℓ) are distinct and if there are no more than E pairs
with ai,ℓ 6= f(Ti(ξℓ)), then the Lakshman-Saunders algo-
rithm [21] applied for each ℓ separately produces the correct
sparse interpolant f in Chebyshev basis at least E+1 times.
By a majority vote we can determine the correct f . As such
we refer to this method as majority-rule interpolation. The
argument distinctness Ti1(ξℓ1) 6= Ti2(ξℓ2) for all i1 6= i2
and/or ℓ1 6= ℓ2 can be achieved quickly with high proba-
bility by selecting ξℓ uniformly randomly from a sufficiently
large finite set. Our model of black-box interpolation with
errors presumes that the black box returns a single value,
which can be erroneous, and multiple probes to the black
box do not reveal erroneous behavior. Surprisingly, in [20]
it is shown that (2E + 1)2B evaluations is optimal for the
Prony/Blahut algorithm: from (2E+1)2B−1 pairs one can
obtain a second valid sparse interpolant in the power basis.

2.1.2 List-decoding interpolation

Using E +1 segments of 2B points, one can switch to list
decoding (cf. [8, Theorem 3]): at least one of the valid sparse
polynomials in Chebyshev basis that is computed by the
Lakshman-Saunders algorithm, that is, an interpolant whose
number of terms is ≤ B and that interpolates ≥ (E+1)2B−
E argument-value pairs, must agree with the original black
box polynomial. For certain inputs one can prove uniqueness
(cf. [20, Remark 3]): if K = R and ξℓ > 1 for all ℓ we must
have by Corollary 2.4 below a unique valid interpolant.

In [20], the authors give a list-decoding-based sparse uni-
variate polynomial interpolation algorithm for the power
basis that requires L < (E + 1)2B argument-value pairs
(ωi, ai), 0 ≤ i ≤ L − 1, where ωi = ξi for a suitable ξ ∈ K.
When there are ≤ E erroneous values ai 6= f(ωi) the al-
gorithm computes all valid interpolants, which, as stated
above, in certain cases are unique. Their idea is to at-
tempt sparse interpolation at the subsequence (ωr+si, ar+si),
i = 0, . . . , 2B − 1, for all pairs (r, s) with r ≥ 0 and s ≥ 1
with r + (2B − 1)s ≤ L − 1. If one subsequence avoids all
erroneous aλκ the sparse interpolant polynomial is produced
from the subsequence by the Prony/Blahut algorithm.

In Section 3.2 we transfer the idea to the Chebyshev ba-
sis, using the generalization of the Lakshman-Saunders algo-

22

rithm as a subroutine. In our setting we attempt sparse in-
terpolation at subsequences (ω|r+si|, a|r+si|), for all choices
of (r, s), subject to the constraints mentioned in the first
paragraph of Section 2.

2.2 A summary of sparse interpolation algo-
rithms

Figure 1 gives a table summarizing sparse univariate pol-
ynomial interpolation algorithms in selected bases. The
rows show different problem settings and whose columns se-
lect different bases. The Pochhammer basis consists of the
“falling factorials” x(x − 1) · · · (x − δ + 1), the shifted ba-
sis is the variable-shifted power basis 1, x − σ, (x − σ)2, . . .
with a shift σ that is unknown on input. One may also
consider a variable shift in the Chebyshev basis, which is
done in [11]. Supersparse algorithms only make sense for
coefficients from a finite field and run in time polynomial in
log(degree). However, techniques from supersparse interpo-
lation can help stabilize numerical algorithms. Errors seem
difficult to correct for sparse polynomials in Pochhammer
basis without interpolating the dense polynomial interpolant
in power basis by a Reed-Solomon decoder, as does the al-
gorithm for shifted basis in [5]. Interestingly, Blahut’s [3]
decoder for Reed-Solomon codes uses a sparse interpolation
algorithm for error location, which is generalized to multi-
variate sparse interpolation over Q in [2]. George Labahn
observed the connection between Prony’s algorithm in [7]
and those algorithms. We do not list our new algorithm from
Section 4 in the numerical algorithms row, because we have
not conducted the numerical analysis and experiments. Er-
rors can be introduced in the numerical setting, where they
are considered outlier evaluations. In [8] such a numerical
method is formulated. Algorithms for error correction in the
multivariate setting are given in [19].

2.3 Identity testing
Here we present an identity test that will allow us to

uniquely identify an interpolant f given by (1), in the case
where f is over K = R. Corollary 4 of [20] uses Descartes’
rule of signs to give an identity test for sparse polynomials
over R in the monomial basis (see also [4]). From this it is
shown in [20] that one can verify a B-sparse interpolant f
from L = 2B + 2E evaluations, provided at most E evalua-
tions are erroneous. Towards a similar result in the Cheby-
shev basis, we cite a generalization of Descartes’ rule of signs,
due to Obrechkoff, that gives an upper bound on the num-
ber of real roots ≥ 1 for polynomials over R with a sparse
representation in the Chebyshev basis.

Theorem 2.1 (Obrechkoff, 1918) Define the sequence of

polynomials {Tn(x)}∞n=0 by T−1(x) = 0, T0(x) = 1, and the

recurrence relation

xTn(x) = αnTn+1(x) + βnTn(x) + γnTn−1(x), n ≥ 0,

where αn, βn, γn ∈ R, αn, γn > 0. Let (c1, . . . , ct) be a list

of nonzero real numbers with s sign changes between con-

secutive values, and 0 < δ1 < δ2 < · · · < δt ∈ R. Then
∑t

i=1 ciTδi(x) has at most s roots in (ζt,∞), where ζt de-

notes the largest real root of Tn.

See [9] for a proof of Obrechkoff’s Theorem. Combined with
Fact 1.1.vi this gives the following corollary:

Corollary 2.2 Let K = R and f(x) =
∑t

i=1 ciTδi(x), with
δi < δj and ci 6= 0 for 1 ≤ i < j ≤ t. Then f has at most

t− 1 distinct real roots ≥ 1.

As Tn(ξ) > Tm(ξ) for ξ > 1 and n > m, we have in
addition the following:

Corollary 2.3 Let ξ > 1 and f(x) be a t-sparse polynomial

over R in the Chebyshev basis. Let m1 < m2 < · · · < mB ∈
Z≥0 for some B ≥ t. If f(Tmi(ξ)) = 0 for all i, then f(x)
is identically zero.

Corollary 2.4 Let ξ > 1 and f(x), g(x) be two sparse poly-

nomials over R in the Chebyshev basis, both of sparsity ≤ B.

Let m1 < m2 < · · · < m2B ∈ Z≥0. If f(Tmi(ξ)) = g(Tmi(ξ))
for all i, then f = g.

From Corollary 2.3 we have a means of testing whether an
interpolant produced by list-decoding interpolation is cor-
rect. In particular, if we have L distinct evaluation points
ω0, . . . , ωL−1 > 1, where L ≥ 2B+2E, then a polynomial f
comprised of at most B terms in the Chebyshev basis that
disagrees with at most E of the evaluations must be the true
interpolant.

Corollary 2.3 is also used to show that a linear system
given by the algorithm presented in Section 3 gives a unique
solution.

3. GENERALIZATION OF THE METHOD

OF LAKSHMAN AND SAUNDERS
In this section we develop a generalization of the algo-

rithm given by Lakshman and Saunders in [21] for inter-
polating a t-sparse polynomial in the Chebyshev basis over
the rationals. This generalization will allow us to employ
list-decoding interpolation in the Chebyshev basis.

Throughout Section 3 we consider f ∈ R[x] of the form
given by (1). Let ξ > 1 and define the sequence ai =
f(Ti(ξ)), for i ≥ 0. Lemma 3.1 below proves a linear rela-
tion of the ai, taken over indices from the absolute values of
an arithmetic progression. This gives us a means of solving
for the coefficients. The relation is a straightforward gen-
eralization of Lemma 5 in [21], and the proof follows very
similarly.

Lemma 3.1 Fix s ∈ Z>0 and consider the degree-t polyno-
mial Φ, written in the Chebyshev basis

Φ(z) = ϕtTt(z) + ϕt−1Tt−1(z) + · · ·+ ϕ0T0(z), (4)

defined by ϕt = 1 and Φ(Tsδℓ(ξ)) = 0 for ℓ = 1, . . . , t. Then,

for i, r ∈ Z,

t∑

j=0

ϕj(a|s(i+j)+r| + a|s(i−j)+r|) = 0. (5)

Proof. Observe, using Fact 1.1.ii, that

t∑

j=0

ϕja|s(i+j)+r| =
t∑

j=0

ϕj

t∑

ℓ=1

cℓTδℓ

(
T|s(i+j)+r|(ξ)

)

=
t∑

ℓ=1

cℓ

t∑

j=0

ϕjT|s(i+j)+r|(Tδℓ(ξ)). (6)

23

monomial Chebyshev Pochhammer shifted power basis
bounded # Blahut (1984) [3] Lakshman, Saunders (1995) [22]
of terms

this paper

Grigoriev, Karpinski (1993)[16]
supersparse Kaltofen (1988) [17] Giesbrecht, Roche (2010) [14]

Garg, Schost (2009) [10]
Arnold, Giesbrecht, Roche (2014) [1]

with errors Cormer, Kaltofen, Pernet (2012) [8] Boyer, Comer, Kaltofen (2014)[8]
Kaltofen, Pernet (2014) [20]

early Giesbrecht, Kaltofen, Lee (2004) [11]
termination Kaltofen, Lee (2003) [18]
with Prony (1792) Giesbrecht, Boyer, Comer, Kaltofen (2014) [8]
numerical Giesbrecht, Labahn, Lee (2003) [13] Labahn, Lee
noise Giesbrecht, Roche (2011) [15] (2004)[12]

Figure 1: Selected sparse univariate interpolation algorithms

Using Facts 1.1.ii and 1.1.iii, we can rewrite the term ap-
pearing in the inner sum in (6) as

ϕjT|s(i+j)+r| (Tδℓ(ξ))

= ϕj

(
2Tsj(Tδℓ(ξ))T|si+r|(Tδℓ(ξ))− T|s(i−j)+r|(Tδℓ(ξ))

)

= ϕj

(
TjTsδℓ(ξ))× 2T|si+r|(Tδℓ(ξ))− T|s(i−j)+r|(Tδℓ(ξ))

)
.

Thus we can express the inner sum in (6) as

Φ(Tsδℓ(ξ))
︸ ︷︷ ︸

=0

×2T|si+r|(Tδℓ(ξ))−
t∑

j=0

ϕjT|s(i−j)+r|(Tδℓ(ξ)).

Thus (6) becomes

−
t∑

ℓ=1

cℓ

(
t∑

j=0

ϕjTδℓ(T|s(i−j)+r|(ξ))

)

= −
t∑

j=0

ϕj

(
t∑

ℓ=1

cℓTδℓ(T|s(i−j)+r|(ξ))

)

= −
t∑

j=0

ϕja|s(i−j)+r|.

This gives

t∑

j=0

ϕja|s(i+j)+r| = −
t∑

j=0

ϕja|s(i−j)+r|.

The identity (5) follows.

For r, s ∈ Z, s ≥ 1 and taking (5) with i = 0, 1, . . . , t− 1,
this gives us a linear system Aϕ = −α, where

A =
[
a|r+(i+j)s|

]t−1

i,j=0
︸ ︷︷ ︸

Hankel matrix

+
[
a|r+(i−j)s|

]t−1

i,j=0
︸ ︷︷ ︸

Toeplitz matrix

, (7)

α =
[
a|r+(i+t)s| + a|r+(i−t)s|

]t−1

i=0
. (8)

Thus, provided A is nonsingular, we can obtain ϕ from A
and α. Lemma 3.2 below is an analogue to Lemma 6 of [22].
Our proof is an immediate adaption of theirs.

Lemma 3.2 Let r, s ∈ Z, s > 0. If the values |r + si|, 0 ≤
i < t are distinct, then A is nonsingular.

Proof. We will show that A = UBV , where

U =
[
T|r+si|(Tδj+1(ξ))

]t−1

i,j=0
, (9)

V =
[
Tsj(Tδi+1(ξ))

]t−1

i,j=0
, (10)

and B is a diagonal matrix with entries 2c1, . . . , 2ct. Again
using Facts 1.1.ii and 1.1.iii, observe that (UBV)i,j is

t∑

ℓ=1

2cℓT|r+is|(Tδℓ(ξ))Tjs(Tδℓ(ξ))

=
t∑

ℓ=1

cℓ
(
T|r+(i+j)s|(Tδℓ(ξ)) + T|r+(i−j)s|(Tδℓ(ξ))

)

=
t∑

ℓ=1

cℓ
(
Tδℓ(T|r+(i+j)s|(ξ)) + Tδℓ(T|r+(i−j)s|(ξ))

)

= a|r+(i+j)s| + a|r+(i−j)s|.

Let b be a row vector such that b U = 0. Then

t−1∑

i=0

biT|r+si|(x)

is a t-sparse polynomial in the Chebyshev basis with roots
Tδ1(ξ), . . . , Tδt(ξ). By Corollary 2.3, b is necessarily zero. It
follows that U is nonsingular. By a similar argument, V is
nonsingular.

3.1 Description of algorithm
We now give a generalization of the sparse interpolation

algorithm of Lakshman and Saunders polynomials in the
Chebyshev basis given in [21]. Suppose we are given a black-
box polynomial f ∈ R[x], f of the form (1), with bounds B
and D as described in Section 1. For the purposes of Section
3.1 we will assume our evaluations are without errors. First,
we choose ξ > 0 and r, s ∈ Z, s > 0, such that

|r + si| 6= |r + sj| for 0 ≤ i 6= j < B, (11)

such that the evaluation points T|r+si|(ξ) are distinct for
0 ≤ i < B.

We query the black-box polynomial f for the evaluations

a|r+si| = f(T|r+si|(ξ)), −B ≤ i < 2B. (12)

This can entail potentially as many as 3B evaluations; how-
ever, it can be as few as 2B in the case that the first or last
B evaluations a|r+si| for −B ≤ i < 0 or B ≤ i < 2B − 1 are
contained in the middle B evaluations a|r+si| for 0 ≤ i < B,
e.g., when r = 0. The algorithm of Lakshman and Saunders
is specifically the case when r = 0 and s = 1.

If |r| ≥ |r+s(B−1)|, then we can take −(r+s(B−1)) in
place of r to obtain the same set of evaluation points (12).
Thus without loss of generality we can choose r such that

24

|r| ≤ |r+s(B−1)|, or equivalently r ≥ −s(B−1)/2. If B ≥
3, the distinctness criterion (11) forces |r| 6= |r + s(B − 1)|.
Because of the column relation (5) the largest non-singular

leading principal submatrix of the Hankel + Toeplitz matrix
for all t′ ≥ t

[
a|r+(i+j)s|

]t′−1

i,j=0
+
[
a|r+(i−j)s|

]t′−1

i,j=0
(13)

is the matrix A in (7) for t′ = t. By computing the determi-
nant of the leading principal submatrices in increasing order
of size, we can thus determine t.
Once we have t we solve the linear system Aϕ = −α,

where A and α are respectively given by (7) and (8). This
gives us the coefficients ϕ ∈ Rt+1 that comprise Φ ∈ R[z]
given by (4). We factor Φ to get its t roots, which are exactly
the values Tδi(ξ) for i = 1, 2, . . . , t. By evaluating Tj(ξ) for
appropriate choices of j we can discern δi from Tδi(ξ) and ξ
for each i; see Section 3 in [21].
The coefficients c1, . . . , ct may be given as the solution to

the linear system U∗c = a, where U∗ is the transpose of U
given by (9) and a = (a|r|, a|r+s|, . . . , a|r+(t−1)s|). This gives
a representation ((c1, δ1), . . . , (ct, δt)) of f .

3.2 A list-decoding interpolation procedure
Now we can consider interpolation in the presence of at

most E erroneous evaluations. Our algorithm, on input B ≥
t and the sequence of evaluations (12) can determine t and
f from a pair (r, s) satisfying (11) with r ≥ −s(B−1)/2 and
s ≥ 1, provided that the evaluations are correct. We seek
such a subsequence of unspoiled evaluations in a0, . . . , aL−1,
where L is computed sufficiently large with respect to the
maximum number of errors E, which is also input, to guar-
antee the existence of that subsequence of at most 3B correct
evaluations no matter where the error locations 0 ≤ λ1 <
λ2 < · · · < λk ≤ L− 1, with k ≤ E, occur.
We show by example that with sequence locations in arith-

metic progression we can decode more errors than with error-
free blocks. Since our arithmetic progressions are longer
than in [20], 3B vs. 2B, this is not immediately clear. It
seems difficult to give an example that can be verified by
hand: Let B = 1 and E = 8: the block method uses
(E+1)2B = 18 argument-value pairs. However, as is shown
in [20, Table 1: k = 3, E = 8], if in the set of L = 17
locations 0, 1, 2, . . . , 16 = L − 1 we remove any 8 erroneous
locations λ1, . . . , λ8, there remains a k = 3B = 3-elements
arithmetic progression r, r+s, r+2s ≤ 16 for integers r ≥ 0,
s ≥ 1. Those locations constitute a sequence of the form
in (12), even without wrap-around, and our algorithm pro-
duces a valid interpolant. For instance, if {λ1, . . . , λ8} =
{2, 5, 6, 7, 9, 12, 13, 14}, which makes blocks of 3 consecu-
tive elements and blocks of 3 consecutive all even or all
odd elements impossible, we have the arithmetic progres-
sion {0, 8, 16} at good locations.
We now show that one such occurrence yields a formula

for L for all E sufficiently large. If L ≥ 3B(E + 1) we have
one contiguous segment of 3B locations without error using
r = 3νB and s = 1 for some ν ≥ 0 (not using wrap-around).
We denote by Lmin(3B,E) ≤ 3B(E+1) the minimum length
that suffices, without wrap-around (r ≥ Bs, that is, r−Bs ≥
0). As stated in Section 1, from [20, Table 1], we have
Lmin(6, 8) ≤ 34 (B = 2, E = 8).
We now consider at most E1 = (E0 + 1)m − 1 errors for

some integer m ≥ 1. We assume that L0 ≥ Lmin(3B,E0).
If L = L0m, then one of the m contiguous segments of L0

evaluations has ≤ E0 errors, for otherwise there would be
≥ (E0 + 1)m errors. That segment has by our assumption
for L0 an arithmetic progression of length 3B of locations
without errors. Therefore Lmin(3B, (E0 + 1)m− 1) ≤ L0m.
Since Lmin(3B,E) ≤ Lmin(3B,E1) for E ≤ E1 we have for
E = (E0 + 1)m− (E0 + 1) + ν with ν = 0, 1, . . . , E0 :

Lmin(3B, (E0 + 1)m− (E0 + 1) + ν)

≤ Lmin(3B, (E0+1)m−1) ≤ L0m = L0

⌊E + E0 + 1

E0 + 1

⌋

.

Our objective is to have L0⌊(E +E0 +1)/(E0 +1)⌋ < (E +
1)2B where the latter is the length required for the block
method for E errors.

From the entries in [20, Table 1] we can choose E0 and
L0 for B = 1. If we choose E0 = 8 and L0 = 17, then
17⌊(E+9)/9⌋ < 2(E+1) for all E ≥ 136. We can also choose
E0 = 13 and L0 = 23, such that 23⌊(E+14)/14⌋ < 2(E+1)
for all E ≥ 57.

For B = 2: we can choose E0 = 8 and L0 = 34 such that
34⌊(E + 9)/9⌋ < 4(E + 1) for all E ≥ 136; or E0 = 11 and
L0 = 43 such that 43⌊(E+12)/12⌋ < 4(E+1) for all E ≥ 86.
This gives an algorithm in the case B = 2. We produce the
evaluations a0, . . . , aL−1 for L = 43⌊(E + 12)/12⌋, run the
algorithm of Section 3.1 over all choices r, s ∈ Z with r ≥
−(B − 1)s and s ≥ 1, and for each (r, s) check whether the
resulting interpolant f agrees with at least L−E evaluations.
We are guaranteed a pair (r, s) producing such an f exists,
which by Corollary 2.4 must be the true polynomial given
by our black-box.

We conjecture that for each B ≥ 3 there exists an E0

such that L0 = Lmin(3B,E0) < (E0 + 1)2B = Lblock.
That implies that for all E > (ρ(E0 + 1) − 1)/(1 − ρ) with
ρ=L0/Lblock<1 we have

L0⌊(E+E0+1)/(E0+1)⌋<(E+1)2B. (14)

4. AN ALTERNATE SPARSE CHEBYSHEV

INTERPOLATION ALGORITHM
We can reconstruct f ∈ K[x] given by (1) when K is a field

of characteristic 6= 2 and cj 6= 0 for all 1 ≤ j ≤ t, from the
evaluations of the form

ai = f(ω
i+ω−i

2
) for ω ∈ K, ω 6= 0, (15)

provided that ωδj 6= ωδj′ for all 0 ≤ j < j′ ≤ t. We will show
how to interpolate f from a worst-case 2B + 1 evaluations.
In Section 4.2 we show how to adapt the algorithm to an
early termination scheme, such that only 2t+ 2 evaluations
a0, . . . , a2t+1 are required. Note that ai = f(Ti(a)) with
a = (ω + ω−1)/2, so the algorithms of the previous sections

apply. However, ωδj 6= ωδj′ is not equivalent to Tδj (a) =

(ωδj +ω−δj)/2 6= (ωδj′ +ω−δj′)/2 = Tδj′
(a). We have from

Fact 1.1.iv,

g(y)
def
= f(y+y−1

2
) =

t∑

j=1

cj
2
(yδj + y−δj) ∈ K[y, y−1], (16)

which is a (2t)-sparse ((2t − 1)-sparse if δ1 = 0) Laurent
polynomial in power basis. Observe for g(y) in (16) that

ai = g(ωi) = a−i, for i ∈ Z. (17)

thus the evaluations a0, a1, . . . , aℓ give the evaluation of g at
ωi, for −ℓ ≤ i ≤ ℓ. By the theory of sparse Prony/Blahut

25

interpolation of Laurent polynomials (see, e.g., [8, Theo-
rem 1]), the sequence of values (15) is linearly generated by
the polynomial

Γ(z) =
t∏

j=1

(

(z − ωδj)(z − ω−δj)
)

. (18)

The proof that Γ linearly generates (15) is based on the
following Lemma.

Lemma 4.1 Suppose that the infinite sequence {ai}i≥0 of

elements ai ∈ K is linearly generated by the minimal gen-

erator Λ1(z) and the infinite sequence {bi}i≥0 of elements

bi ∈ K is linearly generated by the minimal generator Λ2(z).
Then the infinite sequence {ai + bi}i≥0 is linearly gener-

ated by the least common multiple of Λ1 and Λ2, denoted by

LCM(Λ1,Λ2).

Note that the minimal linear generator Λ(z) of (15) can be

a non-trivial factor of (18), namely when ωδj = ω−δj′ for

j 6= j′. Because our assumption ωδj 6= ωδj′ for all 1 ≤ j <
j′ ≤ t, the factors z − ωδj occur in the minimal generator
for all 1 ≤ j ≤ t. We have the following lemma.

Lemma 4.2 Let −δt ≤ η1, . . . , ητ ≤ δt be those exponents

such that ωη1 , . . . , ωητ form those distinct elements of

ω−δt , ω−δt−1 , . . . , ω−δ1 , ωδ1 , . . . , ωδt

with

c′κ=
(∑

ω
δj=ωηκ

1≤j≤t

cj
2

)

+
(∑

ω
−δj=ωηκ

1≤j≤t

cj
2

)

6=0, 1≤κ≤τ. (19)

Then the minimal linear generator of (15) is

Λ(z) =
τ∏

κ=1

(z − ωηκ).

Proof. If there exists one η1 satisfying (19), the infinite
sequence (15) cannot entirely be a sequence of 0’s. The
evaluations

ai =
t∑

j=1

cj/2 ((ω
−δj)i + (ωδj)i) =

τ∑

κ=1

c′κ(ω
ηκ)i (20)

are for 0 ≤ i ≤ τ − 1 the entries of a τ × τ transposed
non-singular Vandermonde matrix times a non-zero vector,
which cannot be all zero. Therefore, the minimal linear gen-
erator Λ of (15) is not the constant polynomial 1. Λ(z) is by
Lemma 4.1 a factor of

∏τ
κ=1(z−ωηκ), because {c ωiηκ}i≥1−2t

is linearly generated by z − ωηκ . Suppose now Λ(z) =
∏τ ′

κ=1(z − ωηκ) where τ ′ < τ . Since Λ linearly generates

all {c′κ ωiηκ}i≥1−2t for 1 ≤ κ ≤ τ ′, where c′κ 6= 0 is the co-
efficient corresponding to the exponent ηκ in (20), and by
definition linearly generates the sequence (20) for i ≥ 1−2t,
Λ must be a linear generator for {

∑τ
κ=τ ′+1 c

′
κ ωiηκ}i≥1−2t.

The latter sequence is linearly generated by
∏τ

κ=τ ′+1(z −
ωηκ) and by a Vandermonde matrix argument the minimal

generator Λ[2](z) must be a polynomial factor 6= 1. Finally,

Λ must be a polynomial multiple of Λ[2](z), which is not
possible. Therefore τ ′ = τ .

4.1 Description of algorithm
We compute the minimal generator by a variant of the

Berlekamp/Massey algorithm. Suppose on input we have
an upper bound on the number of terms, B ≥ t. One runs
the Berlekamp/Massey algorithm on

a1−2B , a2−2B , . . . , a2B−1, α,

where α is a symbolic value for a2B . If B > t or deg(Λ) <
2B, e.g., when δ1 = 0, a value of α is not needed for com-
puting Λ. The corresponding (2B)× (2B) Hankel matrix

HB =
[
ai+j−2B−1

]2B−1

i,j=0
(21)

will then have been identified by the Berlekamp/Massey al-
gorithm as singular. If 2t = deg(Λ) = 2B, the matrix is
identified as non-singular, and Λ is computed as a linear
form Λα = Λ[0] + αΛ[1]. Since Λ then is a reciprocal poly-
nomial, that constraint may determine the value a2B for α,
which, for an ω that is selected randomly from a sufficiently
large finite set, can be shown to hold with high probability
(see Theorem 4.3.ii below). Otherwise, we need to query the
black-box polynomial f for the evaluation a2B in order to
finish the computation of Λ.

From Λ one computes the exponents δ1, . . . , δt as is com-
monly done in all variants of the Prony/Blahut interpola-
tion algorithm [2, 18, 13, 10, 17], and with the exponents
one computes the coefficients cj from a transposed Vander-
monde system.

Remark 4.1 In order to generalize this algorithm for the
purposes of error-correction, we would need to consider sub-
sequences of the form αr+si, i = 1− 2B, . . . , 2B, for choices
of r, s ∈ Z, s ≥ 1. Similar to the interpolation algorithm in
Section 3, this can be as few as 2B + 1 and as many as 4B
evaluations, depending on how many evaluations αr+si are
used doubly, given αj = α−j for all j. Moreover, an error at
evaluation ai implies an error at a−i, such that an erroneous
evaluation of f can give us an erroneous evaluation of g at
possibly two locations.

4.2 Early termination
The above approach has shortcomings compared to the

early-termination algorithm in [18]. One needs 2B +1 eval-
uations in the worst case, rather than 2t + 2. The short-
coming is fixable by adapting the arguments in [18, Proof

of Theorem 4]. Let αi = g(yi) = f(y
i+y−i

2
) for i ∈ Z. We

consider the (2t + 1) × (2t + 1) Hankel matrix with entries
in K[y, y−1],

H =









α−2t α1−2t . . . α−1 α0

α1−2t α2−2t . .
.

α0 α1

... . .
. ...

...
α0 . . . α2t









. (22)

As in [18] we will now show that the square submatrices
in the right upper corner are non-singular up to the max-
imal dimension, with conditions for odd dimensions. By
Lemma 4.2 the minimum linear generator

∏t
j=1(z−yδj)(z−

y−δj) for δ1 > 0, and (z − 1)
∏t

j=2(z − yδj)(z − y−δj) for

δ1 = 0, produces a column relation over the field K(y) so for
δ1 > 0 the upper-right (2t) × (2t) submatrix of H is non-
singular, and for δ1 = 0 the right-upper (2t − 1) × (2t − 1)
submatrix of H is non-singular, and H is singular.

26

Theorem 4.3 Let Hi be the submatrix of H formed by the

first i rows and the last i columns. Then the following hold:

i. det(Hi) 6= 0 for all even i = 2, 4, . . . , 2t − 2; if δ1 > 0
then det(H2t) 6= 0.

ii. det(H2t−1) 6= 0; for all odd i = 1, 3, . . . , 2t − 3: if

(
∑t−(i−1)/2

ν=1 cν) 6= 0 then det(Hi) 6= 0.

Proof. Following Lemma 4.2 we denote

η1 = −δt, η2t = δt, ℓ1 = ℓ2t = t,

η2 = −δt−1, η2t−1 = δt−1, ℓ2 = ℓ2t−1 = t− 1,

...
...

...

ηt = −δ1, ηt+1 = δ1, ℓt = ℓt+1 = 1,

such that ηi = −δℓi for 1 ≤ i ≤ t, and ηi = δℓi for t + 1 ≤
i ≤ 2t. Let βκ = yηκ for 1 ≤ κ ≤ 2t. The matrix Hi can be
factored as (see [18, Eq. (7)])

Hi = BiC2tB̄∗
i , C2t = diag(cℓ1/2, cℓ2/2, . . . , cℓ2t/2) (23)

where the ∗ is the transposition operator, with Bi, B̄i ∈
K(y)i×(2t) given by

Bi =





1 1 ... 1
β1 β2 ... β2t

...
...

. . .
...

βi−1
1 βi−1

2 ... βi−1
2t



 , B̄i =







β1−i
1 β1−i

2 ... β1−i
2t

β2−i
1 β2−i

2 ... β2−i
2t

...
...

. . .
...

β−1
1 β−1

2 ... β−1
2t

1 1 ... 1






.

Let MJ,K be the determinant of the submatrix of M con-
sisting of rows in J = {j1, . . . , ji} and columns in K =
{k1, . . . , ki}. As in [18, Proof of Theorem 4], by the Binet-
Cauchy formula with I = {1, 2, . . . , i}, we can write det(Hi)
as
∑

J

∑

K

(Bi)I,J(C2t)J,K(B̄∗
i)K,I

=
∑

J

2−i
(
∏i

m=1 cℓjm

)

(Bi)I,J(B̄∗
i)J,I

=
∑

J

2−i
(
∏i

m=1 cℓjmβ1−i
jm

)

det
(






1 1 ... 1
βj1

βj2
··· βji

...
...

. . .
...

βi−1
j1

βi−1
j2

... β1−i
ji






)2

=
∑

J

2−i
(
∏i

m=1 cℓjmβ1−i
jm

) ∏

1≤v<u≤i

(βju − βjv)
2. (24)

In the expansion of the products in (24) we have the terms
β2i−2
j1

β2i−4
j2

· · ·β2
ji−1

so we have a summand term βi−1
j1

βi−3
j2

×
· · ·β1

ji/2
β−1
ji/2+1

· · ·β3−i
ji−1

β1−i
ji

. For Part i, if we set

j1 = 2t, ji = 1,

j2 = 2t− 1, ji−1 = 2,

...
...

ji/2 = 2t− i/2 + 1, ji/2+1 = i/2,

we obtain in the expansion of (24) the term yD with D =
2(i − 1)δt + 2(i − 3)δt−1 + · · · + 2δt−(i/2−1) for even i. For
i ≤ 2t − 2, that is t − (i/2 − 1) ≥ 2 and δt−(i/2−1) > 0 and

for i = 2t and δ1 > 0 that yD term can only occur once
in the expansion, and therefore cannot cancel. We add a
brief explanation to the last claim. We multiply the sum
(24) by (β1 · · ·βt)

i−1 and expand: the terms are then of the

form βw1
j1

· · ·βwi
ji

βi−1
ji+1

· · ·βi−1
jt

with {j1, . . . , jt} = {1, . . . , t},
wν ≥ 0 and w1+· · ·+wi = i(i−1) and additional constraints.
For instance, if w1 = 2i − 2 then wν ≤ 2i − 4 for all ν ≥ 2.
The single maximum of the degree in y is at the assignment
w1 = 2i − 2 and βj1 = yδt , wi = 0 and βji = y−δt , . . . ,
wi/2 = i and βji/2 = yδt−(i/2−1) , wi/2+1 = i− 2 and βji/2 =

y−δt−(i/2−1) , which gives the largest δκ the largest available
weights, and the smallest −δκ the smallest available weights.

For odd i in Part ii, the highest degree term yD′

is not
unique. We have the summand term in (24)

βi−1
j1

βi−3
j2

· · ·β2
j(i−1)/2

β0
j(i+1)/2

β−2
j(i+3)/2

β−4
j(i+5)/2

· · ·β1−i
ji

.

If we set j1 = 2t, ji = 1, j2 = 2t− 1, ji−1 = 2, . . . , j(i−1)/2 =
2t− (i− 3)/2, j(i+3)/2 = (i− 1)/2, and

j(i+1)/2 ∈ {(i+ 1)/2, (i+ 3)/2, . . . , 2t− (i− 1)/2},

we obtain in the expansion of (24) the term yD′

with D′ =
2(i−1)δt+2(i−3)δt−1+· · ·+8δt−((i+1)/2−3)+4δt−((i+1)/2−2),

and only with such settings. The coefficient of yD′

is 2−i ×
cℓ1cℓ2t · · · cℓ(i−1)/2

cℓ2t−(i−3)/2

∑2t−(i−1)/2

κ=(i+1)/2 cℓκ , which, by our

assumption of Part ii, is non-zero (ℓκ = ℓ2t−κ+1 = t− κ+ 1

for 1 ≤ κ ≤ t); for i = 2t − 1 we have
∑2t−(i−1)/2

κ=(i+1)/2 cℓκ =
∑t+1

κ=t cℓκ = 2c1 6= 0. (Cf. [18, Proof of Theorem 11].)

The early termination algorithm selects two random field
elements ω, ω′ ∈ S uniformly from a sufficiently large finite
set of field elements S ⊆ K and computes the coefficients of
Λ by a linear system solver for the Toeplitz matrix

Z [∞] =









a0+ω′ a1+ω′ ... a2t−1+ω′ a2t+ω′ ...

a−1+ω′ a0+ω′
. . . a2t−2+ω′ a2t−1+ω′ ...

...
. . .

...
...

a1−2t+ω′ ... a0+ω′ a1+ω′ ...

...
...

...
. . .









. (25)

Adding ω′ changes f to f + ω′ (cf. [18, Section 3.4]) and
constitutes a rank 1 update in HB in (21) that in Theo-
rem 4.3.ii is shown to make with high probability all 1× 1,
2× 2, . . . , τ × τ leading principal submatrices non-singular,
where τ = 2t−1 if δ1 = 0, that is if g has a non-zero constant
term, and where τ = 2t+1 otherwise. Although t and τ are
unknown, one can now use Trench’s O(t2) Toeplitz solver,
or the asymptotically faster algorithms in [6] of arithmetic
complexity O(t(log t)2 loglog(t)), for locating the first singu-
lar leading principal submatrix and for computing Λ. The
additive constant ω′ can be avoided, that is setting ω′ = 0
in (25), if one uses Gaussian elimination or a block Toeplitz
solver with 2× 2 blocks.

Remark 4.2 The argument used for odd i in the proof of
Lemma 4.3 relates to an old open question in [18, Footnote
in the Proof of Theorem 4], where the authors interpolate
the polynomial f(x1, . . . , xn) =

∑t
j=1 cjx

ej,1
1 · · ·xej,n

n with

cj 6= 0 from ai = f(ωi
1, . . . , ω

i
n). If we use the sequence

a0, a1, . . . , a2t−1, we need to prove for indeterminate vari-
ables y1, . . . , yn and term values βj = y

ej,1
1 · · · yej,n

n the non-
vanishing of the determinantal polynomial expression, for

27

i = 2, 3, . . . , t:

0 6=
∑

J={j1,...,ji}

cj1 · · · cji · det
(






1 1 ... 1
βj1

βj2
··· βji

...
...

. . .
...

βi−1
j1

βi−1
j2

... βi−1
ji






)2

=
∑

J={j1,...,ji}

cj1 · · · cji ·
∏

1≤v<u≤i

(βju − βjv)
2. (26)

We assume that the βj are ordered lexicographically β1 ≻
. . . ≻ βt. The difficulty is that the highest ordered term in
the expansion of the products in (26) is β2i−2

1 · · ·β2
i−1 and

occurs with coefficients c1 · · · ci−1cν where ν = i, . . . , t. As
in the proof of Lemma 4.3, we may make (

∑t
ν=i cν) 6= 0

by adding a random constant to f , that is, to ai, but then
we may have t + 1 terms. In [18, Section 3.2] the sequence
is shifted by one index to a1, . . . , a2t in order to avoid the
increase in the number of terms. Because we exploit the
symmetry of the evaluation points in (21), we cannot uti-
lize that shift for interpolating the Laurent polynomial (16)
(see also [18, Proof of Theorem 11]). However, our Theo-
rem 4.3.i yields early termination on all submatrices of even
dimensions in any case. ✷

5. CONCLUSIONS AND FUTURE WORK
We presented two methods for the black-box interpolation

of a sparse polynomial f in the Chebyshev basis. The first
approach was a generalization of the Lakshman-Saunders
algorithm [21]. This was used as part of a list-decoding
interpolation procedure, which was shown to be better than
majority-rule interpolation when the interpolant is known
to have at most two terms. In the case that f ∈ R[x], it is
shown that list-decoding interpolation will identify f .
The other interpolation procedure reduces the problem

of sparse interpolation in the Chebyshev basis to sparse in-
terpolation of a Laurent polynomial in the monomial basis.
This was adapted to early termination, such that we can
probabilistically determine t and f from 2t+ 2 evaluations.
We conjecture that, for any sparsity bound B and suffi-

ciently large error boundE, one can perform error-correcting
interpolation with fewer than the bound of (2B+1)E errors,
a naive bound due to majority-rule interpolation. We also
hope to adapt our new interpolation algorithm of Section 4
to error correction.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous referees for their

constructive comments, and for bringing [9] to our attention.
This research was supported in part by NSERC (Arnold)
and the National Science Foundation under Grants CCF-
1115772 and CCF-1421128 (Kaltofen).

Note added July 26, 2015: Included the condition (19)
in Lemma 4.2 and slightly adjusted the proof.
Clément Pernet has provide the entry n9,12 = 74 for [20,

Table 1], which (see end of Section 3.2) for B = 3 provides
an interpolant from 74⌈(E+13)/13⌉ < 6(E+1) evaluations
with ≤ E errors for all E ≥ 222.

Note added May 31, 2016: Corrected (24).

7. REFERENCES
[1] A. Arnold, M. Giesbrecht, and D. S. Roche. Sparse

interpolation over finite fields via low-order roots of unity. In

Proc. 39th Internat. Symp. Symbolic Algebraic Comput.,
ISSAC ’14, pages 27–34. ACM, 2014.

[2] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In Proc. Twentieth
Annual ACM Symp. Theory Comput., pages 301–309, New
York, N.Y., 1988. ACM Press.

[3] R. E. Blahut. A universal Reed-Solomon decoder. IBM J. Res.
Develop., 18(2):943–959, Mar. 1984.

[4] A. Borodin and P. Tiwari. On the decidability of sparse
univariate polynomial interpolation. Computational
Complexity, 1:67–90, 1991.

[5] B. Boyer, M. Comer, and E. Kaltofen. Sparse polynomial
interpolation by variable shift in the presence of noise and
outliers in the evaluations. In R. Feng, W.-s. Lee, and Y. Sato,
editors, Computer Mathematics, pages 183–197. Springer
Berlin Heidelberg, 2014.

[6] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution
of Toeplitz systems of equations and computation of Padé
approximants. J. Algorithms, 1:259–295, 1980.

[7] C. Brezinski. History of Continued Fractions and Padé
Approximants. Springer Verlag, Heidelberg, Germany, 1991.

[8] M. T. Comer, E. L. Kaltofen, and C. Pernet. Sparse
polynomial interpolation and berlekamp/massey algorithms
that correct outlier errors in input values. In Proc. 37th
Internat. Symp. Symbolic Algebraic Comput., ISSAC ’12,
pages 138–145. ACM, 2012.

[9] D. K. Dimitrov and F. R. Rafaeli. Descartes’ rule of signs for
orthogonal polynomials. East J. Approx., 15(2):233–262, 2009.

[10] S. Garg and Éric. Schost. Interpolation of polynomials given by
straight-line programs. Theoretical Comput. Sci.,
410(27-29):2659–2662, 2009.

[11] M. Giesbrecht, E. Kaltofen, and W.-s. Lee. Algorithms for
computing sparsest shifts of polynomials in power, chebyshev,
and pochhammer bases. J. Symb. Comput., 36(3-4):401–424,
2003.

[12] M. Giesbrecht, G. Labahn, and W. Lee. Symbolic-numeric
sparse polynomial interpolation in Chebyshev basis and
trigonometric interpolation. In Proc. Workshop on Computer
Algebra in Scientific Computation (CASC), pages 195–205,
2004. https://cs.uwaterloo.ca/∼mwg/files/triginterp.pdf.

[13] M. Giesbrecht, G. Labahn, and W. Lee. Symbolic-numeric
sparse interpolation of multivariate polynomials. J. Symbolic
Comput., 44:943–959, 2009.

[14] M. Giesbrecht and D. Roche. Interpolation of shifted-lacunary
polynomials. Computational Complexity, 19(3):333–354, 2010.

[15] M. Giesbrecht and D. Roche. Diversification improves
interpolation. In A. Leykin, editor, Proc. 36th Internat. Symp.
Symbolic Algebraic Comput., pages 123–130, New York, N. Y.,
2011. Association for Computing Machinery.

[16] D. Y. Grigoriev and M. Karpinski. A zero-test and an
interpolation algorithm for the shifted sparse polynomials. In
Proc. AAECC-10, volume 673 of Lect. Notes Comput. Sci.,
pages 162–169. Springer Verlag, 1993.

[17] E. Kaltofen. Fifteen years after DSC and WLSS2 What parallel
computations I do today [Invited lecture at PASCO 2010]. In
Proc. 2010 Internat. Workshop on Parallel Symbolic
Comput., PASCO ’10’, pages 10–17, 2010. URL: http://www.
math.ncsu.edu/∼kaltofen/bibliography/10/Ka10 pasco.pdf.

[18] E. Kaltofen and W.-s. Lee. Early termination in sparse
interpolation algorithms. Journal of Symbolic Computation,
36(3):365–400, 2003.

[19] E. Kaltofen and Z. Yang. Sparse multivariate function recovery
with a high error rate in evaluations. In K. Nabeshima, editor,
Proc. 39th Internat. Symp. Symbolic Algebraic Comput.,
pages 280–287, New York, N. Y., 2014. Association for
Computing Machinery. URL: http://www.math.ncsu.edu/
∼kaltofen/bibliography/14/KaYa14.pdf.

[20] E. L. Kaltofen and C. Pernet. Sparse polynomial interpolation
codes and their decoding beyond half the minimum distance.
In Proc. 39th Internat. Symp. Symbolic Algebraic Comput.,
ISSAC ’14, pages 272–279. ACM, 2014.

[21] Y. N. Lakshman and B. D. Saunders. Sparse polynomial
interpolation in non-standard bases. SIAM J. Comput.,
24(2):387–397, 1995.

[22] Lakshman Y. N. and B. D. Saunders. Sparse shifts for
univariate polynomials. Applic. Algebra Engin. Commun.
Comput., 7(5):351–364, 1996.

[23] N. Obrechkoff. On the roots of algebraic equations. Annuaire
University of Sofia Phys.-Math. Fac., 19:43–76, 1923.

28

https://cs.uwaterloo.ca/~mwg/files/triginterp.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/10/Ka10_pasco.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/10/Ka10_pasco.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/14/KaYa14.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/14/KaYa14.pdf

