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ABSTRACT

In [Kaltofen and Yang, Proc. ISSAC 2013] we have gen-
eralized algebraic error-correcting decoding to multivariate
sparse rational function interpolation from evaluations that
can be numerically inaccurate and where several evaluations
can have severe errors (“outliers”). Here we present a dif-
ferent algorithm that can interpolate a sparse multivariate
rational function from evaluations where the error rate is
1/q for any q > 2, which our ISSAC 2013 algorithm could
not handle. When implemented as a numerical algorithm
we can, for instance, reconstruct a fraction of trinomials
of degree 15 in 50 variables with non-outlier evaluations of
relative noise as large as 10−7 and where as much as 1/4 of
the 14717 evaluations are outliers with relative error as small
as 0.01 (large outliers are easily located by our method).
For the algorithm with exact arithmetic and exact values

at non-erroneous points, we provide a proof that for random
evaluations one can avoid quadratic oversampling. Our ar-
gument already applies to our original 2007 sparse rational
function interpolation algorithm [Kaltofen, Yang and Zhi,
Proc. SNC 2007], where we have experimentally observed
that for T unknown non-zero coefficients in a sparse candi-
date ansatz one only needs T +O(1) evaluations rather than
the proven O(T 2) (cf. Candès and Tao sparse sensing). Here
we finally can give the probabilistic analysis for this fact.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; G.1.1 [Numerical
Analysis]: Interpolation—smoothing

Keywords: error correcting coding, fault tolerance, Cauchy
interpolation, rational function

1. INTRODUCTION

Algorithms that interpolate a uni- or multivariate polyno-
mial or rational function that reduce the number of values
required for reconstruction according to the sparsity of pol-
ynomial in one of several bases, such as power basis, Cheby-
chev basis, or Pochhammer basis, can be adapted to nu-
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merical data and floating point arithmetic. Error-correcting
decoding of algebraic codes adds a new dimension to the
domain of specifications: several evaluations can have erro-
neous values, which in the numeric setting constitute out-
liers with severe relative error. We present new exact and
numeric algorithms for sparse multivariate rational function
recovery when those outliers can be numerous, as much as
49.99% of all evaluations.

The literature on exact symbolic algorithms for sparse in-
terpolation without errors is extensive. The first univariate
algorithm is embedded in Blahut’s [3] decoder for Reed/
Solomon codes and generalized to sparse multivariate poly-
nomials in [2]. A separate method for sparse multivariate
polynomials is in [25, 24]. More efficient algorithms are in
[12]. Early termination by randomization is introduced in
[13]. Algorithms for sparse multivariate rational functions
are in [7, 18, 6]. Finally, large degrees are dealt with in [8, 11,
14, 1]. Univariate algorithms for imprecise inputs go back
to French revolution times [21], but came to life with early
termination [9]. Low degree multivariate models can be re-
covered variable-by-variable [18]. Errors in the evaluations
were introduced for univariate sparse polynomial recovery
in [5], and for multivariate sparse polynomials and rational
functions in [22, 17], the latter also with approximate eval-
uations and with outliers.

Our new algorithm adapts the variant of Zippel’s [25]
variable-by-variable iteration in [10, Section 4] as it has been
applied to sparse multivariate rational function interpola-
tion [18]. Those algorithms set up a large linear system
with original values as entries (see (18)) and thus can tol-
erate imprecision in the entries, e.g., by use of a structured
total least norm linear solver, as already observed in [18].
We deploy rational function interpolation as a means to de-
code errors in analogy to the dense univariate Olshevsky-
Shokrollahi [20] decoder and unlike the Euclidean algorithm-
based Berlekamp-Welch decoder [23, 15].

We shall not assume that the recovered rational fraction
f/g is reduced, that is, we do not assume GCD(f, g) = 1.
The reasons are threefold: 1. sparse fractions can have fewer
terms than reduced dense fractions, as in (x20−y20)/(x−y).
Already in [14] we have interpolated such sparse unreduced
fractions. 2. errors in evaluations at points are corrected by
recovering (fΛ)/(gΛ) where Λ is an error locator polynomial
(see text above (4)). 3. approximate relative primeness is
difficult to maintain numerically for many evaluations, as
has already been observed in [16]. Avoiding the assumption
because of 1. yields stability when the algorithm uses floating
point arithmetic.
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As in [17, 15], we allow evaluation of the rational function
f/g at a pole, which we define as a zero of the (possibly
unreduced) denominator g. We suppose that the evaluation
at a pole is indicated by the resulting function value ∞. A
true pole has that evaluation, but we also can have erroneous
“false” poles, where∞ is incorrectly indicated at a non-pole,
or we can have an incorrect non-∞ value at a pole. The
latter error can be located, but not corrected when the pole
is simultaneously a root of the numerator f (see text below
(17)).
Next we establish our notion of an error rate in a list of

evaluations.
Remark 1.1. As in [17, Remark 1.1], we assume that the
black box for evaluating f/g returns on a batch of L ≥ Lmin

evaluations at distinct points no more than k ≤ L/q faulty
values. Our model can be used to derive expected decoding
results for a stochastic error rate via Chernoff bounds of the
tail of the binomial distribution. If each evaluation is faulty
with probability 1/q̂ then ≥ (1+ǫ)L/q̂ evaluations are faulty
with probability ≤ exp(−ǫ2L/(3q̂)) for all ǫ, 0 < ǫ < 1, and
we may choose q = q̂/(1 + ǫ) in our analysis for an error
probability of 1/q̂ with which a single evaluation is faulty.
Therefore, from now on we shall refer to 1/q as the adjusted
error rate. See also Lemma 3.1 below.
Our previous algorithm did not work for an adjusted error

rate 1/q below but near to 1/2 [17, Remark 2.6]. Our new
algorithm achieves decoding with an error rate 1/q for any
q > 2 by exploiting the dense univariate algorithm. How-
ever, we use the univariate algorithm only for error location,
and derive the multivariate sparse rational function model
f/g from a large homogeneous linear system (see (18)). The
latter is necessary for imprecise data so that noise cannot
be amplified in intermediately computed scalars. The size
of that system is prescribed by the number of evaluations at
random points that yield a proper interpolant Φ/Ψ in the
sense that fΨ = Φg, which we call the Cauchy property of
the interpolating fraction Φ/Ψ.
Our algorithm restricts the polynomials Φ and Ψ to a

sparsity structure which is overdetermined in a single vari-
able and solves for the coefficients of Φ and Ψ from the
values of (f/g)(ξ1,ℓ, . . . , ξn,ℓ). If we have T terms in the
(overdetermined) combined term support set for the numer-
ator Φ and denominator Ψ, we shall prove below that when
the variable values ξµ,ℓ are randomly and uniformly selected
from a sufficiently large finite set of coefficient field elements,
T −1 evaluation points yield the Cauchy property for all in-
terpolants with high probability (see Theorem 2.1). Note
that all scalar multiples (cΦ)/(cΨ) are interpolants. The
proof technique is a combination of row subsetting for solv-
ing overdetermined linear systems [19] and evaluation at new
sets of symbols (transcendentals) [10, Section 4]. Earlier [18,
17], we only could provably establish the Cauchy property
with O(T 2) evaluations, based on the number of terms in
fΨ − Φg. We note the comparison to [4] where oversam-
pling is quadratic in the sparsity.
Sections 2 and 3 analyze our algorithms when executed

with exact arithmetic in the field of scalars. In Section 2
we describe an algorithm for recovering a vector of multi-
variate rational functions [ f 〈1〉/g, . . . , f 〈s〉/g ]. In Section 3
we describe a different algorithm that corrects at high er-
ror rate, using the analysis in Section 2 for a single rational
function and without erroneous evaluations. The algorithm
in Section 3 is easily generalized to vector recovery. Both

sections must overcome the technical challenge of the asym-
metric behavior of evaluations at poles that are simultane-
ously zeros of the numerator f (see (20) and the sentence
thereafter). Section 4 describes the implementation and ex-
periments with noisy data and floating point arithmetic.

2. VECTOR-OF-FUNCTIONS RECOVERY

The objective of this section is to generalize Kaltofen’s
upper bound estimate on the number of necessary function
evaluations at random points [17, Note added to Remark 2.2
posted on Kaltofen’s web site version on July 14, 2013] to in-
terpolating a vector of multivariate sparse rational functions
with a common denominator:

[f 〈1〉/g, ..., f 〈s〉/g] ∈ K(x1, ..., xn)
s, g 6= 0. (1)

Note that the fractions f 〈σ〉/g are not necessarily reduced,

and that may even have GCD(g, GCDσ(f
〈σ〉)) 6= 1. We

assume that we have for all σ, 1 ≤ σ ≤ s, sets of terms

D
〈σ〉
f ⊇ supp(f 〈σ〉) that constitute maximal sparse supports,

and a maximal sparse support set Dg ⊇ supp(g), where

supp(f 〈σ〉) and supp(g) are the sets of terms in f 〈σ〉 and g,
resp., occurring with non-zero coefficients. As in [17], we
evaluate the vector (1) (“probe the black box”) at values for
the variables, (x1, ..., xn) ← (ξ1,ℓ, ..., ξn,ℓ) ∈ K

n, for all L
evaluations 0 ≤ ℓ ≤ L − 1, where the ξµ,ℓ are chosen in a
certain way, e.g., selected randomly and uniformly from a

finite subset S ⊆ K. The obtained vector [β
〈1〉
ℓ , ..., β

〈s〉
ℓ ] ∈

(K∪ {∞})s can be incorrect in one or more components for
k ≤ E evaluations ℓ = λ1, ..., λk, that is

∀κ, 1≤κ≤k : ∃σ, 1≤σ≤s :
f 〈σ〉

g
(ξ1,λκ , ..., ξn,λκ) 6=β

〈σ〉
λκ

, (2)

∀ℓ 6∈ {λ1, ..., λk} : ∀σ, 1≤σ≤s :
f 〈σ〉

g
(ξ1,ℓ, ..., ξn,ℓ)=β

〈σ〉
ℓ . (3)

Here E is predetermined and the locations of the errors are
unknown. As in [17] we set all components of a vector =∞
if g(ξ1,ℓ, ..., ξn,ℓ) = 0, that even for those components with

f 〈σ〉(ξ1,ℓ, ..., ξn,ℓ) = 0, but false vectors full of ∞’s can ap-
pear for g(ξ1,λκ , ..., ξn,λκ) 6= 0. We can identify vectors that
contain both ∞ and a field element as erroneous. Errors
are dealt with by interpolating (f 〈σ〉Λ)/(gΛ) à la [15] where
Λ = (xn1 − ξn1,λ1) · · · (xn1 − ξn1,λk

) is an error locator pol-
ynomial for a chosen n1 with 1 ≤ n1 ≤ n. We have the
maximal supports

D
〈σ〉
f,E;n1

={τxν
n1
|τ ∈ D

〈σ〉
f , 0≤ν≤E}⊇ supp(f 〈σ〉Λ),

Dg,E;n1={τx
ν
n1
|τ ∈ Dg, 0≤ν≤E} ⊇ supp(gΛ).

}
(4)

Now we limit the sparse supports of polynomials with un-
known coefficients Φ〈σ〉 and Ψ to the term sets (4). From
(2) and (3) we obtain linear homogeneous equations for the

coefficients of Φ〈σ〉, Ψ:

Φ〈σ〉(ξ1,ℓ, ..., ξn,ℓ)−β
〈σ〉
ℓ Ψ(ξ1,ℓ, ..., ξn,ℓ) = 0,

for 0≤ℓ≤L−1, 1≤σ≤s with β
〈σ〉
ℓ 6=∞,

Ψ(ξ1,ℓ, ..., ξn,ℓ) = 0,

for 0≤ℓ≤L−1 with β
〈1〉
ℓ = · · ·=β

〈s〉
ℓ =∞, with

supp(Φ〈σ〉)⊆D
〈σ〉
f,E;n1

for 1≤σ≤s, supp(Ψ)⊆Dg,E;n1 .





(5)

Note that Φ〈σ〉 ← f 〈σ〉Λ, Ψ ← gΛ solve (5). We call any

solution (Φ〈1〉, ...,Φ〈s〉,Ψ) of (5) an interpolant. We seek a
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(minimal) L and ξµ,ℓ such that all solutions of (5) satisfy

∀σ, 1 ≤ σ ≤ s : Φ〈σ〉g = f 〈σ〉Ψ,

with supp(Φ〈σ〉) ⊆ D
〈σ〉
f,E;n1

, supp(Ψ) ⊆ Dg,E;n1 . (6)

We call (6) the Welch-Berlekamp property. Then any non-
zero solution vector to (6) satisfies

[Φ〈1〉/Ψ, ...,Φ〈s〉/Ψ] = [f 〈1〉/g, ..., f 〈s〉/g].

Theorem 2.1. Let L=|Dg,E;n1 |+(max1≤σ≤s |D
〈σ〉
f,E;n1

|)−1,

M 〈σ〉=|Dg,E;n1 |+|D
〈σ〉
f,E;n1

|, and let all ξµ,ℓ, where 1 ≤ µ ≤
n and 0 ≤ ℓ ≤ L − 1, be randomly and uniformly se-
lected from a finite subset S ⊆ K. Then the probability that
all interpolant (s+ 1)-tuples (Φ〈1〉, ...,Φ〈s〉,Ψ) to (5) satisfy
the Welch-Berlekamp property (6) is bounded from below as

≥ 1 − (
∑s

σ=1(M
〈σ〉 − E − 1) (max{deg(τf ) | τf ∈ D

〈σ〉
f }

+max{deg(τg) | τg ∈ Dg}+ E))/|S|.
Because of page restrictions, we cannot detail the proof.

We base the argument on 3 Lemmas. Our first auxiliary
lemma relates solutions with the Welch-Berlekamp property
(6) to interpolants of (5)
Lemma 2.2. For any L ≥ k ≥ 0, any E ≥ 0 and any
evaluations ξµ,ℓ ∈ K, where 1 ≤ µ ≤ n, 0 ≤ ℓ ≤ L − 1,

consider the solution (s + 1)-tuples (Φ〈1〉, ...,Φ〈s〉,Ψ) to the
homogeneous linear equations in their coefficients

∀σ, 1≤σ≤s : Φ〈σ〉g=f 〈σ〉Ψ (that is, (6)) (7)

Φ〈σ〉(ξ1,λκ , ..., ξn,λκ)−β
〈σ〉
λκ

Ψ(ξ1,λκ , ..., ξn,λκ)=0,

for 1≤κ≤k, 1≤σ≤s with β
〈σ〉
λκ
6=∞, (8)

Ψ(ξ1,λκ , ..., ξn,λκ)=0, for 1≤κ≤kwithβ
〈1〉
λκ

=···=β
〈s〉
λκ

=∞, (9)

Ψ(ξ1,ℓ, ..., ξn,ℓ)=0, with ℓ 6∈{λ1, ..., λk} and

g(ξ1,ℓ, ..., ξn,ℓ)=0, ∀σ : f 〈σ〉(ξ1,ℓ, ..., ξn,ℓ)=0. (10)

with supp(Φ〈σ〉)⊆D
〈σ〉
f,E;n1

for 1≤σ≤s, supp(Ψ)⊆Dg,E;n1 .

All those solution tuples must be interpolants of (5).
Our second auxiliary lemma gives an upper bound on L

so that all interpolants of (5) for certain ξµ,ℓ are in the de-
scribed subspace of Lemma 2.2, meaning that they satisfy
the Welch-Berlekamp property (6). The argument for s = 1
is already in [18, Section 4.1].

Lemma 2.3. Let L× = |Dg,E;n1 | × (max1≤σ≤s |D
〈σ〉
f,E;n1

|)

and let ξµ,ℓ = ξℓµ ∈ K, where 1 ≤ µ ≤ n and 0 ≤ ℓ ≤ L×− 1,

such that for D
〈σ〉
f,E;n1

×Dg,E;n1 = {τfτg | τf ∈ D
〈σ〉
f,E;n1

, τg ∈

Dg,E;n1} we have

τ1(ξ1, ..., ξn) 6= τ2(ξ1, ..., ξn) for all σ and

for all τ1, τ2 ∈ D
〈σ〉
f,E;n1

×Dg,E;n1 , τ1 6= τ2, (11)

(see [17, Assumption 4]). Then all interpolants (s + 1)-

tuples (Φ〈1〉, ..., Φ〈s〉, Ψ) of (5) satisfy the Welch-Berlekamp
property (6).

Remark 2.1. For n = 1 and dense support sets D
〈σ〉
f,E;n1

=

{1, x1, x
2
1, ...}, Dg,E;n1 = {1, x1, x

2
1, ...} we may choose ξ1,ℓ =

ξ̂ℓ ∈ K with ξ̂ℓ1 6= ξ̂ℓ2 for all ℓ1 6= ℓ2. Then the coefficient

matrix for (Φ〈σ〉gΛ−f 〈σ〉ΛΨ)(ξ̂ℓ) is a non-zero Vandermonde
matrix and the Lemma holds. ✷

The third lemma is the crucial idea that reduces L× of
Lemma 2.3. We will evaluate the black box for (1) at sym-
bols vµ,ℓ ∈ K(..., vµ,ℓ, ...). It is not required from the black

box to allow such elements (in transcendental extensions of
K) as arguments, we solely use it for purpose of proof.

Lemma 2.4. Let L+ = |Dg,E;n1 |+ (max1≤σ≤s |D
〈σ〉
f,E;n1

|)−
E − 1. Suppose ξµ,ℓ = vµ,ℓ is a new symbol (variable),
for each 1 ≤ µ ≤ n, 0 ≤ ℓ ≤ L+ − 1. We assume that
k = 0, that is, there are no erroneous evaluations, so that

β
〈σ〉
ℓ = (f 〈σ〉/g)(v1,ℓ, ..., vn,ℓ) ∈ K(v1,0, ..., vn,L+−1) for all

ℓ. Note that at vectors of n distinct variables there can-
not be true poles. Then all interpolants (s + 1)-tuples of
(5) for L = L+ over K(v1,0, ..., vn,L+−1) satisfy the Welch-
Berlekamp property (6).

The crucial idea for the proof of Lemma 2.4 is that by
Lemma 2.3 for evaluations at ξµ,ℓ = vℓµ, where vµ are fresh
indeterminates (variables), the Welch-Berlekamp property
(6) is attained from L× evaluations. The property remains
for evaluations ξµ,ℓ = vµ,ℓ because the rank of the cor-
responding linear system cannot drop: we can substitute
vµ,ℓ = vℓµ in the coefficients to have at least the rank before.
Finally, we can select a maximal set of linearly independent
equations in (5) (for ξµ,ℓ = vµ,ℓ). The equations at ℓ = ℓθ
where θ = 1, 2, ... have a fresh set of variables so we can also
use the initial ℓ = 1, 2, .... We can treat each σ individually;
combining the equations (5) restricts the solutions to those
with a common denominator Ψ.

The proof of Theorem 2.1 first uses for each σ separately

the equations in (5) without erroneous β
〈σ〉
ℓ . We consider

those ξµ,ℓ which when substituted for vµ,ℓ in Lemma 2.4
preserve the rank, i.e., the dimensionality of the solution
space. The complication with (10) is avoided by excluding
such ξµ,ℓ. The solutions thus remain in the subspace of
Lemma 2.2 (for k = 0). Erroneous equations and a common
denominator restrict the solution space further, but there
always is a solution (f 〈1〉Λ, ..., f 〈s〉Λ, gΛ). The probability
of success is estimated by the Zippel-Schwartz Lemma. Note
that at error locations our solutions satisfy

∀σ : Ψ(ξ1,λκ , ...) = 0 = Φ〈σ〉(ξ1,λκ , ...). (12)

Remark 2.2. The condition g 6= 0 in (1) is not essential,
which is useful when we inadvertently have projected the
denominator to 0 in Section 3. If g = 0, all non-faulty
evaluation vectors are by definition [∞, ...,∞]. If for all σ:

D
〈σ〉
f = ∅ ⇒ f 〈σ〉 = 0, then the Welch-Berlekamp prop-

erty (6) is satisfied for any solution (Φ,Ψ). Otherwise, if for

one σ1 we have D
〈σ1〉
f 6= ∅, we must have Ψ = 0 for all solu-

tions of (5). The justification follows the original arguments,
which are only partially presented above. ✷

3. VARIABLE-BY-VARIABLE SPARSE IN-

TERPOLATION

In [7, 18] the variable-by-variable sparse reconstruction of
[24] is generalized to multivariate rational functions, and in
[17] an error-tolerant algorithm is introduced. We now mod-
ify the reconstruction in [17] so that an arbitrary error rate
< 1/2 can be handled. Let

f/g ∈ K(x1, ..., xn), g 6= 0
be a rational function with a sparse numerator and denom-
inator. We do not assume that GCD(f, g) = 1, and wish to
recover the sparse representations of f and g,

f=

tf∑

j=1

aj~x
~dj , g=

tg∑

m=1

bm~x~em , aj , bm∈K, aj 6=0, bm 6=0, (13)
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the terms of the non-zero monomials are denoted by ~x
~dj =

x
dj,1
1 · · ·x

dj,n
n and ~x~em = x

em,1

1 · · ·x
em,n
n . We assume that

a black box evaluates the function at (x1, ..., xn) ← (ξ1, ...,
ξn) ∈ K

n, that with an adjusted error rate 1/q < 1/2 (see
Remark 1.1).
Lemma 3.1. Suppose for all δ ≥ 1 and all E ≥ 0, δ values
are decoded from ≥ δ + 2E evaluations at distinct points
with k ≤ E errors. Then given δ and an adjusted error rate
1/q < 1/2, one decodes correctly at any sequence of length
L ≥ max{Lmin, δ + 2⌊δ/(q − 2)⌋} of evaluations at distinct
points.
Proof of Lemma 3.1. We have for E = ⌊δ/(q − 2)⌋ that
E ≤ δ/(q − 2) ⇒ E ≤ (δ + 2E)/q and (δ + 2E)/q ≤ (δ +
2δ/(q−2))/q = δ/(q−2), both of which imply that E = ⌊(δ+
2E)/q⌋. So a sequence of δ + 2E ≥ Lmin evaluations with
k ≤ (δ + 2E)/q errors is decoded. Now let L ≥ δ + 2E + 1.
Then L − 2⌊L/q⌋ ≥ (q − 2)L/q ≥ (q − 2)(δ + 2E + 1)/q =
(q−2)(δ+2⌊δ/(q−2)⌋+1)/q ≥ (q−2)(δ+2(δ/(q−2)−1)+1)/q
= δ− (q−2)/q > δ−1. Since L−2⌊L/q⌋ and δ are integers,
δ ≤ L−2⌊L/q⌋ values are decoded in the presence of≤ ⌊L/q⌋
errors for all such L ≥ Lmin. ✷

We now analyze a single iterative step. For that we assume
that we have term sets

Df,n−1 ⊇ {x
dj,1
1 x

dj,2
2 · · ·x

dj,n−1

n−1 | 1 ≤ j ≤ tf},
Dg,n−1 ⊇ {x

em,1

1 x
em,2

2 · · ·x
em,n−1

n−1 | 1 ≤ m ≤ tg}.

}
(14)

Those term sets come from having interpolated (f/g)(x1,
..., xn−1, αn) for a random anchor point αn ∈ S ⊆ K. In
our algorithm we will iterate through the variables x2, ..., xn,
starting with the dense (f/g)(x1, α2, ..., αn). We obtain the
next term sets Df,n, Dg,n in 3 steps.

Step 1: We assume that on input we have upper bounds

d̄
[n]
f ≥ degxn

(f) = maxj{dj,n} and d̄
[n]
g ≥ degxn

(g) =

maxm{em,n}. For all 0 ≤ ℓ ≤ Ln−1 − 1, where Ln−1 =
|Df,n−1|+ |Dg,n−1|−1, (see (22) below), we select a random
(n − 1)-tuple (ξ1,ℓ, ..., ξn−1,ℓ) ∈ Sn−1 ⊆ K

n−1 and interpo-
late the possibly unreduced univariate fraction (f/g)(ξ1,ℓ,
..., ξn−1,ℓ, xn) ∈ K(xn). We use a univariate dense Cauchy
interpolation algorithm with errors [15, 17]; see also Re-
mark 2.1. We deal with the case g(ξ1,ℓ, ..., ξn−1,ℓ, xn) = 0 in
the next paragraph. If we have kℓ ≤ E errors in the batch of
evaluations for each ℓ, then we use (correct and erroneous)

values βℓ,ℓ ′ of (f/g)(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) for 0 ≤ ℓ ′ ≤ L
[n]
ℓ −1,

where L
[n]
ℓ ← d̄

[n]
f + d̄

[n]
g +2E+1 and where ξ̂ℓ ′

1
6= ξ̂ℓ ′

2
for all

ℓ ′1 6= ℓ ′2. Note that the list of evaluations points ξ̂ℓ ′ must be
the same for all (ξ1,ℓ, ..., ξn−1,ℓ). In the presence of an ad-

justed error rate 1/q < 1/2, by Lemma 3.1 with δ = d̄
[n]
f +

d̄
[n]
g +1 we can choose L

[n]
ℓ ← max{d̄

[n]
f +d̄

[n]
g +2E+1, Lmin}

with E = ⌊(d̄
[n]
f + d̄

[n]
g +1)/(q− 2)⌋. All computed solution

pairs (Φ
[n]
ℓ (xn),Ψ

[n]
ℓ (xn)) ∈ K[xn]

2 satisfy, by Theorem 2.1
as is explained in Remark 2.1, the Welch-Berlekamp prop-
erty

f
[n]
ℓ (xn)Ψ

[n]
ℓ (xn) = Φ

[n]
ℓ (xn)g

[n]
ℓ (xn), (15)

where f
[n]
ℓ (xn) = f(ξ1,ℓ, ..., ξn−1,ℓ, xn), g

[n]
ℓ (xn) = g(ξ1,ℓ,

..., ξn−1,ℓ, xn), and at all error locations λ′ we have by (12)

Φ
[n]
ℓ (ξ̂λ′) = Ψ

[n]
ℓ (ξ̂λ′) = 0. A complication is that non-error

locations can also have Φ
[n]
ℓ (ξ̂ℓ ′) = Ψ

[n]
ℓ (ξ̂ℓ ′) = 0. Let h =

GCD(f
[n]
ℓ , g

[n]
ℓ ); note that g

[n]
ℓ is assumed to be non-zero,

for now. Then by (15) we have Φ
[n]
ℓ = Λ̂f

[n]
ℓ /h and Ψ

[n]
ℓ =

Λ̂g
[n]
ℓ /h for some polynomial Λ̂ ∈ K[xn]. Because none of

the evaluation points with erroneous evaluations ξ̂λ′ can be

roots of both of the relatively prime f
[n]
ℓ /h and g

[n]
ℓ /h, the

error locator polynomial Λ =
∏

λ′(xn − ξ̂λ′) must divide Λ̂.

For a true pole ξ̂ℓ ′ (βℓ,ℓ ′ = γℓ,ℓ ′ = ∞ ⇒ g
[n]
ℓ (ξ̂ℓ ′) = 0)

with (g
[n]
ℓ /h)(ξ̂ℓ ′) 6= 0 (⇒ h(ξ̂ℓ ′) = 0 ⇒ f

[n]
ℓ (ξ̂ℓ ′) = 0) the

condition Ψ
[n]
ℓ (ξ̂ℓ ′) = 0 implies that xn − ξ̂ℓ ′ also divides

Λ̂. For each ℓ, we can compute a lowest degree non-zero

interpolant pair (Φ̂
[n]
ℓ (xn), Ψ̂

[n]
ℓ (xn)) and deduce an index

set

Iℓ = {ℓ
′ | Φ̂

[n]
ℓ (ξ̂ℓ ′) = Ψ̂

[n]
ℓ (ξ̂ℓ ′) = 0}

= {ℓ ′ | βℓ,ℓ ′ 6=γℓ,ℓ ′} ∪ {ℓ ′ | f(ξ1,ℓ, ...,

ξn−1,ℓ, ξ̂ℓ ′) = g(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) = 0}. (16)

Note that the sets in (16) above are not necessarily disjoint.
We can also identify the corresponding correct evaluations

βℓ,ℓ ′ = γℓ,ℓ ′ = (f/g)(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′),

for ℓ ′ = 0, 1, ..., L
[n]
ℓ − 1, ℓ ′ 6∈ Iℓ. (17)

Because we have not assumed GCD(f, g) = 1, we do not
have the degrees degxn

(f) and degxn
(g) or the sparse sup-

ports in xn of f and g. Note that we allow evaluations at
poles γℓ,ℓ ′ =∞, but that it may be impossible for erroneous
βℓ,λ′ 6=∞ to identify a pole γℓ,λ′ =∞ when g(ξ1,ℓ, ..., ξn−1,ℓ,

ξ̂λ′) = f(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂λ′) = 0 (⇒ (f/g)(ξ1,ℓ, ..., ξn−1,ℓ, xn)
is unreduced).

If g(ξ1,ℓ, ..., ξn−1,ℓ, xn) = 0, at least L
[n]
ℓ − ⌊L

[n]
ℓ /q⌋ ≥

d̄
[n]
f + d̄

[n]
g +⌊L

[n]
ℓ /q⌋+1 evaluations for xn ← ξ̂ℓ ′ must yield

∞ (see Lemma 3.1 and also Remark 2.2). The observer,

assuming ≤ ⌊L
[n]
ℓ /q⌋ of those are false, still has ≥ d̄

[n]
f +

d̄
[n]
g + 1 ≥ d̄

[n]
g + 1 true ∞’s, which by degxn

(g) ≤ d̄
[n]
g

implies g(ξ1,ℓ, ..., ξn−1,ℓ, xn) = 0. We can deduce the correct
evaluations γℓ,ℓ ′ =∞ for all ℓ′, meaning Iℓ = ∅ in this case.

Step 2: Here we process each ℓ separately. For latter analy-

sis, we need to have at least d̄
[n]
f +d̄

[n]
g +1 known values γℓ,ℓ ′ .

In other words, we need to have a range 0 ≤ ℓ ′ ≤ L
[n]
ℓ − 1

with L
[n]
ℓ −|Iℓ| ≥ d̄

[n]
f + d̄

[n]
g +1. If g(ξ1,ℓ, ..., ξn−1,ℓ, xn) = 0

we have Iℓ = ∅, so our current range L
[n]
ℓ is sufficient. So let

g(ξ1,ℓ, ..., ξn−1,ℓ, xn) 6= 0. The (unidentifiable) true poles ξ̂ℓ ′

with ℓ ′ ∈ Iℓ in (16) must be roots of g(ξ1,ℓ, ..., ξn−1,ℓ, xn),

whose degree≤ d̄
[n]
g . Hence |Iℓ| ≤ kℓ+d̄

[n]
g ≤ ⌊L

[n]
ℓ /q⌋+d̄

[n]
g ,

thus if ⌊L
[n]
ℓ /q⌋ ≥ d̄

[n]
g ⇒ L

[n]
ℓ − |Iℓ| ≥ L

[n]
ℓ − 2⌊L

[n]
ℓ /q⌋ ≥

d̄
[n]
f + d̄

[n]
g + 1, the latter by Lemma 3.1, and we are done.

Note that L
[n]
ℓ has been determined from the adjusted er-

ror rate, incl. Lmin, and the degree bounds, all of which are
known on input.

But it is possible that L
[n]
ℓ −|Iℓ| < d̄

[n]
f +d̄

[n]
g +1, that even

for all ℓ, for example, when f(x1, ..., xn−1, ξ̂ℓ ′) = g(x1, ...,

xn−1, ξ̂ℓ ′) = 0 for d̄
[n]
g of the ξ̂ℓ ′ and L

[n]
ℓ /q is too small. Sep-

arately for each such ℓ, we then increase the range of ℓ ′, com-

puting additional βℓ,ℓ ′ for reset L
[n]
ℓ and with them new Iℓ.

The new distinct evaluation points ξ̂ℓ ′ need not be random.
For an adjusted error rate 1/q, the process must stop at

L
[n]
ℓ =L̂

[n]
ℓ =δ̂+Ê, where δ̂=d̄

[n]
f +2d̄

[n]
g +1 and Ê=⌊δ̂/(q−1)⌋

4



= ⌊L̂
[n]
ℓ /q⌋: we had E=⌊(d̄

[n]
f +d̄

[n]
g +1)/(q−2)⌋ (see Step 1)

≤ ⌊L
[n]
ℓ /q⌋ (because E≤(d̄

[n]
f +d̄

[n]
g +2E+1)/q≤L

[n]
ℓ /q; see

Lemma 3.1) < d̄
[n]
g (otherwise, we were done), which implies

d̄
[n]
f +d̄

[n]
g +1<(q−2)d̄

[n]
g ⇒ Ê<d̄

[n]
g . So ≤⌊L̂

[n]
ℓ /q⌋≤Ê er-

rors are indeed identified from L̂
[n]
ℓ >d̄

[n]
f +d̄

[n]
g +2Ê+1 eval-

uations, and for the corresponding Îℓ we have L̂
[n]
ℓ −|Îℓ| ≥

L̂
[n]
ℓ −(d̄

[n]
g +Ê) = d̄

[n]
f +d̄

[n]
g +1.

One also may prevent, with high probability, the neces-
sity of enlarging the range of ℓ ′ by randomly selecting the

first max{d̄
[n]
f + d̄

[n]
g +E + 1, Lmin} of the ξ̂ℓ ′ ∈ S′. Proba-

bilistic failure at this stage can be diagnosed and corrected
by enlarging the range as above with new random choices
ξ̂ℓ ′ ∈ S′.

Step 3: We now use the good evaluations (17) and the
additional values from Step 2 to obtain the sparse solutions
(Φ,Ψ). We solve, for the coefficients of Φ,Ψ, the following
linear homogeneous system:

Φ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′)−γℓ,ℓ ′Ψ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′)=0,

for 0≤ℓ≤Ln−1−1, 0≤ℓ
′≤L

[n]
ℓ −1, ℓ

′ 6∈Iℓ,with γℓ,ℓ ′ 6=∞,

Ψ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′)=0,

for 0≤ℓ≤Ln−1−1, 0≤ℓ
′≤L

[n]
ℓ −1, ℓ

′ 6∈Iℓ,with γℓ,ℓ ′=∞,

with supp(Φ) ⊆ D̄f,n={τfx
δ
n|τf∈Df,n−1, 0≤δ≤d̄

[n]
f },

supp(Ψ) ⊆ D̄g,n={τgx
η
n|τg∈Df,n−1, 0≤η≤d̄

[n]
g }.





(18)

Note that Ln−1 is chosen (see (22) below) so that the Cauchy
property f Ψ = Φ g, namely, the Welch-Berlekamp property
without errors, is satisfied for all solutions (Φ,Ψ), that with
high probability. The difficulty in applying Theorem 2.1 (for
s = 1, E = 0 and n1 = n) is that the random (ξ1,ℓ, ..., ξn−1,ℓ)

are repeated for the ξ̂ℓ ′ over the range of ℓ ′, and therefore
the arguments (ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) would not be completely

random for each equation in (18), even if the ξ̂ℓ ′ were chosen
randomly.
First, we argue that any solution pair (Φ,Ψ) of (18) will

satisfy the above equations for all ℓ ′ ∈ Iℓ and all ℓ as well,
almost, namely,

Φ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′)−γℓ,ℓ ′Ψ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) = 0,

for 0≤ℓ≤Ln−1−1, ℓ
′ ∈ Iℓ, with γℓ,ℓ ′ 6=∞, (19)

Ψ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) = 0, for 0≤ℓ≤Ln−1−1,

ℓ ′∈Iℓ with γℓ,ℓ ′=∞, f(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) 6=0, (20)

with supp(Φ) ⊆ D̄f,n, supp(Ψ) ⊆ D̄g,n.

Here (20) excludes the case f(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) = g(ξ1,ℓ,

..., ξn−1,ℓ, ξ̂ℓ ′) = 0. As said earlier, equations for such poles
cannot be deduced. The claim (18) ⇒ (19,20) for each ℓ is
non-trivial only if Iℓ 6= ∅, so we can assume that we have
g(ξ1,ℓ, ..., ξn−1,ℓ, xn) 6= 0. Then for each ℓ, we shall argue
that the equations (18) produce (Φ,Ψ) such that their uni-
variate projections Φ(ξ1,ℓ, ..., ξn−1,ℓ, xn),Ψ(ξ1,ℓ, ..., ξn−1,ℓ, xn)
satisfy the univariate Cauchy property

(fΨ− Φg)(ξ1,ℓ, ..., ξn−1,ℓ, xn) = 0; (21)

see Remark 2.1 for n = s = 1, E = 0, D
〈1〉
f,0;1 = {1, xn, x

2
n, ...,

xd̄
n}, d̄ = d̄

[n]
f , and Dg,0;1 = {1, xn, x

2
n, ..., x

ē
n}, ē = d̄

[n]
g . The

univariate Cauchy property (21) requires, by Theorem 2.1

and Remark 2.1, at least d̄
[n]
f + d̄

[n]
g + 1 distinct points ξ̂ℓ ′

in our system (18), including (true) poles. In Step 2 each

Iℓ was individually adjusted to that, namely L
[n]
ℓ − |Iℓ| ≥

d̄
[n]
f + d̄

[n]
g + 1. Then plugging xn ← ξ̂ℓ ′ in the univariate

Cauchy property (21) yields (19,20).
We now wish to apply Theorem 2.1 with E = 0 and s = 1

to the (n−1)-variate interpolation problem (f/g)(x1, ..., xn−1,

ξ̂ℓ ′). We fix ℓ ′, and analyze the solutions (Φ,Ψ) of the
corresponding subset of equations in (18,19,20) for random
(ξ1,ℓ, ..., ξn−1,ℓ) ∈ Sn−1 for all ℓ,

0 ≤ ℓ ≤ Ln−1 − 1, Ln−1 = |Df,n−1|+ |Dg,n−1| − 1. (22)

If g(x1, ..., xn−1, ξ̂ℓ ′) 6= 0, the above equations (18,19,20)
then constitute the set of interpolation equations (5) for E =
0 and s = 1 with one exception: the constraint Ψ(ξ1,ℓ, ...,

ξn−1,ℓ, ξ̂
′
ℓ) = 0 is missing in (20) when f(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂

′
ℓ) =

g(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂
′
ℓ) = 0. As stated in the sketch of the

proof of Theorem 2.1 our random points ξ1,0, ..., ξn−1,L̂, L̂ =
Ln−1 − 1, avoid condition (10) at the non-erroneous evalua-
tion points that are required to attain the Welch-Berlekamp
property. If additional constraining equations are missing,
the Welch-Berlekamp property cannot be lost. Note that
g(ξ1,ℓ, ..., ξn−1,ℓ,ξ̂

′
ℓ) = 0 while for some Ψ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂

′
ℓ) 6=

0 because g need not divide Ψ since f/g is not reduced.

If g(x1, ..., xn−1, ξ̂ℓ ′) = 0, Remark 2.2 becomes applicable
only if the equations for the poles are not missing. We will
address this case below, and for the moment assume that

g(x1, ..., xn−1, ξ̂ℓ ′) 6= 0 for all ℓ ′, 0 ≤ ℓ ′ ≤ d̄
[n]
f + d̄

[n]
g . Now

the conclusions of Theorem 2.1 apply to our solutions (Φ,Ψ),
as was explained in the previous paragraph. We thus have,
for each ℓ ′, the (n− 1)-variate Cauchy property

(fΨ)(x1, ..., xn−1, ξ̂ℓ ′) = (Φg)(x1, ..., xn−1, ξ̂ℓ ′), (23)

that with probability 1− pℓ ′ , where

pℓ ′ ≤ p =
(
Ln−1(max{deg(τf ) | τf ∈ Df,n−1}

+max{deg(τg) | τg ∈ Dg,n−1})
)
/|S|. (24)

The probability that for the solution pair (Φ,Ψ) (23) is

invalid for one or more of the ℓ ′, 0 ≤ ℓ ′ ≤ d̄
[n]
f + d̄

[n]
g ,

is ≤
∑

ℓ ′ pℓ ′ ≤ (d̄
[n]
f + d̄

[n]
g + 1)p (the events can be de-

pendent), so (23) is valid for all such ℓ ′ with probability

≥ 1− (d̄
[n]
f + d̄

[n]
g + 1)p.

Now suppose that a pair of non-zero polynomials Φ =∑
τf∈Df,n−1

Ξτf (xn)τf and Ψ =
∑

τg∈Dg,n−1
Ωτg (xn)τg, with

Ξτf (xn),Ωτg (xn) ∈ K[xn], satisfies the (n−1)-variate Cauchy

property (23) for all ℓ ′, where 0 ≤ ℓ ′ ≤ d̄
[n]
f + d̄

[n]
g . Let f =∑

τf∈Df,n−1
Aτf (xn)τf and g =

∑
τg∈Dg,n−1

Bτg (xn)τg, with

Aτf (xn), Bτg (xn) ∈ K[xn]; note that by the superset relation
in (14), some Aτf (xn) and Bτg (xn) can be zero. We now

have, for all those ℓ ′,
0 = (fΨ− Φg)(x1, ..., xn−1, ξ̂ℓ ′) =∑

τ

( ∑

τf ,τg : τf τg=τ

Aτf (ξ̂ℓ ′)Ωτg (ξ̂ℓ ′)− Φτf (ξ̂ℓ ′)Bτg (ξ̂ℓ ′)
)
τ,

hence all univariate polyn. coefficients
∑

τf τg=τ Aτf (xn)×

Ωτg (xn) − Φτf (xn)Bτg (xn) vanish on at least d̄
[n]
f + d̄

[n]
g +

1 > deg(AτfΩτg −ΦτfBτg ) distinct points ξ̂ℓ ′ and therefore
must be identically zero. We conclude that with probability

≥ 1 − (d̄
[n]
f + d̄

[n]
g + 1)p our solutions to (18) must satisfy

the Cauchy property fΨ− Φg = 0.
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We finally discuss the assumed condition g(x1, ..., xn−1,

ξ̂ℓ ′) 6= 0. In the previous paragraphs, we have needed d̄
[n]
f +

d̄
[n]
g + 1 many such ξ̂ℓ ′ . In the worst case, there are at

most d̄
[n]
g values for ξ̂ℓ ′ that have g(x1, ..., xn−1, ξ̂ℓ ′) = 0

(g 6= 0), but we actually have d̄
[n]
f + d̄

[n]
g + 2E + 1 dis-

tinct ξ̂ℓ ′ . If E ≥ d̄
[n]
g /2, we have sufficiently many ξ̂ℓ ′ with

g(x1, ..., xn−1, ξ̂ℓ ′) 6= 0 for our arguments in the paragraph
before.
If not, we can simply allow g(x1, ..., xn−1, ξ̂ℓ ′) = 0. Then

if also f(x1, ..., xn−1, ξ̂ℓ ′) = 0 we have the needed (n −
1)-variate Cauchy property (23) for that ℓ ′. Lastly, let

f(x1, ..., xn−1, ξ̂ℓ ′) 6= 0 (⇒ Df,n−1 6= ∅). Then the probabil-

ity that for all ℓ, 0 ≤ ℓ ≤ Ln−1−1, f(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) 6= 0
is ≥ 1−Ln−1(max{deg(τf ) | τf ∈ Df,n−1})/|S|. Under this
condition, with (18) ⇒ (20) we have

∀0 ≤ ℓ ≤ Ln−1 − 1: Ψ(ξ1,ℓ, ..., ξn−1,ℓ, ξ̂ℓ ′) = 0. (25)

Now Remark 2.2 applies: if the random ξ1,0, ..., ξn−1,L̂ ∈ S,

L̂ = Ln−1 − 1, also preserve the maximal generic rank of
the (projected) coefficient matrix of (25) right above, which

is exactly |Dg,n−1| ≥ 1, then Ψ(x1, ..., xn−1, ξ̂ℓ ′) = 0 and
the (n − 1)-variate Cauchy property (23) for that ℓ ′ is sat-
isfied. The probability of ξ1,0, ..., ξn−1,L̂ being a root of

a corresponding determinant is ≤ (|Dg,n−1|max{deg(τg) |
τg ∈ Dg,n−1})/|S|. By |Df,n−1| ≥ 1 we have |Dg,n−1| ≤
Ln−1, and therefore one or both of the conditions fail with
probability ≤ p (see (24)). Hence we obtain the (n − 1)-
variate Cauchy property (23) for an exceptional ℓ ′ with

g(x1, ..., xn−1, ξ̂ℓ ′) = 0 with probability ≥ 1− p as well.

In summary, with ≤ max{d̄
[n]
f + d̄

[n]
g + 1 + max{Ê +

d̄
[n]
g , 2E}, Lmin}Ln−1 evaluations in the presence of an ad-

justed error rate 1/q < 1/2, where E = ⌊(d̄
[n]
f +d̄

[n]
g +1)/(q−

2)⌋ and Ê = ⌊(d̄
[n]
f + 2d̄

[n]
g + 1)/(q− 1)⌋, using (n− 1)Ln−1

random field elements ∈ S, all computed solutions (Φ,Ψ)
satisfy fΨ = Φg with probability

≥ 1−
(
(d̄

[n]
f + d̄

[n]
g + 1)Ln−1(max{deg(τf ) | τf ∈ Df,n−1}

+max{deg(τg) | τg ∈ Dg,n−1})
)
/|S|.

4. NUMERICAL INTERPOLATION WITH

A HIGH ERROR RATE

In this section, we provide the numerical approach based
on the variable-by-variable sparse interpolation of Section 3
to recover sparse rational function from values with noise
and outlier errors, where the adjusted error rate is < 1/2.
Similar to [17], in the approximate case, a threshold Θ is
introduced to separate an evaluation that is an outlier error,
that is, if the evaluation β at the point (ζ1, ..., ζn) ∈ C

n is
an outlier error, then β = γ + γ′, where γ = f(ζ1, ..., ζn)/
g(ζ1, ..., ζn) ∈ C∪{∞}, and |γ′/γ| ≥ Θ; here false poles and
non-poles are also allowed.
Consider the rational function f/g ∈ C(x1, ..., xn), where

f, g are represented as (13). Suppose a black box for f/g
with noise and outlier errors at a known adjusted error rate
is given. Based on the univariate Cauchy interpolation algo-
rithm [15, 17], we will propose a method to interpolate f and
g variable by variable, i.e., recover fi and gi when fi−1 and
gi−1 are obtained. More specifically, we will discuss how to

generalize the method proposed in Section 3, including three
steps, when the black box for f/g is with noise and outlier er-
rors. Similarly, here we only consider a single iterative step,
that is, how to interpolate f(x1, ..., xn) and g(x1, ..., xn)
when term setsDf,n−1 andDg,n−1 of f(x1, ..., xn−1, αn) and
g(x1, ..., xn−1, αn) are computed.

We at first generalize Step 1 in Section 3 to the numer-
ical case, i.e., apply the univariate numerical Cauchy al-
gorithm [17] to identify the approximate evaluations with-
out outlier errors from values with noise and outlier errors.
Suppose (f [n]/g[n])(xn) = f/g(α1, ..., αn−1, xn), and assume
that the degree upper bounds of d̄f ≥ degxn

(f) and d̄g ≥
degxn

(g) are given. Note that it is unnecessary to require

f [n] and g[n] are approximately relatively prime. According
to Lemma 3.1, in order to recover Φ[n] and Ψ[n] which satisfy
the Welch-Berlekamp property, the number of evaluations
can be determined by L [n] ← max{d̄f + d̄g +2E +1, Lmin},
where E = ⌊(d̄f + d̄g + 1)/(q− 2)⌋. Given a random root of
unity ζ ∈ C, we get the evaluations with noise and outlier
errors from the black box

βℓ ′=γℓ ′+γ′
ℓ ′ ,where γℓ ′=

f(α1, ..., αn−1, ζ
ℓ ′

)

g(α1, ..., αn−1, ζℓ
′)
∈C ∪ {∞},

ℓ ′ = 0, 1, ..., L [n] − 1, (26)

where γ′
ℓ ′ denotes noise or possibly an outlier error. More-

over, the number of ℓ ′ such that |γ′
ℓ ′/γℓ ′ | ≥ Θ, is ≤ E. From

the evaluations (26), we show how to compute the inter-

polants Φ[n](xn) and Ψ[n](xn) satisfy the Welch-Berlekamp
property

f [n](xn)Ψ
[n](xn) = Φ[n](xn)g

[n](xn).

Let ~y and~z be the coefficient vectors of Φ[n](xn) and Ψ[n](xn),
respectively. From (26), we construct the following linear

equations for ℓ ′ = 0, 1, ..., L [n] − 1,

d̄f+E∑

j=0

yjζ
ℓ ′ j − βℓ ′

d̄g+E∑

m=0

zmζℓ
′ m = 0. (27)

The above equations form a linear system

G
[
~y ~z

]T
= [V, −ΓW ]

[
~y ~z

]T
= 0, (28)

where Γ = diag(β0, β1, ..., βL [n]−1), and where V,W are
Vandermonde matrices generated by the vectors [1, ζ, ...,

ζ d̄f+E ]T and [1, ζ, ..., ζ d̄g+E ]T. The numerical rank defi-
ciency of G, denoted by ρ, can be computed by checking the
number of small singular values of G or finding the largest
gap among the singular values. Suppose h(xn) is the approx-

imate GCD of f [n](xn) and g[n](xn) to the given tolerance,
and denote s = min(d̄f − degxn

(f), d̄g − degxn
(g)). Accord-

ing to the discussion in Section 3, we have ρ = 1 + E − k +
s+ deg(h). Once ρ is determined, the linear equations (27)
are transformed into the following reduced linear equations
by removing some columns corresponding to higher degree
in (27), namely, for ℓ ′ = 0, 1, ..., L [n] − 1

d̄f+E−ρ+1∑

j=0

yjζ
ℓ ′ j − βℓ ′

d̄g+E−ρ+1∑

m=0

zmζℓ
′ m = 0, (29)

whose matrix form is

G̃
[
~y ~z

]T
= [Ṽ , −Γ W̃ ]

[
~y ~z

]T
= 0. (30)
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Clearly, the numerical rank deficiency of G̃ is 1. The coef-
ficient vector ~y of Φ[n] and the coefficient vector ~z of Ψ[n]

are achieved from the last singular vector of G̃. For a preset
tolerance ǫroot, we can obtain an index set I (similar to (16)

in the exact case), by checking for ℓ ′ = 0, 1, ..., L [n] − 1,

I = {ℓ ′ | |Φ[n](ζℓ
′

)|+|Ψ[n](ζℓ
′

)|≤ǫroot} = {ℓ
′ |

|γ′
ℓ ′/γℓ ′ |≥Θ} ∪ {ℓ ′ | |f [n](ζℓ

′

)|+|g[n](ζℓ
′

)|≤ǫroot}. (31)

We can assume that I contains all error locations and the
locations ℓ ′ for which xn − ζℓ

′

is the approximate common
divisor of f [n] and g[n]. As discussed in the exact case, it is
impossible to determine the exact error location set. How-
ever, we do obtain correct locations for approximate evalu-
ations that are not outliers, and their values

βℓ ′≈γℓ ′=(f [n]/g[n])(ζℓ
′

), for ℓ ′=0, 1, ..., L [n]−1, ℓ ′ 6∈I. (32)

In other words, the above method is able to remove the
outliers from the values with noise and outlier errors.
Remark 4.1. Described as Step 2 in Section 3, once L [n]−

|I| < d̄
[n]
f + d̄

[n]
g +1, we also need to increase the range of ℓ ′

and compute more approximate evaluations without outlier

errors at the points ζℓ
′

.
Having the above procedure to obtain the approximate

evaluations without outlier errors, we now discuss how to
compute the sparse solutions (Φ,Ψ) which satisfy the Welch-
Berlekamp property, when the actual supports Df,n−1 and
Dg,n−1 are computed. Similar to (18), we construct the
possible terms D̄f,n and D̄g,n of Φ and Ψ respectively from
Df,n−1, Dg,n−1. Suppose the possible terms D̄f,n and D̄g,n

in Φ and Ψ are D̄f,n = {x
d̄j,1
1 · · ·x

d̄j,n
n | j = 1, 2, ..., t̄f} and

D̄g,n = {x
ēm,1

1 · · ·x
ēm,n
n | m = 1, 2, ..., t̄g}. The unknown

polynomials Φ and Ψ are represented as Φ =
∑t̄f

j=1 yjx
d̄j,1
1

· · · x
d̄j,n
n , Ψ =

∑t̄g
m=1 zmx

ēm,1

1 · · ·x
ēm,n
n , where yj and zm

are unknown.
For 0 ≤ ℓ ≤ Ln−1−1 with Ln−1 = |Df,n−1|+ |Dg,n−1|−1,

let b1,ℓ, ..., bn−1,ℓ ∈ Z>0 be sufficient large distinct prime
numbers and sj,ℓ be random integers with 1 ≤ sj,ℓ < bj,ℓ,
1 ≤ j ≤ n − 1. For all ℓ, we choose a random (n − 1)-
tuple (ζ1,ℓ, ..., ζn−1,ℓ), where ζj,ℓ = exp(2πi /bj,ℓ)

sj,ℓ ∈ C,
1 ≤ j ≤ n− 1 (cf. [9]). For each ℓ, we choose a random root

of unity ζ̂ℓ, and get the evaluations with noise and outlier
errors

βℓ,ℓ ′=γℓ,ℓ ′+γ′
ℓ,ℓ ′ ,where γℓ,ℓ ′=

f(ζ1,ℓ, ..., ζn−1,ℓ, ζ̂
ℓ ′

ℓ )

g(ζ1,ℓ, ..., ζn−1,ℓ, ζ̂ℓ
′

ℓ )

∈C ∪ {∞}, ℓ ′ = 0, 1, ..., L
[n]
ℓ − 1, (33)

where γ′
ℓ,ℓ ′ denotes noise or possibly an outlier error.

For each ℓ, 0 ≤ ℓ ≤ Ln−1−1, from the evaluations βℓ,ℓ ′ , 0 ≤

ℓ ′ ≤ L
[n]
ℓ , one is able to apply the above procedure to get

an index set Iℓ including all error locations,

Iℓ={ℓ
′ | |βℓ,ℓ ′/γℓ,ℓ ′ |≥Θ} ∪ {ℓ ′ | |f(ζ1,ℓ, ..., ζn−1,ℓ, ζ̂

ℓ ′

ℓ )|

+ |g(ζ1,ℓ, ..., ζn−1,ℓ, ζ̂
ℓ ′

ℓ )| ≤ ǫroot}. (34)

By removing all the evaluations at Iℓ for each ℓ, one obtains
the approximate evaluations without outlier errors, that is,

βℓ,ℓ ′≈
f(ζ1,ℓ, ..., ζn−1,ℓ, ζ̂

ℓ ′

ℓ )

g(ζ1,ℓ, ..., ζn−1,ℓ, ζ̂ℓ
′

ℓ )
, ℓ ′=0, 1..., L

[n]
ℓ −1, ℓ

′ 6∈Iℓ, (35)

for ℓ = 0, ..., Ln−1−1. With the unknown yj and zm, accord-
ing to (18) we construct the following linear system from the
approximate evaluations (35),

G
[
~y ~z

]T
= [V, −ΓW ]

[
~y ~z

]T
= 0, (36)

where Γ is a diagonal matrix composed of βℓ,ℓ ′ in (35). Pre-
sented in [18], a structured total least norm (STLN) method
is applicable to compute the optimal deformation of Γ in
(36). More details are found in [18].
Algorithm Numerical Interpolation of Rational Func-

tions with Outlier Errors

Input: ◮
f(x1,...,xn)
g(x1,...,xn)

∈ C(x1, . . . , xn) input as a black box

with noise and outlier errors, an adjusted error rate.
◮ (x1, . . . , xn): an ordered list of variables in f/g.
◮ d̄f , d̄g: total degree bounds d̄f ≥ deg(f) and d̄g ≥ deg(g).
◮ ǫcoeff > 0 (for “forcing underflow” of terms), ǫroot > 0 (for
zero detection), ǫrank > 0 (for numeric rank detection), the
given tolerance.
Output: f(x1, . . . , xn)/c and g(x1, . . . , xn)/c, where c ∈ C.
1. Initialize the anchor points and the support of f and g:

choose α1, α2, . . . , αn as random roots of unity, let Df,0 =
{1} and Dg,0 = {1}.

2. For i = 1, 2, . . . , n do: Interpolate the polynomials fi and
gi as follows:

(a) For ℓ = 0, 1, . . . , |Df,i−1| + |Dg,i−1| − 2 do: Obtain the
approximate evaluations without outlier errors.

(a.1) Choose random roots of unity ζℓ,1, . . . , ζℓ,i−1, ζ̂ℓ.
(a.2) Get the evaluations βℓ,ℓ ′ with the noise and the outlier

errors as (33).

(a.3) Construct the matrix G in (28) from βℓ,ℓ ′ and ζ̂ℓ. Com-
pute the SVD of G and find its numerical rank deficiency
ρ. Alternatively, a relative tolerance ǫrank for a jump in
the singular values could be provided as an additional in-
put.

(a.4) Get the matrix G̃ from the reduced linear system (29)

with ρ, and then obtain Φ
[i]
ℓ and Ψ

[i]
ℓ from the last singular

vector of G̃.
(a.5) Get an index set Iℓ including the error locations by

checking (34), and then obtain the approximate evalua-
tions without outlier errors as (35).

(b) From Df,i−1 and Dg,i−1, get the possible terms D̄f,i and
D̄g,i.

(c) From the approximate evaluations βℓ,ℓ ′ without outlier
errors from Step (a.5), and D̄f,i, D̄g,i, construct the linear
system as in (18,36).

(d) Apply the STLN method to interpolate fi and gi, and
then get their actual supports Df,i and Dg,i.

3. With the actual support Df,n and Dg,n of fn and gn,
interpolate f(x1, . . . , xn)/c and g(x1, . . . , xn)/c again to
improve the accuracy of the coefficients:

(a) Construct the linear system from the approximate evalu-
ations without outlier errors βℓ,ℓ ′ as (18,36) andDf,n, Dg,n.

(b) Compute the refined solution ~y and ~z by use of STLN
method.

(c) Obtain f(x1, . . . , xn)/c and g(x1, . . . , xn)/c from ~y ,~z
and Df,n, Dg,n. ✷

5. EXPERIMENTS

Our algorithm has been implemented in Maple and the
performance is reported in the following two tables. All
examples in Table 1 and Table 2 are run in Maple 15 under
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E
x

Random
Noise

d̄f , d̄g
deg(f),
deg(g)

tf , tg n 1/q N
Time
(secs.)

Rel.
Error

1 10−5
∼10−3 3, 3 1, 1 1, 3 2 1/3 244 1.638 2.64e–7

2 10−5
∼10−3 5, 5 2, 2 3, 3 2 1/3 336 2.621 2.80e–7

3 10−5
∼10−3 2, 5 1, 4 2, 4 3 1/4 432 3.744 4.30e–7

4 10−5
∼10−3 8, 8 5, 2 10, 6 3 1/4 507 13.31 2.87e–9

5 10−6
∼10−4 10, 10 7, 7 10, 10 5 1/4 2193 127.7 8.14e–11

6 10−7
∼10−5 15, 10 10, 3 8, 5 8 1/4 2754 176.0 2.80e–11

7 10−7
∼10−5 10, 15 5, 13 4, 6 10 1/3 3560 82.70 3.10e–11

8 10−7
∼10−5 25, 25 20, 20 7, 7 15 1/4 6881 415.6 7.27e–12

9 10−8
∼10−6 35, 35 30, 30 6, 6 20 1/6 5909 658.1 1.44e–14

10 10−8
∼10−6 45, 45 40, 40 6, 6 5 1/5 4327 521.1 7.61e–14

11 10−8
∼10−6 75, 70 60, 60 7, 7 4 1/10 7832 1860 3.78e–14

12 10−8
∼10−6 85, 85 80, 80 3, 3 5 1/10 4757 407.4 3.64e–14

13 10−9
∼10−7 25, 25 20, 20 5, 5 77 1/8 11073 6868 9.84e–17

Table 1: Algorithm performance on benchmarks

Windows for Digits:=15. In Table 1 we exhibit the perfor-
mance of our algorithm for recovering multivariate rational
functions from a black box that returns noisy values with
outlier errors. For each example, we construct two rela-
tively prime polynomials with random integer coefficients in
the range −5 ≤ c ≤ 5. Here Random Noise denotes the
relative noise in this range randomly added to the black box
of f/g; d̄f ≥ deg(f) and d̄g ≥ deg(g) denote the degree
bound of the numerator and denominator, respectively; tf
and tg denote the number of terms of the numerator and
denominator, respectively; n denotes the number of vari-
ables of the rational functions; N denotes the number of
the black box probes needed to interpolate the approxi-
mate multivariate rational function; 1/q is the error rate
of the outlier error; Rel. Error is the relative error, namely
(‖cf̃ − f‖22 + ‖cg̃ − g‖22)/(‖f‖

2
2 + ‖g‖22), where f̃/g̃ is the

fraction computed by our algorithm and c is optimally cho-
sen to minimize the error. For each example, the outlier
error is the relative error of the evaluation, which is in the
range of 0.01× [100, 200]. In Table 1 and Table 2, the upper
bound E is chosen as E = ⌊(d̄f + d̄g + 1)/(q − 2)⌋, for the
given error rate 1/q and the degree bounds d̄f , d̄g. In the
step of getting the evaluations for applying univariate dense
Cauchy interpolation algorithm, i.e., Step 2(a.2) of our algo-
rithm, we choose k error locations randomly, and then add
the outlier errors. Note that the actual count of errors k
is also chosen randomly in the range 0 ≤ k ≤ E. Running
times serve to give a rough idea on the efficiency, and are
for SONY VAIO laptops with 8GB of memory and 2.67GHz
Intel i7 processors.
E
x

Random
Noise

Rel. Outlier
Error Θ

deg(f),
deg(g)

tf , tg n 1/q N
time
secs

Rel.
Error

1 10−6
∼10−4 1∼2 3, 3 2, 3 2 1/4 203 2.371 2.83e–9

2 10−7
∼10−5 0.1∼0.2 10, 10 3, 5 2 1/8 558 14.80 3.16e–12

3 10−7
∼10−5 0.001∼0.002 10, 3 4, 3 3 1/7 822 15.09 2.92e–12

4 10−7
∼10−5 0.01∼0.02 5, 5 4, 4 5 1/4 960 10.58 4.72e–11

5 10−8
∼10−6 0.001∼0.002 10, 10 5, 4 7 1/10 1002 26.93 1.36e–13

6 10−8
∼10−6 0.1∼0.2 5, 8 1, 3 10 1/5 2010 37.58 2.25e–12

7 10−6
∼10−4 0.01∼0.02 10, 15 3, 3 4 1/10 1874 88.09 8.12e–12

8 10−7
∼10−5 0.01∼0.02 10, 10 3, 2 15 1/5 2786 44.66 6.32e–12

9 10−8
∼10−6 0.01∼0.02 8, 8 4, 3 30 1/5 4798 206.0 1.58e–13

10 10−9
∼10−7 0.01∼0.02 15, 15 3, 3 50 1/4 14717 2080 1.90e–16

Table 2: Alg. performance on benchmarks (small outliers)

In Table 2 we give tests with small outlier errors. Here
Outlier Error denotes the relative outlier error Θ, which is
randomly selected in the given range. d̄f , d̄g are chosen by
d̄f = deg(f) + 5, d̄g = deg(g) + 5.
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