
Sparse Polynomial Interpolation Codes and their
Decoding Beyond Half the Minimum Distance *

Erich L. Kaltofen
Dept. of Mathematics, NCSU

Raleigh, NC 27695, USA
kaltofen@math.ncsu.edu
www4.ncsu.edu/~kaltofen

Clément Pernet
U. J. Fourier, LIP-AriC, CNRS, Inria, UCBL,

ÉNS de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 7, France

clement.pernet@imag.fr
http://membres-liglab.imag.fr/pernet/

ABSTRACT
We present algorithms performing sparse univariate pol-
ynomial interpolation with errors in the evaluations of
the polynomial. Based on the initial work by Comer,
Kaltofen and Pernet [Proc. ISSAC 2012], we define
the sparse polynomial interpolation codes and state that
their minimal distance is precisely the code-word length
divided by twice the sparsity. At ISSAC 2012, we have
given a decoding algorithm for as much as half the min-
imal distance and a list decoding algorithm up to the
minimal distance.

Our new polynomial-time list decoding algorithm uses
sub-sequences of the received evaluations indexed by
an arithmetic progression, allowing the decoding for a
larger radius, that is, more errors in the evaluations
while returning a list of candidate sparse polynomials.
We quantify this improvement for all typically small val-
ues of number of terms and number of errors, and pro-
vide a worst case asymptotic analysis of this improve-
ment. For instance, for sparsity T = 5 with ≤ 10 errors
we can list decode in polynomial-time from 74 values of
the polynomial with unknown terms, whereas our earlier
algorithm required 2T (E + 1) = 110 evaluations.

We then propose two variations of these codes in char-
acteristic zero, where appropriate choices of values for
the variable yield a much larger minimal distance: the
code-word length minus twice the sparsity.

Categories and Subject Descriptors:
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms;
G.1.1 [Numerical Analysis]: Interpolation–smoothing;
E.4 [Coding and Information Theory]: Error control
codes.

∗
This material is based on work supported in part by the Na-

tional Science Foundation under Grant CCF-1115772 (Kaltofen),
and the Agence Nationale de la Recherche under Grant HPAC
ANR-11-BS02-013 and the Inria Associate Teams Grant QO-
LAPS (Pernet).
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ISSAC’14, July 23–25, 2014, Kobe, Japan.Copyright is held by the own-
ers/authors. Publication rights licensed to ACM. ACM 978-1-4503-2501-
1/14/07 ...$15.00. http://dx.doi.org/10.1145/2608628.2608660 .

General Terms: Algorithms, Reliability

Keywords: sparse polynomial interpolation, Blahut’s
algorithm, Prony’s algorithm, exact polynomial fitting
with errors.

1. INTRODUCTION
Evaluation-interpolation schemes are a key ingredient

in many of today’s computations. Model fitting for em-
pirical data sets is a well-known one, where additional
information on the model helps improving the fit. In
particular, models of natural phenomena often happen
to be sparse, which has motivated a wide range of re-
search including compressive sensing [4], and sparse in-
terpolation of polynomials [23, 1, 15, 13, 9, 11]. Most
algorithms for the latter problem rely on the connection
between linear complexity and sparsity, often referred to
as Blahut’s Theorem (Theorem 1 [3, 19]) though already
used in the 18th century by Prony [23]. The Berlekamp/
Massey algorithm [20] makes this connection effective.
These exact sparse interpolation techniques have been
very successfully applied to numeric computations [10,
16, 6, 17].

Computer algebra also widely uses evaluation-inter-
polation schemes as a key computational tool: reducing
operations on polynomials to base ring operations, inte-
ger and rationals operations to finite fields operations,
multivariate polynomials operations to univariate poly-
nomials operations, etc. With the rise of large scale par-
allel computers, their ability to convert a large sequential
computation, into numerous smaller independent tasks
is of high importance.

Evaluation-interpolation schemes are also at the core
of the famous Reed-Solomon error correcting codes [25,
22]. There, a block of information, viewed as a dense pol-
ynomial over a finite field is encoded by its evaluation
in n points. Decoding is achieved by an interpolation
resilient to errors. Blahut’s theorem [3, 19] originates
from the decoding of Reed-Solomon codes: the interpo-
lation of the error vector of sparsity t is a sequence of
linear complexity t whose generator, computed by Ber-
lekamp/Massey algorithm, carries in its roots the infor-
mation of the error locations. Beyond the field of digital
communication and data storage, error correcting codes
have found more recent applications in fault tolerant dis-
tributed computations [14, 18, 7]. In particular, paral-

272

www4.ncsu.edu/~kaltofen
http://membres-liglab.imag.fr/pernet/

lelization based on evaluation-interpolation can be made
fault tolerant if interpolation with errors is performed.
This is achieved by Reed-Solomon codes for dense pol-
ynomial interpolation and by CRT codes, for residue
number systems [18]. The problem of sparse polynomial
interpolation with errors rises naturally in this context.
We give algorithms for the solution of the problem in [6].
Our approach is naturally related to the k-error linear
complexity problem [21] from stream cipher theory. A
major concern in our previous results is that in order to
correct E errors, the number of evaluations has to be
increased by a multiplicative factor linear in E. In com-
parison, dense interpolation with errors only requires an
additive term linear in E.

In this paper we further investigate this problem from
a coding theory viewpoint. In section 2 we define the
sparse polynomial interpolation codes. We then focus
on the case where the evaluation points are consecu-
tive powers of a primitive root of unity, whose order
is divisible by twice the sparsity, in order to to bene-
fit from Blahut/Ben-Or/Tiwari interpolation algorithm.
We show that in this stetting the minimal distance is
precisely the length divided by twice the sparsity. The
algorithms of [6] can be viewed as a unique decoding
algorithm for as much as half the minimal distance and
a list decoding algorithm up to the minimal distance.
In section 3, we propose a new polynomial-time list de-
coding algorithm that uses sub-sequences of the received
evaluations indexed by an arithmetic progression, reach-
ing a larger decoding radius. We quantify this improve-
ment on average by experiments, in the worst case for all
typically small values of number of terms and number
of errors, and make connections between the asymptotic
decoding capacity and the famous Erdős-Turán prob-
lem of additive combinatorics. We then propose in sec-
tion 5 two variations of these codes in characteristic zero,
where appropriate choices of values for the variable yield
a much larger minimal distance: the length minus twice
the sparsity.

Linear recurring sequences. We recall that a se-
quence (a0, a1, . . .) is linearly recurring if there exists
λ0, λ1, . . . , λt−1 such that aj+t =

∑t−1
i=0 λiaj+i ∀j ≥ 0.

The monic polynomial Λ(z) = zt −
∑t−1
i=0 λiz

i is called
a generating polynomial of the sequence, the generating
polynomial with least degree is called the minimal gener-
ating polynomial and its degree is the linear complexity
of the sequence.

These definitions can be extended to vectors, viewed
as contiguous sub-sequences of an infinite sequence. The
minimal generating polynomial of an n-dimensional vec-
tor is the monic polynomial Λ(z) = zt −

∑t−1
i=0 λiz

i of

least degree such that aj+t =
∑t−1
i=0 λiai+j ∀0 ≤ j ≤

n− t− 1. Note that consequently, any vector is linearly
recurring with linear complexity less than n.

Theorem 1 (Blahut [3, 19]) Let K be a field contain-
ing an N-th primitive root of unity. The linear complex-
ity of an N-periodic sequence A = (a0, . . . , aN−1, a0, . . .)
over K is equal to the Hamming weight of the discrete
Fourier transform of (a0, . . . , aN−1).

The Blahut/Ben-Or/Tiwari Algorithm. We re-
view the Blahut/Ben-Or/Tiwari [2, 1] algorithm in the

setting of univariate sparse polynomial interpolation. Let
f be a univariate polynomial with t terms, mj and let
cj the corresponding non-zero coefficients:

f(x) =
∑t
j=1 cjx

ej =
∑t
j=1 cjmj 6= 0, ej ∈ Z.

Theorem 2 [1] Let bj = αej , where α is a value from
the coefficient domain to be specified later, let ai = f(αi)
=
∑t
j=1 cjb

i
j , and let Λ(z) =

∏t
j=1(z − bj) = zt +

λt−1z
t−1 + · · ·+λ0. The sequence (a0, a1, . . .) is linearly

generated by the minimal polynomial Λ(z).

The Blahut/Ben-Or/Tiwari algorithm then proceeds in
the four following steps:
1. Find the minimal-degree generating polynomial Λ for

(a0, a1, . . .), using the Berlekamp/Massey algorithm.
2. Compute the roots bj of Λ, using univariate polyno-

mial factorization.
3. Recover the exponents ej of f , by repeatedly dividing
bj by α.

4. Recover the coefficients cj of f , by solving the trans-
posed t× t Vandermonde system

1 1 . . . 1
b1 b2 . . . bt
...

...
. . .

...
bt−1
1 bt−1

2 . . . bt−1
t



c1
c2
...
ct

 =


a0
a1
...

at−1

 .
By Blahut’s theorem, the sequence (ai)i≥0 has lin-

ear complexity t, hence only 2t coefficients suffice for
the Berlekamp/Massey algorithm to recover the mini-
mal polynomial Λ. In the presence of errors in some of
the evaluations, this fails.

2. SPARSE INTERPOLATION CODES
Definition 1 Let K be a field, 0 < n ≤ m, two inte-
gers and let x0, . . . , xn−1 be n distinct elements of K. A
sparse polynomial evaluation code of parameters (n, T)
over K is defined as the set

C(n, T) = {(f(x0), f(x1), . . . , f(xn−1)) : f ∈ K[z]

is t-sparse with t ≤ T and deg f < m}

In order to benefit from Blahut/Ben-Or/Tiwari algo-
rithm for error free interpolation, we will consider, until
section 5, the special case where the evaluation points
are consecutive powers of a primitive m-th root of unity
α ∈ K: xi = αi. In this context, we can state the min-
imum distance of such codes provided that 2T divides
m.

Theorem 3 If α ∈ K is a primitive m-th root of unity,
xi = αi, i ∈ {0, . . . , n − 1} and 2T divides m, then the
corresponding (n, T)-sparse polynomial evaluation code
has minimum distance δ = b n

2T
c.

The following proof is adapted from [6, §2.1].

Proof. Let 0̄ denote the zero vector of length T − 1.
Consider two infinite sequences :

x = (0̄, 1, 0̄, 1, . . .)

y = (0̄, 1, 0̄,−1, 0̄, 1, 0̄,−1, . . .)

formed by the repetition of their first 2T values and the
corresponding vectors x(n), y(n) ∈ Kn and x(m), y(m) ∈
Km formed by respectively the first n and first m values
of these sequences. The sequence x is generated by zT−1

273

and y by zT + 1, both are m periodic as 2T divides m.
Lastly, let x̂(m) = DFT−1

α (x(m)) = 1
m

DFTα−1(x(m)).

From Blahut’s theorem, x̂(m) has Hamming weight T .
By identification between Km and K[z]<m, x̂(m) corre-
sponds to a polynomial fx of degree less than m and
sparsity T . Hence x(n) = (fx(α0), fx(α1), . . . , fx(αn−1))
is a code word of an (n, T)-sparse evaluation code. Simi-

larly y(n) is also a code-word. More precisely one verifies
that

fx(z) =
1

T

T−1∑
i=0

z2i
m
2T =

1

T

zm − 1

z
m
T − 1

,

fy(z) =
−1

T

T−1∑
i=0

z(2i+1) m
2T =

−z
m
2T

T

zm − 1

z
m
T − 1

.

Since x(n) and y(n) differ by exactly b n
2T
c values, this

is an upper bound on the minimum distance δ.
Now consider any pair of distinct code-words x and y

and consider their b n
2T
c sub-vectors

x(1) = (x1, . . . , x2T), y(1) = (y1, . . . , y2T)

x(2) = (x2T+1, . . . , x4T), y(2) = (y2T+1, . . . , y4T)
...

...

x(b
n
2T
c), y(b

n
2T
c)

If for some i, x(i) = y(i) then the vector z(i) = x(i) −
y(i) is all zero and is the evaluation of a less than 2T -
sparse polynomial f − g. Solving the 2T × 2T corre-
sponding Vandermonde system yields f = g which is
a contradiction. Hence x and y differ in at least b n

2T
c

positions, and consequently δ = b n
2T
c.

Unique decoding. There exists an algorithm that
does unique decoding of such codes up to half the min-
imum distance: the Majority Rule Berlekamp/Massey
algorithm [6]. It simply consists in running a Berle-
kamp/Massey algorithm on each of the b n

2T
c contiguous

sub-sequences x(i) = (x2Ti, . . . , x2T (i+1)−1) of the re-
ceived word x. If E < b n

2T
c/2 errors occurred, then the

generator occurring with majority will be the correct
one. We refer to [6] for further explanations on how to
then recover the correct code-word using sequence clean-
ups. Equivalently, this algorithm guaranties to find the
unique code-word provided that E errors occured when-
ever n ≥ 2T (2E + 1). This decoding requires bn/2T c
executions of Berlekamp/Massey algorithm.

List decoding. Following the same idea, one remarks
that if n ≥ 2T (E+1) then necessarily, one sub-sequence

x(i) has to be clean of errors and the list of all b n
2T
c

generators contains the correct one. This makes a trivial
list decoding algorithm up to the minimum distance (see
[6] for further details on how to recover the code-word
using sequence clean-ups).

In order to further reduce the bound n ≥ 2T (E + 1)
(or equivalently increase the decoding radius above n

2T
),

we will study in Section 3 an alternative list decoding
algorithm. Beforehand, we want to address a common
remark on the choice of the sub-vectors used for the
unique and list decoding above.

Remark 1 Instead of partitioning the received word
into n/(2T) disjoint sub-vectors, one would hope to find

more error-free sequences by considering all n− 2T + 1
sub-vectors of the form (xi, . . . , xi+2T−1). This will very
likely allow to decode more errors in many cases (as will
be illustrated in Figure 2), but the worst case configura-
tion (see proof of Theorem 3) remains unchanged. Note
that the majority rule based unique decoding still works
under the same conditions: at most 2TE sub-sequences
will contain an error, hence a majority of subsequences
will be correct as soon as 4TE < n − 2T + 1, which is
n ≥ 2T (2E + 1). In terms of complexity, the number
of arithmetic operations required for both unique and
list decoding algorithms in [6] is O(n2) (n/(2T) runs of
Berlekamp/Massey algorithm on sequences of length 2T ,
and O(n/(2T)) calls to the sequence clean-up, each of
which costs O(nT)). Now the above variant requires to
inspect n− 2T sub-sequences instead of n/(2T) and the
complexity becomes O(n2T) (as T = o(n)).

3. AFFINE SUB-SEQUENCES
Consider a sequence (a0, . . . , an−1) of evaluations of

a t-sparse polynomial f(z) =
∑t
j=1 cjz

ej , with E er-
rors. In our previous work, we used to search for sub-
sequences of the form (ai, . . . , ai+k−1) formed by k con-
secutive elements that did not contain any error. If such
a sequence could be found with k = 2t, then applying
Blahut/Ben-Or/Tiwari algorithm on it recovers the pol-
ynomial f and makes the decoding possible. We now
propose to consider all length k sub-sequences in arith-
metic progression:

(ar, ar+s, ar+2s, . . . , ar+(k−1)s) where r + (k − 1)s < n,

that will be called affine index sub-sequences or more
conveniently affine sub-sequences. In the remaining of
the text, k will denote the length of the sub-sequence.
We will consider the general case where k can be any
positive integer, not necessarily even.

Lemma 1 If gcd(s,m) = 1 and k ≥ 2t, then such a
sub-sequence with no error is sufficient to recover f .

Proof. Let β = αs and g(z) = f(zαr). Note that
deg g = deg f and g is also t-sparse with the same mono-
mial support as f . If gcd(s,m) = 1 then order(β) ≥ m.
Then the sub-sequence (ar, ar+s, ar+2s, . . . , ar+(k−1)s) =

(f(αr), f(αr+s), f(αr+2s), . . . , f(αr+(k−1)s)) = (g(β0),
g(β1), g(β2), . . . , g(βk−1)) is formed by evaluations of g
in k consecutive powers of an element β of order greater
than m ≥ deg g. One can thus compute g =

∑t
j=1 djz

ej

using Blahut/Ben-Or/Tiwari algorithm on this sub-se-
quence. The coefficients of f are directly deduced from
that of g: cj = djα

−rej .

Example 1 Let t = 2, and consider a sequence of n = 9
evaluations (a0, a1, . . . , a8). Then E = 1 is the maximal
number of errors that the list decoding of [6] can decode
as it requires that n ≥ 2t(E + 1). Indeed if two errors
occurred e.g. on elements a3 and a7, there is no con-
tiguous sub-sequence of length 2t = 4 free of error, thus
making the latter decoding fail. Now consider the sub-
sequence (a0, a2, a4, a6). It is free of error and is formed
by evaluations of f(z) in the four consecutive powers of
β = α2. Blahut/Ben-Or/Tiwari algorithm applied on
this sequence will reveal f .

274

A list decoding algorithm.
This results in a new list decoding algorithm:

1. For each affine sub-sequence (ar, ar+s, . . . , ar+s(k−1))
compute a generator Λr,s with the Berlekamp/Mas-
sey algorithm

2. (Optional heuristic reducing the list size) For each
Λr,s, run the sequence clean-up of [6] and discard it
if it can not generate the sequence with less than E
errors, for some bound E on the number of errors.

3. For each remaining generator Λr,s, apply Blahut/Ben-
Or/Tiwari algorithm to recover the associated sparse
polynomial fr,s.

4. Return the list of the fr,s.

A first approach is to explore all sub-sequences for
any value of s ∈ {1 . . . bn/kc} and r ∈ {0 . . . n − (k −
1)s − 1}. This amounts to O(n2/k) sub-sequences. A
second approach, applying Remark 1 considers all values
for s ∈ {1 . . . n/k} but then for each s only considers
the disjoint sub-sequences with s n

ks
= n/k choices for r.

This amounts to O(n2/k2) sub-sequences. For each sub-
sequence, corresponding to a pair (s, r), Blahut/Ben-
Or/Tiwari algorithm is run in O(k2) (Berlekamp/Mas-
sey algorithm and solving the transpose Vandermonde
system [30]). The optional sequence clean-up heuristic
adds an O(nk) term. Overall, the complexity of the
second approach amounts to the same O(n2) estimate,
as the list decoding of [6]. The additional overhead of
O(n3/k) when the sequence clean-up heuristic is used
also remains identical. In the first approach, ignoring
Remark 1, these complexity estimates are multiplied by
a factor k.

We implemented the affine sub-sequence search and
computed its rate of success in finding a clean sequence
for various values of E and k. The error locations are
uniformly distributed. We report in Figures 1 and 2 the
average rate of success over 10 000 samples for each value
of the pair (E, k). Figure 1 uses the search restricted
to disjoint sequences. whereas Figure 2 shows the im-

Figure 1: Success rate for unique, standard list
decoding and affine sub-sequence list decoding.
Only disjoint sub-sequences are considered.

provement brought by considering all sub-sequences as
proposed in Remark 1. Again this improvement is im-

Figure 2: Success rate for unique, standard list
decoding and affine sub-sequence list decoding.
All sub-sequences are considered.

portant in practice, at the expense of a higher computa-
tional complexity for the decoder, but does not improve
the unique decoding radius in the worst case.

4. WORST CASE DECODING RADIUS
We now focus the worst case analysis: finding esti-

mates on the maximal decoding radius of the affine sub-
sequence algorithm. More precisely, we want to deter-
mine for fixed E and t, the smallest possible length n,
such that for any error vector of weight up to E, there
always exist at least one affine sub-sequence of length
2t with no error. This is stated in Problem 1 in the
more general setting where the length k of the error free
sequence need not be even.

Problem 1 Given k,E ∈ Z>0, find the smallest n ∈
Z>0 such that for all subsets S ⊂ {0, . . . , n− 1} with E
elements, that is, |S| = E,

∃r ∈ Z≥0, ∃s ∈ Z>0 with r + s(k − 1) ≤ n− 1:

∀i with 0 ≤ i ≤ k − 1: r + is 6∈ S. (1)

We will denote by nk,E the minimum solution to Prob-
lem 1.

In some cases, the affine sub-sequence technique does
not help improving the former bound n ≥ k(E+ 1), not
even by saving a single evaluation point.

Example 2 For k = 5 and E = 3, the worst case con-
figuration (errors on a4, a9 and a14) requires n5,3 = 20 =
k(E + 1) values to find k consecutive clean values.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . . a14 a15 a16 a17 a18 a19

a0 a2 a4 a6 a8 a10 a12 a14 a16 a18
a1 a3 a5 a7 a9 a11 a13 a15 a17 a19

a0 a3 a6 a9 a12 a15 a18
a1 a4 a7 a10 a13 a16 a19
a2 a5 a8 a11 a14 a17

a0 a4 a8 a12 a16
a1 a5 a9 a13 a17
a2 a6 a10 a14 a18
a3 a7 a11 a15 a19

275

But for E = 4, one verifies that n = 21 suffices to
ensure that a length 5 subsequence will always be found.
In particular, in the previous configuration, placing the
fourth error on e19 leaves the subsequence (a0, a5, a10,
a15, a20) untouched.

a0 a5 a10 a15 a20
a1 a6 a11 a16
a2 a7 a12 a17
a3 a8 a13 a18
a4 a9 a14 a19

We report in Table 1 and Figure 3 the values of nk,E
for all typically small values of E and k computed by
exhaustive search. We ran a Sage program∗ for about 7
days on 24 cores of an Intel E5-4620 SMP machine.

Figure 3: Solutions to Problem 1 for the first
values of k and E

Figure 4: Improvement of the affine subsequence
approach over the list decoding of [6]

In particular Figure 4 shows the improvement of the
affine sub-sequence technique over the previous list de-
coding algorithm, requiring n = k(E+1), for some even
values of the sub-sequence length k. These data indicate
that the optimal value for the length n is improved in al-
most any case except when k is prime and E < k−1, as
∗The code is available http://membres-liglab.imag.fr/
pernet/Depot/ldsic.sage.

in Example 2. Lemma 2 states more precisely at which
condition the new algorithm does not improve the value
n = k(E + 1) of the former list decoding.

Lemma 2 We have for the minimum solution nk,E of
Problem 1: nk,E ≤ k(E+1), with equality nk,E=k(E+1)
if and only if E + 2 ≤ g, where g denotes the smallest
prime factor of k.

In particular, this implies that for even k = 2t, the new
list decoder performs always better.

Proof. Let n = k(E+1). Splitting {0, . . . , n−1} into
E+1 contiguous disjoint sets Vi of k elements shows that
no subset of E elements of {0, . . . , n − 1} can intersect
all of the Vi’s at the same time. Hence nk,E ≤ (E+ 1)k.

We will denote by Pr,s the arithmetic progression {r,
r + s, . . ., r + (k − 1)s}.

Suppose n = k(E + 1) = nk,E . Then there is a subset
S of E elements of {0, . . . , n−2} that intersects all Pr,s ⊂
{0, . . . , n − 2}. We will show that S = {k − 1, 2k −
1, . . . , Ek− 1}. Indeed, as the E segments Pik,1 for 0 ≤
i ≤ E−1 are disjoint, each of them must contain exactly
one element of S. Hence, {Ek, . . . , Ek+ k− 2} ∩S = ∅,
and therefore Ek−1 ∈ S, otherwise PEk−1,1∩S = ∅. By
the same argument, we deduce iteratively that ik−1 ∈ S
for all i ≤ E − 1. It follows that E + 1 < g, otherwise
n ≥ kg and P0,g ⊂ {0, . . . , n− 2} but P0,g ∩ S = ∅ since
P0,g mod g = {0} and S mod g = {k − 1}.

Now suppose E + 1 < g. We will show that S = {k−
1, 2k−1, . . . , Ek−1} intersects all Pr,s ⊂ {0, 1, . . . , k(E+
1)−2} from which we shall deduce that nk,E = k(E+1).

First note that s < g: otherwise r + g(k − 1) ≤ r +
s(k − 1) ≤ k(E + 1) − 2 ≤ k(g − 1) − 2 would imply
r+k ≤ g−2, which is absurd. Hence s is co-prime with k.
Therefore Pr,s mod k = {0, 1, . . . , k−1}, and ∃j ≤ k−1
and q ∈ Z≥0 such that r+js = k−1+qk = (q+1)k−1.
As r+js ≤ (E+1)k−2 we have q < E. Hence r+js ∈ S
and finally Pr,s ∩ S 6= ∅.

Note that the solution nk,E is also strictly increasing

in both k and E: ∀k > 0, E ≥ 0

{
nk+1,E > nk,E
nk,E+1 > nk,E

.

This implies that nk,E always verifies p(E+1) ≤ nk,E ≤
k(E+1) where p is the prime previous to k for E < p−1.
Corollary 1 gives a lower bound on nk,E .

Corollary 1 If E < k+1
2

, then k+1
2

(E + 1) + 1 < nk,E
for any k > 0.

Proof. By Bertrand’s postulate [5, 24], if k ≥ 6,
there exist a prime p such that⌈

k + 1

2

⌉
< p < 2

⌈
k + 1

2

⌉
− 2 ≤ k.

Therefore k+1
2

(E + 1) < p(E + 1) = np,E < nk,E if

E < k+1
2

. One verifies the cases k ≤ 5 on table 1.

However, for larger values of E, Figure 3 suggests that
nE,k increases at a much lower rate. We will now focus
on the asymptotic behavior of nk,E . In order to find a
lower bound on the value of n that solves Problem 1, we
will construct by induction a subset S producing a large
value for n. It is a generalization of the worst case error
vector of Lemma 2.

276

http://membres-liglab.imag.fr/pernet/Depot/ldsic.sage
http://membres-liglab.imag.fr/pernet/Depot/ldsic.sage

E 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k = 3 3 6 7 8 10 12 15 16 17 18 19 21 22 23 25 27
k = 4 4 7 11 12 14 16 18 20 22 24 26 29 31 32 35 36
k = 5 5 10 15 20 21 22 23 26 30 32 35 40 45 46 47 48
k = 6 6 11 16 21 27 28 30 31 34 38 42 43 47 52 53
k = 7 7 14 21 28 35 42 43 44 45 47 49 54 58
k = 8 8 15 22 29 36 43 51 52 53 55 57 60 64
k = 9 9 18 25 32 39 46 53 58 59 62 66 72 74
k = 10 10 19 29 34 41 48 55 62 65 69 74 79
k = 11 11 22 33 44 55 66 77 88 99 110 111 112
k = 12 12 23 34 45 56 67 78 89 100 111 123 124
k = 13 13 26 39 52 65 78 91 104 117 130 143 156

Table 1: Solution nk,E to Problem 1 for the first values of k and E

For all i ∈ Z≥1 let mi = ki−1(k − 1) and define the
error vector vi by the recurrence

v1 = (0, . . . , 0︸ ︷︷ ︸
k−1 times

) ∈ Km1

vi+1 = (vi,

ki−1 times︷ ︸︸ ︷
1, . . . , 1 , . . . , vi,

ki−1 times︷ ︸︸ ︷
1, . . . , 1︸ ︷︷ ︸

k−1 times

) ∈ Kmi+1

Lastly, define wi as the vector vi without its trailing
ki−2 + ki−3 + · · ·+ 1 ones. wi has length

ni = ki − ki−1 − · · · − 1 = ki − ki − 1

k − 1
=

(k − 2)ki + 1

k − 1
.

The Hamming weight of vi satifies wH(v1) = 0 and
wH(vi+1) = (k − 1)(wH(vi) + ki−1) which solves into
wH(vi) = ki − ki−1 − (k − 1)i = mi − (k − 1)i. Finally,
wi has weight Ei = ni − (k − 1)i.

Lemma 3 Let S be the support of vi. If k is prime,
there is no r ∈ Z≥0, s ∈ Z>0 with r+ s(k− 1) < ni such
that {r, r + s, r + 2s, . . . r + (k − 1)s} ∩ S = ∅.

Proof. Let r ∈ Z≥0, s ∈ Z>0 such that r+(k−1)s <
ni. Let ` be the multiplicity of k in s (possibly zero)
and define α and β such that s = αk` + βk`+1 with
1 ≤ α < k.

Let r, µ, ν be such that r = r + µk` + νk`+1 with
0 ≤ r < k` and 0 ≤ µ < k. As gcd(α, k) = 1 there exists
1 ≤ j < k such that jα = k − 1 − µ mod k. Hence
jα + µ = k − 1 + λk for some λ ∈ Z. As j < k, the set
Pr,s contains the element x = r + js and we write

x = r + js = r + (jα+ µ)k` + νk`+1

= r + (k − 1)k` + (ν + λ)k`+1.

We now show that the element of index x in vi is a one.
In this last expression, the term (ν + λ)k`+1 indicates
that x is located in the (ν + λ+ 1)-st block of the form

(v`,

k` times︷ ︸︸ ︷
1, . . . , 1). Then the term (k− 1)k` = m` is precisely

the dimension of v`. Lastly, as r < k`, we deduce that
the element of index x is a 1 in vi.

Remark 2 As suggested by a referee, we remark that
problem 1 is closely related to the famous problem of

finding the largest sub-sequence of {1, . . . , n} not con-
taining k terms in arithmetic progression. Let r(k, n)
denoted the size of such a largest sub-sequence. If n ≥
r(k, n) + E + 1, a subset of E errors can not suffice to
intersect all arithmetic progressions of k terms. Hence
nk,E = min{n : n − r(k, n) ≥ E + 1}. Noting that
r(k, n) ≤ r(k, n + 1) ≤ r(k, n) + 1, we deduce that
for given k and E, there always exists a n∗ such that
n∗ − r(k, n∗) = E + 1 and consequently nk,E = n∗ =
r(k, n∗) + E + 1. The value r(k, n) has been first stud-
ied by Erdős and Turán [8] who conjectured that for all
k ≥ 3, limn→∞ r(k, n)/n = 0 which was proven by Sze-
meredi [28]. In particular the construction of a bad error
vector wi for k prime has connections with a construc-
tion of [8, 29]: its support is formed by any element of
{1, . . . , n} whose base k expansion contains at least one
digit equal to k − 1. This yields to the estimate

r

(
k,

(k − 2)ki + 1

k − 1

)
≥ (k − 1)i. (2)

Szekeres conjectured that equality held in (2) (see [8])
which was disproved by Salem and Spencer [27].

The error correction rate of the affine sub-sequence
list decoding is therefore directly related to the growth
of the ratio r(k, n)/n which is a core problem in additive
combinatorics.

E

n
= 1− r(k, n)

n
− 1

n
. (3)

Szemeredi’s theorem states that arithmetic progressions
are dense, i.e. an asymptotically large number of errors
is necessary to intersect all of them and rule out any
list decoding possibility. Now there is unfortunately no
known expression of r(k, n)/n as a function of the in-
formation rate k/n, to the best of our knowledge and
we will now try to estimate bounds on this decoding
capacity.

The error vectors wi approach a worst error distribu-
tion (but the result of Salem and Spencer proves that
it is not the worst case one). Consequently we can de-
rive from equation (2) an upper bound on the maximal

correction radius E: for n = (k−2)ki+1
k−1

we have

277

E = n− r(k, n)− 1 ≤ ki − (k − 1)i − ki − 1

k − 1
− 1

≤ (i− 1)ki−1 − ki−1 − 1

k − 1
− 1,

as the function f(x) = xi is convex. Hence

E ≤ (i− 1)ki−1 − ki−1

k − 1
− k − 2

k − 1

As ki−1 = (k−1)n−1
k(k−2)

we have i−1 ≤ logk
n
k−2

and ki−1

k−1
=

n
k(k−2)

− 1
k(k−2)(k−1)

, therefore

E ≤ n

k − 2

(
logk

n

k − 2
− 1

k

)
− k − 2

k
(4)

≤ n

k − 2
logk

n

k − 2

This shows that, in the worst case, the improvement
of the affine sub-sequence technique to the correction
radius, compared to the previous list decoding (n

k
− 1)

is essentially no bigger than a logarithmic factor.
The task of bounding E or equivalently E/n from

below is much harder. In [26], Roth proved r(3, n) ≤
c

log logn
, leading to E

n
≥ 1− c

log logn
but for an arbitrary

k the best known bound is given by Gowers [12]:

E

n
≥ 1− 1

(log log n)1/22
k+9

Figure 5 compares the upper bound on the correction
capacity E of equation (4) with the actual values of Ta-
ble 1 for k = 5, 7.

5. CHARACTERISTIC ZERO
In this last section we consider the case where the base

field has characteristic zero. We show that some choices
of evaluation points allow to reach much better mini-
mum distances for sparse polynomial evaluation codes.

Positive real evaluation points.

Theorem 4 Consider n distinct positive real numbers
ξ0, . . . , ξn−1 > 0. The sparse polynomial evaluation code
defined by

C(n, T) = {(f(ξ0), . . . , f(ξn−1)) : f ∈ R[z] is t-sparse

with t ≤ T}

has minimum distance δ = n− 2T + 1.

Proof. Consider the code words (f(ξ0), . . . , f(ξn−1))
and (g(ξ0), . . . , g(ξn−1)) for a tf -sparse polynomial f
and a tg-sparse polynomial g, with tf , tg ≤ T , at Ham-
ming distance ≤ n− 2T .

Then the polynomial f−g has sparsity ≤ 2T , and van-
ishes in least 2T distinct positive reals ξi. By Descartes’s
rule of sign f − g = 0.

Corollary 2 Suppose we have, for a tf ≤ T sparse real
polynomial f(x), values f(ξi) + εi for 2T + 2E distinct
positive real numbers ξi > 0, where e ≤ E of those val-
ues can be erroneous: εi 6= 0. If a tg ≤ T sparse real
polynomial g interpolates any 2T + E of the f(ξi) + εi,
then g = f .

Figure 5: Decoding radius for the affine sub-
sequence algorithm: comparison of upper, lower
bounds and actual value

So f can be uniquely recovered from 2T + 2E values
with e ≤ E errors.

Remark 3 We do not have an efficient (in polynomial
time) decoder up to half this minimum distance. How-
ever, notice that when choosing the evaluation points
ξi = αi for some α ∈ R>0\{1}, the list decoder presented
in Section 3 can be used. Interestingly, it turns out to be
a unique decoder as long as an affine sub-sequence free of
error exists. Indeed, the list of candidates can be sieved
by removing the polynomials which evaluations differ by
more than δ/2 positions with the received word. Finally
the minimum distance of Theorem 4 ensures that only
one code-word lies within less than δ/2 modifications of
the received word, hence the decoding is unique.

Sampling primitive elements of co-prime orders
in the complex unit circle.

Theorem 5 Let T,D, and n ≥ k = 2T log(D)
log(2T)

be given.

Consider n pi-th roots of unity ξi 6= 1, where 2T <
p0 < p2 < · · · < pn−1, pi prime. The sparse polynomial
evaluation code defined by

C(n, T) = {(f(ξ0), . . . , f(ξn−1)) : f ∈ Q[z] is t-sparse

with t ≤ T}

has minimum distance

δ = n− k + 1 = n− 2T
log(D)

log(2T)
+ 1.

278

Proof. Consider the code-words (f(ξ0), . . . , f(ξn−1))
and (g(ξ0), . . . , g(ξn−1)) for a tf -sparse polynomial f
and a tg-sparse polynomial g, with tf , tg ≤ T , at Ham-
ming distance ≤ n− k. Then (f − g)(ζj) vanishes for at
least k of the ζi, say for those sub-scripted j ∈ J .

Let 0 ≤ e1 < e2 < · · · < et be the term expo-
nents in f − g, with t ≤ 2T . Suppose f − g 6= 0.
Consider M = (et − e1)(et − e2) · · · (et − et−1). Since
M ≤ D2T and

∏
j∈J pj > (2T)k ≥ D2T , not all pj for

j ∈ J can divide M . Let ` ∈ J with M 6≡ 0 (mod p`).
Then the term xet mod p` is isolated in h(x) = (f(x) −
g(x) mod (xp` − 1)), and therefore the polynomial h(x)
is not zero; h has at most 2T terms, and h(ζ`) = 0.
This means that h(x) and Ψ`(x) = 1 + x + · · · + xp`−1

have a common GCD. Because Ψ` is irreducible over Q,
and since deg(h) ≤ p` − 1, that GCD is Ψ`. So h is a
scalar multiple of Ψ` and has p` > 2T non-zero terms, a
contradiction.

Corollary 3 Let T,D,E be given and let the integer
k ≥ 2T log(D)/ log(2T). Suppose we have, for a tf -
sparse polynomial f ∈ Q[x], where tf ≤ T and deg(f) ≤
D, the values f(ζi) for k+2E pi-th roots of unity ζi 6= 1,
where 2T < p1 < p2 < · · · < pN+2E, pi prime. Again
e ≤ E of those values can be erroneous f(ζi)+εi. If a tg-
sparse polynomial g ∈ Q[x] with tg ≤ T and deg(g) ≤ D
interpolates any k + E of the f(ζi) + εi, then g = f .

6. CONCLUSION
Our codes, arising from a natural construction, are

surprisingly rich and difficult to analyze. On one hand,
it is natural to choose evaluation points as consecutive
powers of a primitive root of unity, in order to benefit
from the efficient interpolation algorithm of Blahut/Ben-
Or/Tiwari, but it is precisely this setting that implies
existence of bad worst case error vectors and hence re-
duces their minimum distance. Much better minimum
distances should be attained in the general case, as sug-
gested by Theorem 5, but then no efficient decoding
algorithm is available. Those are apparently difficult
problems left to be solved.

7. ACKNOWLEDGMENTS
We are thankful to Daniel Augot, Bruno Salvy and

the referees for their helpful remarks and suggestions.

Note added on July 18, 2015: Corrected the spelling
of G. Szekeres. Added entries n6,14 = 53, n8,12 = 64,
n9,12 = 74, n10,11 = 79 to Table 1.

8. REFERENCES
[1] Ben-Or, M., and Tiwari, P. A deterministic algorithm for

sparse multivariate polynomial interpolation. In Proc.
20th Annual ACM Symp. Theory Comput. (1988),
pp. 301–309.

[2] Blahut, R. A universal reed-solomon decoder. IBM
Journal of Research and Development 28, 2 (March
1984), 150–158.

[3] Blahut, R. E. Theory and Practice of Error Control
Codes. Addison Wesley, Reading, 1983.

[4] Candes, E., and Tao, T. Near-optimal signal recovery from
random projections: Universal encoding strategies? IEEE
Trans. Inf. Theory 52, 12 (2006), 5406–5425.

[5] Chebyshev, P. L. Mémoire sur les nombres premiers. J. de
Mathématiques Pures et Appliquées 17 (1852), 366–390.

[6] Comer, M. T., Kaltofen, E. L., and Pernet, C. Sparse
polynomial interpolation and Berlekamp/Massey
algorithms that correct outlier errors in input values. In
Proc. ISSAC ’12 (july 2012), pp. 138–145.

[7] Du, P., Bouteiller, A., Bosilca, G., Herault, T., and
Dongarra, J. Algorithm-based fault tolerance for dense
matrix factorizations. In PPoPP’12 (New York, NY,
USA, 2012), ACM, pp. 225–234.

[8] Erdös, P., and Turán, P. On Some Sequences of Integers.
J. London Math. Soc. S1-11, 4 (1936), 261–264.

[9] Garg, S., and Schost, Éric. Interpolation of polynomials
given by straight-line programs. Theoretical Comput. Sci.
410, 27-29 (2009), 2659 – 2662.

[10] Giesbrecht, M., Labahn, G., and Lee, W.
Symbolic-numeric sparse interpolation of multivariate
polynomials. J. Symbolic Comput. 44 (2009), 943–959.

[11] Giesbrecht, M., and Roche, D. S. Interpolation of
shifted-lacunary polynomials. Computational Complexity
19, 3 (Sept. 2010), 333–354.

[12] Gowers, W. T. A new proof of Szemerédi’s theorem.
Geom. Funct. Anal. 11, 3 (2001), 465–588.

[13] Grigoriev, D. Y., and Karpinski, M. A zero-test and an
interpolation algorithm for the shifted sparse polynomials.
In Proc. AAECC-10 (1993), vol. 673 of Lect. Notes
Comput. Sci., Springer Verlag, pp. 162–169.

[14] Huang, K.-H., and Abraham, J. A. Algorithm-based fault
tolerance for matrix operations. IEEE Trans. Comput.
33, 6 (June 1984), 518–528.

[15] Kaltofen, E., Lakshman Y. N., and Wiley, J. M. Modular
rational sparse multivariate polynomial interpolation. In
Proc. ISSAC’90 (1990), S. Watanabe and M. Nagata,
Eds., ACM Press, pp. 135–139. URL: http://www.math.
ncsu.edu/˜kaltofen/bibliography/90/KLW90.pdf.

[16] Kaltofen, E., and Lee, W. Early termination in sparse
interpolation algorithms. J. Symbolic Comput. 36, 3–4
(2003), 365–400. URL: http://www.math.ncsu.edu/
˜kaltofen/bibliography/03/KL03.pdf.

[17] Kaltofen, E., and Yang, Z. Sparse multivariate function
recovery from values with noise and outlier errors. In
Proc. ISSAC’13 (2013), pp. 219–226. URL: http://www.
math.ncsu.edu/˜kaltofen/bibliography/13/KaYa13.pdf.

[18] Khonji, M., Pernet, C., Roch, J.-L., Roche, T., and
Stalinsky, T. Output-sensitive decoding for redundant
residue systems. In Proc. ISSAC’10 (July 2010),
pp. 265–272.

[19] Massey, J., and Schaub, T. Linear complexity in coding
theory. In Coding Theory and App., G. Cohen and
P. Godlewski, Eds., vol. 311 of LNCS. Springer Verlag,
1988, pp. 19–32.

[20] Massey, J. L. Shift-register synthesis and BCH decoding.
IEEE Trans. Inf. Theory it-15 (1969), 122–127.

[21] Meidl, W., and Niederreiter, H. Linear complexity,
k-error linear complexity, and the discrete fourier
transform. J. Complexity 18, 1 (2002), 87 – 103.

[22] Moon, T. K. Error correction coding: mathematical
methods and algorithms. Wiley-Interscience, 2005.

[23] Prony, R. Essai expérimental et analytique sur les lois de
la Dilatabilité de fluides élastique et sur celles de la Force
expansive de la vapeur de l’eau et de la vapeur de l’alkool,
à différentes températures. J. de l’École Polytechnique 1
(Floréal et Prairial III (1795)), 24–76.

[24] Ramanujan, S. A proof of Bertrand’s postulate. J. of the
Indian Mathematical Society 11 (1919), 181–182.

[25] Reed, I. S., and Solomon, G. S. Polynomial codes over
certain finite fields. J. SIAM 8, 2 (June 1960), 300–304.

[26] Roth, K. F. On certain sets of integers. J. London Math.
Soc. 28 (1953), 104–109.

[27] Salem, R., and Spencer, D. C. On sets which do not
contain a given number of terms in arithmetical
progression. Nieuw Arch. Wiskunde (2) 23 (1950),
133–143.

[28] Szemerédi, E. On sets of integers containing no k elements
in arithmetic progression. In Proc. Int. Congress of
Mathematicians (Vancouver, BC, 1974), Vol. 2 (1975),
Canad. Math. Congress, Montreal, QC, pp. 503–505.

279

http://www.math.ncsu.edu/~kaltofen/bibliography/90/KLW90.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/90/KLW90.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/13/KaYa13.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/13/KaYa13.pdf

[29] Wagstaff, Jr., S. S. On k-free sequences of integers.
Math. Comp. 26 (1972), 767–771.

[30] Zippel, R. Interpolating polynomials from their values. J.
Symbolic Comput. 9, 3 (1990), 375–403.

280

