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1. EXTENDED ABSTRACT
The discipline of symbolic computation contributes to math-

ematical model synthesis† in several ways. One is the pio-
neering creation of interpolation algorithms that can account
for sparsity in the resulting multi-dimensional models, for
example, by Zippel [12], Ben-Or and Tiwari [1], and in their
recent numerical counterparts by Giesbrecht-Labahn-Lee [5]
and Kaltofen-Yang-Zhi [9].
The theme of our talk is the discovery of sparsity in in-

terpolation algorithms, while at the same time allowing for
erroneous input data. As shown in Figure 1, not removing
erroneous input points can result in wrong, of course, but
also dense outputs. Thus one may use the sparsity constraint
to correct for errors, although this is easier said than done:
we shall deal with the difficult case where the underlying
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Figure 1: Quadratic fit without and with outlier

sparsity structure, for example the non-zero terms or non-
zero entries in the model, are not known on input. Therefore
we must compute two lists of discrete quantities: the sup-
ports of the output, that is, the sparsity structure, and the
location of erroneous input scalars. The corresponding sca-
lar coefficients can be considered, over the real and complex
numbers, as continuous quantities. In our symbolic-numeric
algorithms we allow imprecision in the input scalars, besides
large outlier errors. Sparsity in many situations turns out to
be a stabilizing constraint for numerical computation with
floating point scalars, but outlier errors are quite destructive
when not properly removed.

Sparse interpolation of polynomials or rational functions
is the process of computing a sparse multivariate rational
function

f =

tf∑

j=1

ajx
~dj , g =

tg∑

m=1

bmx
~em ,

aj , bm ∈ K, aj 6= 0, bm 6= 0, (1)

from values γℓ = (f/g)(ξ1,ℓ, . . . , ξn,ℓ), where the (unknown)

terms of the non-zero monomials are denoted by x
~dj =

x
dj,1
1

· · ·x
dj,n
n and x~em = x

em,1

1
· · ·x

em,n
n . The problem es-

sentially constitutes sparse model recovery. We consider
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both the exact and the numeric setting, the latter of which
tolerates noise in the γℓ’s for fitting, or as we say, synthe-
sizing a sparse model by approximation. In the numeric
setting the field of coefficients is K = C, the complex num-
bers. Allowing for a denominator g in the model has the for-
tuitous side-effect of yielding an algebraic error-correcting
decoder: if at ℓ = λκ one has an erroneous evaluation
βλκ 6= γλκ for 1 ≤ κ ≤ k, one can interpolate the unreduced
(fΛ(x1))/(gΛ(x1)) where Λ(x1) = (x1−ξ1,λ1

) · · · (x1−ξ1,λk
)

is the error locator polynomial. Fitting a model (1) to a list
of evaluations can be divided into several specific problems:

1. We consider 4 possible functions: univariate (n = 1) and
multivariate (n ≥ 2); polynomials (g = 1) and rational
functions.

2. We use dense and sparse representations, the latter in
several bases: in power basis as in (1) and in Chebyshev
or shifted bases with unknown shift.

3. We consider exact fitting, that is, interpolation, approxi-
mate fitting, that, is least squares solutions, exact fitting
with oversampling and error removal, that is, error cor-
recting decoding, and approximate fitting with oversam-
pling and outlier removal.

For instance, the univariate dense exact polynomial in-
terpolation problem with error removal constitutes a Reed-
Solomon decoder [11, 2]. Our SPINO (sparse polynomial
interpolation with noise and outliers) algorithm [4] solves
the univariate sparse polynomial approximate fitting prob-
lem with outlier removal. Our sparse multivariate rational
function interpolation algorithms [7, 8] are based on dense
univariate algorithms and can also approximate noisy points
and remove outliers. From a dense univariate algorithm we
can compute a scalar shift σ for the variable x = y + σ to
obtain a sparse model in y [3].
Our talk addresses the number of evaluations by which

our algorithms oversample. For reducing the number of
evaluations, in Kaltofen and Pernet [6] we propose to use
list-decoding, and in Kaltofen and Yang [8] row subset se-
lection. List-decoding allows for more errors and outliers
while computing efficiently a list of interpolants that con-
tains the original sparse function which was evaluated. A
further problem is the recovery of univariate sparse rational
functions, (fΛ)/(gΛ) where f and g 6= 1 are sparse, which
can be possibly unreduced, as in (x20 − 1)/(x− 1). We have
deployed, so far unsuccessfully, sparse signal recovery via
Candès’s and Tao’s ℓ1-norm optimization to the problem.
The above list allows for more combinations: for example,
dense multivariate polynomial interpolation with error re-
moval can be solved by a multivariate sparse interpolation
algorithm in the manner of Blahut’s [2] Reed-Solomon de-
coder.
Our algorithms are doubly hybrid: they combine exact

with numerical methods, in fact, constitute a numerical ver-
sion of the algebraic error-correcting decoders, and recover
both discrete outputs, the term degrees in the sparse support
and the outlier locations, and continuous data, the complex
coefficients that fit the data.
This is joint work with Matthew T. Comer (North Car-

olina State University, now Wofford University, USA), Clé-
ment Pernet (Univ. Grenoble, France) and Zhengfeng Yang
(East China Normal University, Shanghai, China).
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