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ABSTRACT
We consider the problem of solving a full rank consistent
linear system A(u)x = b(u) where the m× n matrix A and
the m-dimensional vector b has entries that are polynomi-
als in u over a field. We give an algorithm that computes
the unique solution x = f(u)/g(u), which is a vector of ra-
tional functions, by evaluating the parameter u at distinct
points. Those points ξλ where the matrix A evaluates to
a matrix A(ξλ), with entries over the scalar field, of lower
rank, or in the numeric setting to an ill-conditioned ma-
trix, are not identified but accounted for by error-correcting
code techniques. We also correct true errors where the eval-
uation at some u = ξλ results in an erroneous, possibly
full rank consistent and well-conditioned scalar linear sys-
tem. Our algorithm generalizes Welch/Berlekamp decoding
of Reed/Solomon error correcting codes and their numeric
floating point counterparts.

We have implemented our algorithms with floating point
arithmetic. For the determination of the exact numerator
and denominator degrees and number of errors we use sin-
gular values based numeric rank computations. The aris-
ing linear systems for the error-corrected parametric solu-
tion are demonstrated to be well-conditioned even when the
input scalars have noise. In several initial experiments we
have shown that our approach is numerically stable even for
larger systems m = n = 100, provided the degrees in the
solution are small (≤ 2). For smaller systems m = n = 10
with higher degrees (≤ 20) the algorithm works similarly to
rational function recovery. Our implementation can correct
13 true errors in both settings.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; E.4 [Coding and Information Theory]: Error
control codes; G.1.1 [Numerical Analysis]: Interpolation—
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Smoothing ; G.1.3 [Numerical Analysis]: Numerical Lin-
ear Algebra

General Terms
Algorithms

Keywords
Error correcting codes, Numerical outlier, Linear algebra
with parameters

1. INTRODUCTION
Linear systems A(u)x = b(u) with coefficients that con-

tain a parameter u can be solved exactly by evaluating the
parameter at distinct values ξ`, solving the evaluated sys-
tem, and by interpolating from the evaluated solutions the
parametric solution [8]. If the coefficients are polynomials
over a field, one may also Hensel-lift the parameter and con-
struct truncated power series approximations for the solu-
tion [9]. We suppose here that the system has full rank and
that a unique parametric solution exists. If the scalar coeffi-
cients in the polynomial coefficients ai,j(u), bi(u) are floating
point numbers, evaluations at u = ξ` may drop the numeric
rank below full rank, but that condition is dependent on a
threshold of the condition number of the evaluated matrix
A(ξ`). By interpreting the solution of the evaluated numer-

ically low rank system A(ξ`)x
[` ] = b(ξ`) as an error in the

data of the reconstruction problem, we can deploy techniques
from algebraic error correcting codes [3,12] and their numeric
counterparts [5, 6, 11] for recovering the solution from those

error-free x[` ] where the numeric rank of A(ξ`) remained full.
The Welch/Berlekamp decoder for Reed/Solomon codes can
compute a reduced rational function solution of the algebraic
interpolation-with-errors problem without locating the error.
Our algorithm for parametric linear system solving does the
same: it computes a low degree solution without locating the
almost singular evaluation matrices A(ξ`) (see Theorem 2.1
below). Thus no condition number threshold comes into
play.

The introduction of an error locator polynomial allows for
more: we can suppose that at some u = ξ` we have ob-
tained erroneous (possibly well-conditioned full rank) lin-

ear systems Â[` ]x[` ] = b̂[` ]. Again by using algebraic er-
ror correction decoding, we can compute the actual solu-
tion x = f(u)/g(u) to A(u)x = b(u), where f is a vector

of polynomials f [j] and g the least common denominator.
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We require L = df + dg + E1 + 2E2 + 1 evaluations with
df ≥ maxj{deg(f [j])}, dg ≥ deg(g), and where ≤ E1 evalua-

tions can have lower exact or numeric rank in Â[` ] = A(ξ`)

and b̂[` ] = b(ξ`), while ≤ E2 evaluations have Â[` ] 6= A(ξ`)

or b̂[` ] 6= b(ξ) (see Theorem 2.2). In the numeric setting,
“=” means here approximately equal and “6=” means signifi-
cantly different. For a 1 × 1 identity matrix A(u) = I1 our
algorithm specializes to Welch/Berlekamp decoding.

We have implemented our algorithm and report initial ex-
perimental results. We have focused on scalar arithmetic
with double precision floating point numbers, and scalar co-
efficients of the polynomial entries of A and b with some
noise and severe outliers. In the numeric setting, a heavily
noisy scalar is indistinguishable from an outlier with small
relative error, and the notion of correcting an error vs. de-
noising imprecise data is subject to thresholds: one may
state that corrections of relative error ≤ ε is denoising and
that of relative error ≥ Θ is error correction. The nature of
the error-location and correction in our algorithms is that
if Θ � ε, outliers are reliably identified. But when the
ration Θ/ε is small, say ≤ 104, error detection is less reli-
able. See [1, Section 3] for a complete numerical analysis of a
Blahut’s Reed/Solomon decoder for ≤ 1 outlier. With more
errors, the analysis is missing even for the Blahut decoder,
and our algorithm here is a generalization of that decoder.

Here we have only tested square systems m = n. The
parameter u in the rational vector solution f(u)/g(u) intro-
duces an added complication when dealing with noise in the
scalars, that of approximate GCDs: high degree polynomi-
als with random coefficients have complex roots clustered
around the unit circle in the Gaussian plane [7, Section 2]
and our algorithm identifies an evaluation point that is an
approximate root of the solution polynomials as an error lo-
cation. Note that for m = n = 1 the algorithm performs
numeric rational function recovery with outlier correction,
and with oversampling such mistaken error locations can be
tolerated [5]. We have set up our experiments where the de-
grees in f(u)/g(u) are small (≤ 20), in which case no such
spurious approximate factors appear. We note that our al-
gorithms construct well-conditioned overdetermined linear
systems with floating point numbers as entries. We use the
singular value decomposition for solving the overdetermined
systems, which essentially constitutes a total least squares
solution of our noisy systems. We could also deploy, in the
case of high parameter degrees and/or overdetermined sys-
tems m� n, structured total least norm (STLN) algorithms
(cf. [7]).

Here we have presented the case where there is a single
parameter u and where the linear system has a unique para-
metric solution. Our approach can be generalized to several
parameters u1, . . . , un and to rank deficient systems with
multiple solutions or to systems with no solutions. For incon-
sistent systems we compute a Farkas-like certificate vector
for inconsistency as our solution (see [2]). Errors in the eval-
uations could, of course, turn an inconsistent system into a
consistent one, but not when one over-evaluates at 2E points
and allows for ≤ E errors. The arising linear systems in our
algorithms are structured, especially for low dimensions and
high parameter degrees, and solvers for structured systems
can by used for their solution (cf. [11]).

2. EXACT VECTOR-OF-FUNCTIONS SOLV-
ING

We solve a system of linear equations

A(u) x = b(u), A(u) ∈ K[u]m×n, b(u) ∈ K[u]m,

where K is a field. We shall assume that the system has a
unique solution

x =


...

f [j](u)/g(u)
...

 ∈ K(u)n, g 6= 0, (1)

where g is the least common (monic) denominator, whose
leading coefficient in u is 1. If x is a vector of zeros, we set
g = 1. Our assumption is equivalent to

m ≥ n and rank(A(u)) = rank([A(u), b(u)]) = n. (2)

We compute x as follows: we select L = df + dg + E + 1
(distinct) elements ξ` ∈ K, where 0 ≤ ` ≤ L − 1 and

ξ`1 6= ξ`2 for `1 6= `2, where df ≥ max1≤j≤n{deg(f [j])} and
dg ≥ deg(g); finally, if λ1, . . . , λk is the list of indices for
the evaluations with rank(A(ξλκ)) < rank(A(u)) and with
rank(A(ξ`)) = rank(A(u)) = n for all ` 6∈ {λ1, . . . , λk} then
we presume that k ≤ E. Here df , dg and E are given or
estimated on input. We compute (1) by solving the homoge-

neous linear system in the unknown coefficients of Φ[j](u),
Ψ(u),

A(ξ`)


...

Φ[j](ξ`)
...

 = Ψ(ξ`)b(ξ`), (3)

where deg(Φ[j]) ≤ df , deg(Ψ) ≤ dg, 0 ≤ ` ≤ L− 1.
The linear system (3) has n(df + 1) + dg + 1 unknown

coefficients for the Φ[j] and Ψ and mL equations. There is
at least one solution with Ψ 6= 0, namely Φ[j] = f [j] and
Ψ = g.

Theorem 2.1 We suppose that for ≥ df + dg + 1 of the ξ`
we have rank(A(ξ`)) = rank(A(u)) = n. Let Ψmin be the
denominator component of a solution of (3) with Ψmin 6= 0
and scaled to have leading coefficient 1 in u, and of minimal

degree of all such solutions, and let Φ
[j]
min be the correspond-

ing numerator components of that solution. Then for all j

we have Φ
[j]
min = f [j] and Ψmin = g.

Proof. From (1) we have A(ξ`)f(ξ`) = g(ξ`)b(ξ`), where

f(u) is the vector of the f [j](u). Our solutions satisfy the re-
lation A(ξ`)Φ(ξ`) = Ψ(ξ`)b(ξ`), where Φ(u) is the vector of

the Φ[j](u). Therefore A(ξ`)(Ψ(ξ`)f(ξ`) − g(ξ`)Φ(ξ`)) = 0.
For ` 6∈ {λ1, . . . , λk} the matrix A(ξ`) has linearly indepen-
dent columns, so Ψ(ξ`)f(ξ`)−g(ξ`)Φ(ξ`) = 0 for such `. The

j-th entry, (Ψf [j] − gΦ[j])(ξ`) = 0, where (Ψf [j] − gΦ[j])(u)
is a polynomial of degree ≤ df + dg that thus vanishes at
≥ df + dg + 1 distinct evaluation points. Therefore for
all solutions (Φ[j],Ψ) of (3) we have Ψf [j] − gΦ[j] = 0.

From Ψminf [j] = gΦ
[j]
min we obtain f [j]/g = Φ

[j]
min/Ψmin.

Since g is the least common denominator, which is unique,
g = Ψmin.
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Remark 1. The Theorem 2.1 shows that by minimizing
the denominator degree in the solutions (Φ[j],Ψ) of (3) one
avoids to have to identify the “unlucky” evaluations ξλκ . In
the exact setting, one may Cauchy interpolate the vector of
rational functions f/g from the “lucky” evaluations by the
algorithm in [10], and a rank drop can be diagnosed during
solving the linear system A(ξ`)x = b(ξ`). In the numeric set-
ting, however, a numeric rank drop is subject to a measure of
ill-conditionedness. By using an additional E evaluations for
k ill-conditioned A(ξλ) we globally correct for those values.
Furthermore, the linear system (3) is based on the initial
coefficient data in A and b, and not on the derived data of
the solutions at ξ`. Therefore an overdetermined paramet-
ric system A(u)x = b(u) that is only approximately consis-
tent may be better solved. Other techniques such Hensel
lifting may not perform as well (accumulation of numerical
errors for not working with initial data, difficulty to detect
ill-conditionedness in successive evaluations). 2

The linear system (3) uses A(u) and b(u) evaluated at ξ`.
Therefore, one can interpret A and b as given by a proce-
dure (“black box”) that produces the (dense) matrix A(ξ`)
and the (dense) vector b(ξ`) on input ξ`. Note that what
we [4] call a black box matrix is different: in the black box
matrix setting one has a procedure for computing the prod-
uct of a (sparse or structured) matrix times a vector. For
Theorem 2.1 we must have the correct entries of A(ξ`) and
b(ξ`) in the linear system (3). Nevertheless, it is possible to
compute the solution vector f/g of (1) when some entries of

A(ξ`) or b(ξ`) are erroneous. Let Â[` ] ∈ Km×n and b̂[` ] ∈ Km

be the matrix and vector returned on evaluation at ξ`. One
evaluates at L̂ = df + dg + Ê1 + 2Ê2 + 1 distinct ξ` ∈ K,

where 0 ≤ ` ≤ L̂− 1, and presumes that at exactly k1 ≤ Ê1

evaluations ξλκ , where 1 ≤ κ ≤ k1 and 0 ≤ λκ ≤ L̂− 1, one

has rank(Â[λκ]) < n and Â[λκ]f(ξλκ) = g(ξλκ)b̂[λκ], and at

exactly k2 ≤ Ê2 evaluations ξλµ , where k1 +1 ≤ µ ≤ k1 +k2,

0 ≤ λµ ≤ L̂− 1, one has

Â[λµ]f(ξλµ) 6= g(ξλµ)b̂[λµ]. (4)

The condition (4) implies that Â[` ] 6= A(ξλµ) or/and b̂[` ] 6=
b(ξλµ), but the reverse may not be satisfied: the solution to
an erroneous system can agree with the original f(ξλµ)/g(ξλµ).
We then solve the linear system in the unknown coefficients
of Φ̂[j](u) and Ψ̂(u),

Â[` ]


...

Φ̂[j](ξ`)
...

 = Ψ̂(ξ`)b̂
[` ], (5)

where deg(Φ̂[j]) ≤ df + Ê2,deg(Ψ̂) ≤ dg + Ê2, 0 ≤ ` ≤ L̂−1.

Theorem 2.2 We suppose that for ≤ Ê2 of the ξ` we have
Â[`]f(ξ`) 6= g(ξ`)b̂

[`] and for ≥ df + dg + Ê2 + 1 of the

ξ` we have rank(Â[` ]) = n and Â[`]f(ξ`) = g(ξ`)b̂
[`]. Let

Ψ̂min be the denominator component of a solution of (5)

with Ψ̂min 6= 0 and scaled to have leading coefficient 1 in u,

and of minimal degree of all such solutions, and let Φ̂
[j]
min

be the corresponding numerator components of that solution.
Furthermore, let Λ(u) =

∏
µ subj. to (4)(u − ξλµ) be an error

locator polynomial. Then for all j we have Φ
[j]
min = Λf [j] and

Ψ̂min = Λg.

Proof. For ` 6∈ {λ1, . . . , λk1+k2} we must have by (4)

that Â[` ]f(ξ`) = g(ξ`)b̂
[` ] and by (5) Â[` ]Φ̂(ξ`) = Ψ̂(ξ`)b̂

[` ],

where Φ̂(u) is the vector of the Φ̂[j](u). Thus we have

Â[` ](Ψ̂(ξ`)f(ξ`) − g(ξ`)Φ̂(ξ`)) = 0. Since Â[` ] for those `
has linearly independent columns, the vector of field ele-
ments Ψ̂(ξ`)f(ξ`)− g(ξ`)Φ̂(ξ`) = 0. The j-th entry, (Ψ̂f [j] −
gΦ̂[j])(ξ`) = 0, where (Ψ̂f [j]−gΦ̂[j])(u) is a polynomial of de-

gree≤ df +dg+Ê2 that thus vanishes at≥ df +dg+Ê2+1 dis-

tinct evaluation points. Therefore for all solutions (Φ̂[j], Ψ̂)

of (5) we have Ψ̂f [j] − gΦ̂[j] = 0. From Ψ̂minf [j] = gΦ̂
[j]
min

we obtain f [j]/g = Φ̂
[j]
min/Ψ̂min, and hence there is a polyno-

mial h(u) with hf [j] = Φ̂
[j]
min for all j and hg = Ψ̂min. For

each µ that satisfies (4) we have a row iµ, where 1 ≤ iµ ≤
m, with Â

[λµ]
iµ

f(ξλµ) 6= g(ξλµ)b̂
[λµ]
iµ

and Â
[λµ]
iµ

(hf)(ξλµ) =

Â
[λµ]
iµ

Φ̂min(ξλµ) = Ψ̂min(ξλµ)b̂
[λµ]
iµ

= (hg)(ξλµ)b̂
[λµ]
iµ

which

implies that h(ξλµ) = 0. The proof concludes by observ-

ing that (Λf [j],Λg) solves (5).

Remark 2. If m = n = 1 and A = I1 = [1] (which implies

Ê1 = 0) we recover the polynomial b(u) from df +dg+2Ê2+1

values, where ≤ Ê of the values can be erroneous. The
algorithm then is Welch/Berlekamp decoding of an alge-
braic Reed/Solomon error correcting code [3, 6, 11, 12]. If
m = n and A = In we recover the rational function vector
f(u)/g(u) = b(u) ∈ K(u)n from df +dg+ Ê1 +2Ê2 +1 values

b(ξ`) ∈ K, where ≤ Ê1 evaluations are roots of g, indicated

by b(ξ`) =∞n leading to the equation Ψ̂(ξ`) = 0 in (5), and

≤ Ê2 evaluations are erroneous in one or more components
of b̂[` ] 6= b(ξ) (cf. [3]). 2

3. ALGORITHM AND EXPERIMENTS
We now describe in Section 3.1 the numerical algorithm

derived from Theorems 2.1 and 2.2. We make essential use of
the singular value decomposition (SVD) to get the numerical
rank of our linear systems and to solve them as the SVD also
tolerates some noise (total least squares solutions). Then we
show implementation results in Section 3.2. We craft some
parametric systems with low or high degree solutions, set
errors and singularities at the evaluation points, and show
the behavior of our implementation.

3.1 Numerical Algorithm
The following Algorithm 3.1 computes a rational numeri-

cal solution x = f̂/ĝ (see (1)) to a parametric systemA(u)x =
b(u) with base field C, where the numerical evaluations of

A(u) can drop its rank at most Ê1 times and can be er-

roneous at most Ê2 times. Bounds on the degree df ≥
maxj degu(f [j]) and dg ≥ degu(g) are also given as inputs.

Algorithm 3.1 (Numerical Vector-of-Functions Sol-
ver With Errors)

Input: Two “black boxes”A ∈ C[u]m×n and b ∈ C[u]n×1;

Bounds Ê1, Ê2, and df , dg.
Output: Polynomials f ∈ C[u]n×1 and g ∈ C[u] s.t. x = f/g

is a solution to the system A(u) x(u) = b(u).

1. Initialization.

a) Create a set Ξ of L = df + dg + 1 + Ê1 + 2Ê2 distinct
random evaluation points.
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b) Set up the vectors ~x and ~y corresponding to the un-

knowns in f and g, of resp. length n(df + Ê2 + 1) and

dg + Ê2 + 1 (corresponding to reps. degrees df + Ê2

and dg + Ê2 of f and g).

c) Set up a linear system W from evaluations of A and b
at Ξ, such that W [~x ~y]> = 0.

2. SVD step.

a) Compute a SVD of W and find its numeric rank ρ.

b) Construct a reduced linear system W̃ by removing the
ρ− 1 unknowns of highest degree to ~x and ~y.

c) From the column vector in W̃ corresponding to the

leading coefficient in ĝ (of degree dg+ Ê2−ρ+1 now),

reconstruct Φ̂ and Ψ̂ as possible candidates for f̂ and ĝ.
Either one moves that column to the right and solves

a non-singular system (since the co-rank of W̃ is 1 and
the polynomial ĝ is monic), or one performs a second

SVD and normalizes the leading coefficient of Ψ̂ to 1.

3. Error removal.

a) From the evaluations of Φ̂ and Ψ̂ at Ξ, construct Λ,
the error locating polynomial. For ξ ∈ Ξ, a factor u−ξ
is added to Λ when the evaluation ‖Φ̂(ξ)‖1 + |Ψ̂(ξ)| is
smaller than a predefined εroot or there is a large jump
(> ιroot) in the sequence of evaluations.

b) Via a least squares fit, compute the approximate divi-

sions f̂ = Φ̂/Λ and ĝ = Ψ̂/Λ.

c) Check the residue of the least squares of Step 3-b or
return failure. 2

We first observe that this algorithm works whenever the field
for A and b is R or C. On C, we can for instance choose
roots of unity for the set of evaluations Ξ. Therefore this
is an algorithm that approximates the solution on the unit
circle. Second, the tolerances for detecting small non-zero
singular values, for a jump in the singular values (Step 2-
a) or for detecting an error (Step 3-a) can be given as an
additional input, but we prefer to detect the largest jump
between consecutive small values (< 1) and use that as a
threshold for considering those values below to be 0.

In Step 2-a, the numeric rank ρ is ≥ 1 because the so-
lution is homogenous of degree ≥ 1 (there is at least one
degree of liberty before normalisation of the leading term
of g to 1.) However, we can have ρ > 1, in which case
(Step 2-b) we minimize the degree of f and g by removing
the ρ− 1 coefficients of highest degree. The reduced system
W has then numeric rank 1. We note that the the ordering
of the coefficients in ~x and ~y (Step 1-b and following) has
no importance.

In Step 3-a, we evaluate the quantity N(ξ) := ‖Φ̂(ξ)‖1 +

|Ψ̂(ξ)| =
∑n
i=1 |Φ

[i](ξ)| + |Ψ(ξ)|. Indeed, we expect that a

random element ξ that makes |Ψ(ξ)| ≈ 0 and all Φ[i](ξ) ≈ 0

is a common root to Ψ and to all Φ[i], i ∈ {1, . . . , n} (this can
be related to the numerical Zippel lemma in [7, Lemma 3.1]).
It is possible that such a common root is an approximate root
for Ψ and Φ, in which case the error locating polynomial Λ
also contains a common factor to Ψ and Φ; this is related to
numeric GCDs and the result of the algorithm is acceptable
as long as the residue in Step 3-c is small.

Note that if two evaluation points in Ξ are chosen near
one another and one point yields an erroneous system (Ê2),
then both points are identified as error locations but it is
impossible to identify the erroneous system. Such a situation
is particular to the numeric setting. The near-multiplicity
in Λ then causes an unwanted drop in the degree of f and g.

Finally, we remark that this algorithm does not correct
the matrix entries.

3.2 Implementation and performance
Our algorithm has been implemented in Maple 17 and we

report initial experiments in the following Tables 1 and 2.
These tables show the behavior over C and R of our algo-
rithm on polynomial matrices of relatively low degree (< 5),
with solutions of low degree or maximal degree. For low de-
gree, the input matrices A(u) and right-side vectors b(u)
have been constructed in a special manner, also so that
the set Ξ contains roots of det(A). In particular, A(u) =
g(u)A[rand](u)D(u) and b(u) = A[rand](u)D(u)f(u), where
D(u) is a diagonal matrix with diagonal entries u− ξ where
k1 of the ξ belong to Ξ, which is a set of random roots
of unity exp(2rπi/1001) (Table 1) or random fractions of
bounded numerator (absolutely by 20 000) and denomina-
tor 10 000 (Table 2), and the coefficient of the entries of f ,
A[rand](u) and the polynomial g are random integers between
−7 and 7; the system is then scaled so that the infinity norms
of the polynomial entries of b are ≤ 7. For maximal degree,
A(u) and b(u) are random integer linear matrix and vector
polynomials that are later scaled so that the exact solution
has bounded infinity norm. Singularities up to Ê1 are intro-
duced using elements in Ξ and errors up to Ê2 are created by
changing a term in A, namely by setting (Â[` ])1,1 = 10 000
(see (5)). The timings were performed on a x86_64 Gen-
too Linux laptop running Maple 17 with a 2.3GHz IntelR©

Core
TM

i7 and 6Gb of RAM.
In Table 1 and Table 2 we report our experiments. There

we denote:

• m = n, the dimensions of the square system A(u)x =
b(u);

• Rel. noise the amount of relative noise added to an
evaluation A(ξ`), the number 0 corresponding to the
default precision (hardware floats);

• deg(A) = maxi,j{degu(ai,j)}, deg(b) = maxi{degu(bi)};

• height(A) we denote the maximum absolute value among
all coefficients of all ai,j(u);

• Rel. Error the relative backward error, computed as
(‖f̂ − f‖22 + ‖ĝ − g‖22)1/2/(‖f‖22 + ‖g‖22)1/2;

• κ−1
eval is the smallest reciprocal of all the absolute con-

dition numbers of all A(ξ), ξ ∈ Ξ (= smallest singular
value among all evaluated systems);

• κ−1
solve is the reciprocal of the absolute condition number

(= smallest non-zero singular value) of the non-singular
system in Step 2-c.

For example, line 7 in Table 1 reads as follows. For a
50×50 matrix A of degree 4 with scalars absolutely bounded
by 19, and a vector b of degree 4 and scalars bounded (by
default, see construction above) by 7, we solve a system with
bounds 3 and 3 on the degrees of f and g and bounds 15 and
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Ex. n Rel.
noise

degA, deg b,
height(A)

df (deg f);
dg(deg g)

Ê1(k1);

Ê2(k2)
Time (s) Rel.

Error
κ−1
eval κ−1

solve

1 10 0 5, 5, 16 2 (1); 2 (1) 0 (0); 1 (1) < 1 4.8e-7 3.8e-2 3.4e-1
2 10 0 5, 5, 16 2 (1); 2 (1) 1 (1); 1 (1) < 1 6.8e-9 6.4e-10 4.5e-1
3 10 1e-6 5, 5, 16 2 (1); 2 (1) 1 (1); 1 (1) < 1 5.9e-6 7.3e-10 4.5e-1
4 20 0 5, 5, 18 3 (3); 3 (3) 5 (3); 5 (3) < 5 1.7e-6 1.4e-10 1.2e-1
5 20 1e-6 5, 5, 18 3 (3); 3 (3) 5 (3); 5 (3) < 5 1.3e-3 1.6e-10 1.2e-1
6 50 0 4, 4, 19 3 (2); 3 (2) 6 (5); 6 (5) < 35 1.2e-6 4.8e-11 2.6e-2
7 50 1e-6 4, 4, 19 3 (2); 3 (2) 6 (5); 6 (5) < 80 1.1e-3 4.8e-11 2.6e-2
8 100 0 4, 4, 16 3 (2); 3 (2) 15 (13); 15 (13) < 1000 6.9e-6 1.8e-11 7.2e-3
9 100 1e-6 4, 4, 16 3 (2); 3 (2) 15 (13); 15 (13) < 1200 6.5e-3 1.8e-11 7.2e-3

10 10 0 1, 1, 158 10 (10); 10 (10) 3 (0); 15 (13) < 7 6.6e-5 3.1e-1 7.1e-3
11 10 0 1, 1, 158 10 (10); 10 (10) 4 (0); 15 (13) < 7 1.3e-5 3.1e-1 2.4e-2
12 10 1e-6 1, 1, 158 10 (10); 10 (10) 4 (0); 15 (13) < 7 5.8e-2 3.1e-1 2.4e-2
13 10 0 1, 1, 158 10 (10); 10 (10) 4 (2); 15 (13) < 15 8.8e-5 7.1e-10 2.3e-2
13 10 1e-6 1, 1, 158 10 (10); 10 (10) 4 (2); 15 (13) < 15 9.0e-3 7.1e-10 2.3e-2
14 10 0 2, 2, 4001 20 (20); 20 (20) 4 (2); 15 (13) < 35 2.3 7.1e-10 2.3e-2
15 10 1e-6 2, 2, 4001 20 (20); 20 (20) 4 (2); 15 (13) < 35 FAIL 7.2e-8 8.6e-4

Table 1: Algorithm performance on C

Ex. n Rel.
noise

degA, deg b,
height(A)

df (deg f);
dg(deg g)

Ê1(k1); Ê2(k2) Time (s) Rel.
Error

κ−1
eval κ−1

solve

1 10 0 5, 5, 20 2 (1); 2 (1) 0 (0); 1 (1) < 1 9.3e-7 3.2e-3 7.9e-3
2 10 0 5, 5, 20 2 (1); 2 (1) 1 (1); 1 (1) < 1 7.9e-7 6.5e-10 1.3e-2
3 10 1e-6 5, 5, 20 2 (1); 2 (1) 1 (1); 1 (1) < 1 1.4e-5 9.6e-10 4.9e-1
4 20 0 5, 5, 16 3 (3); 3 (3) 5 (3); 5 (3) < 2 1.6e-6 1.5e-12 6.4e-2
5 20 1e-6 5, 5, 16 3 (3); 3 (3) 5 (3); 5 (3) < 5 3.7e-4 1.5e-12 6.4e-2
6 50 0 4, 4, 19 3 (2); 3 (2) 6 (5); 6 (5) < 15 8.8e-9 5.8e-12 1.6e-2
7 50 1e-6 4, 4, 19 3 (2); 3 (2) 6 (5); 6 (5) < 40 8.9e-6 5.8e-12 1.6e-2

Table 2: Algorithm performance on R

15 on the number of singularities and errors in the evalua-
tions, resp. Furthermore, the evaluations are done with a rel-
ative noise of magnitude 10−6. The actual degrees of f and g
are 2 and 2 and the actual number of singularities and errors
are 13 and 13, resp. The time spent on solving this paramet-
ric system was just below 80 seconds. During the construc-
tion of the system in Step 1-c (a system of size 1250× 510),
the evaluated matrices at points in Ξ had a smallest non-zero
singular value as small as 4.8×10−11, while in solving the fi-
nal reduced system in Step 2-c (a system of size 1250×408),
the smallest singular value was 2.1× 10−2. Also, on line 14
and 15 of Table 1, we report a relative error > 1 or failure
because the relative error is too large (≈ 8.8×101), although
the location of the errors (Λ) was correct.
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Notation (in alphabetic order):
A(u) the matrix of coefficients with parameter u

Â[` ] either A(ξ`) or an erroneous matrix
b(u) the right-side vector of constants with parameter

u

b̂[` ] either b(ξ`) or an erroneous right-side vector

d
[j]
f , df degree bounds ≥ degu(f [j]),≥ maxj degu(f [j])
dg a degree bound ≥ degu(g)

Notation continued (in alphabetic order):
ε a numerical tolerance for algorithmic decisions;

not an outlier error, as is sometimes used

E, Ê1 ≥ k, k1, an upper bound on the number of eval-
uations where the rank drops

Ê2 ≥ k2, an upper bound on the number of evalua-
tions with errors in the entries

f [j] the j-th entry in the solution, a polynomial (in
u), 1 ≤ j ≤ n

Φ[j] the j-th entry in a computed solution, a polyno-
mial (in u), 1 ≤ j ≤ n

g the (least common) denominator of the solution,
a polynomial (in u)

k, k1 is the actual number of evaluations that drop the
rank

k2 the actual number of evaluations with errors in
the entries

K an arbitrary field with exact arithmetic
L the length of the list of a batch of evaluations
λκ 1 ≤ κ ≤ k, the positions of the evaluations

that drop the rank: rankA(ξλκ) < rankA(u);
or where the evaluations constructs an erroneous
system

m the number of rows in A(u)
n is the number of columns in A(u) and rows in

b(u)
Ψ the common denominator of a computed solu-

tion
u the parameter in the coefficients
x a solution vector A(u)x(u) = b(u)
ξ` disting values for the parameter u from a field

∈ K
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