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1 The Setting

I gave talks at the conference Alan Turing’s Heritage: Logic, Computation

& Complexity in Lyon, France on July 3, 2012, at the Pierre and Marie
Curie University (UPMC) Paris 6, France on July 17, 2012, and at the Tenth
Asian Symposium on Computer Mathematics (ASCM) in Beijing, China on
October 26, 2012 on the complexity theoretic hardness of many problems
that the discipline of symbolic computation tackles. Here is a brief transcript
of part of those talks.

1.1 NP-completeness and Beyond

A fundamental problem of symbolic computation, that of solving systems of
polynomial equations, is easily shown to be NP-hard: x∨¬y ≡ (1−x)y =
0, x(x − 1) = 0, y(y − 1) = 0, which shows how to encode a clause in a
satisfiability problem as polynomial equations.

Real geometry, when the solutions of the polynomial systems are restricted
to the real numbers, is by Tarski’s algorithm decidable. However, [Fischer and
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Rabin 1974] have shown that the problem requires exponential space, 2Ω(n),
where n is the number of variables in the polynomials. Furthermore, [Mayr
and Meyer 1982] have extended the result to Polynomial Ideal Membership
over the rationals, that is, they show 2Ω(n)-space hardness.

Finally, [Fröhlich and Shepherdson 1955/56] show that there are fields K

in which the five arithmetic operations, namely addition, negation, multipli-
cation, division, and equality testing are computable but where factorization
in K[x] is undecidable (“unentscheidbar”). The proof is based on the infi-
nite tower of extensions by squareroots of prime integers and the fact that√
2 6∈ Q(

√
3,
√
5,
√
7,
√
11, . . .), for instance.

These are indeed formidable computational complexity theoretic barriers
to the discipline of symbolic computation.

1.2 Early Symbolic Computation Algorithms

Buchberger’s famous 1965 Gröbner basis algorithm tackles exactly those hard
problems: it decides ideal membership and computes solutions to polynomial
systems. Berlekamp’s and Zassenhaus’s 1968 polynomial factorization algo-
rithms work for coefficients in finite fields and the rational numbers. Collins’s
1974 cylindrical algebraic decomposition algorithm performs Tarski’s quan-
tifier elimination.

The pursuit of symbolic computation algorithms that solve those compu-
tational hard problems in the early 1980s was ridiculed by some theorists as
hopeless.

2 Cook’s Thesis

In his plenary talk at the ICM in Kyoto [Cook 1990], three function classes
are introduced:
polytime, the functions computable by polynomial-time algorithms,
NAT , functions arising from natural computational problems,
PracSolv , functions computable on an actual computer on all inputs of
10,000 bits or less.

Stephen Cook then formalizes his thesis:
Thesis: PracSolv ∩ NAT = polytime ∩ NAT .
The notion that polytime captures the domain of efficiently computable

functions is ingrained in theoretical computer science. Many reductions in
modern theoretical cryptography make use of the device. Stephen Cook re-
fines the notion to natural functions. As an unnatural function he gives the
example of 2⌈logn⌉1000 ∈ polytime, that with the high exponent of 1000, and
which he excludes from NAT .
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As evidence in 1990 there were the polynomial-time algorithms for linear
programming and for polynomial factorization over the rational numbers.
Polynomial identity testing via the Zippel-Schwartz lemma was and is ran-
dom polynomial time, and at that time it was hypothesized that with ran-
domization in polynomial-time algorithms one could not reach beyond the
class polytime. Today, by results by Impagliazio and Kabanets there is more
doubt. Indeed, already in 1990 polynomial factorization, even for polynomi-
als in many variables, was know to be in randomized polytime [Kaltofen and
Trager 1990]. Supersparse polynomial factorization algorithms would follow
15 years later [Kaltofen and Koiran 2006].

Richard D. Jenks had expressed some doubt in the thesis at that time,
telling me as PhD student:“You prove that problems are hard and I write

computer programs that solve them.” In the following I will attempt to chal-
lenge Cook’s Thesis.

The Thesis can fail in two directions. There may exist an f ∈ PracSolv ∩
NAT but f 6∈ polytime. Many programs in symbolic computation can produce
outputs to problems that are, in the worst case, hard.

1. Proofs that a positive semidefinite polynomial is not a sum-of-squares:
462-dimensional linear matrix inequalities (LMI) with 7546 variables
[Guo et al. 2012]. Semidefinite programming constitutes a far-reaching
generalization to linear programming with a limited non-linearity in its
control parameters: the solution must remain a definite matrix.

2. Large Gröbner basis problems, e.g., compact McEliece crypto system: 115
variables, 193584 equations, degrees = 2, 3, . . . , 256 [Faugère et al. 2010].

3. Proofs that certain non-linear polynomial equations problems (LMIs) do
not have a rational solution, while they have a real solution [Guo et al.
2013]. I have substituted this diophantine problem to my list for this
paper.

The above examples do not violate Cook’s Thesis. Clearly, a super-poly-
nomial-time algorithm can have polynomial-time running time on a subset
of inputs. Many algorithms in symbolic computation, such as Buchberger’s
algorithm and its modern variant FGb, have an unpredictable running time.
Cook’s NAT is the class of “natural” functions, not “natural” inputs. It is
important for algorithmic infrastructure to know the worst-case behavior of
an algorithm: Google returns a list of ranked pages for all queries. Nonethe-
less, it is the hallmark of the symbolic computation discipline to have greatly
enlarged the domain of natural and solvable inputs to hard problems.

The Thesis can also fail in the opposite: We may have an f ∈ polytime ∩
NAT but f 6∈ PracSolv . It is actually not so easy to find a natural problem
in symbolic computation that is in polytime but whose worst-case complexity
is super-quadratic in its input size. I offer three examples:

1. The characteristic polynomial of a sparse matrix ∈ Zn×n
p with O(n) non-

zero entries is notoriously difficult to compute with O(n) auxiliary space
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in the worst case. The best algorithm is of n2+1/2+o(1)-time, O(n)-space
[Villard 2000]. For n = 106 this is, ignoring the implied no(1), ≥ 109×
input size. We restrict to O(n) space because by using quadratic space one
has O(n2.38) time with fast matrix multiplication, although that solution
is quite impractical.

2. The Sylvester resultant in x of f(x, y), g(x, y) can be computed by
the half-GCD algorithm in max{degx(f), degx(g)}2+o(1) × max{degy(f),
degy(g)}1+o(1) scalar operations.

3. Lattice basis reduction is polynomial-time, but the dependency on the
dimension may be super-quadratic. I have substituted this diophantine
problem to my list for this paper.

In sparse/structured linear algebra, O(n log(n)) vs. O(n2) running time
makes all the difference, for example in discrete Fourier transform algorithms.
Polynomial factorization is again a fore-runner: polynomials modulo 2 can be
factored in subquadratic time since [Kaltofen and Shoup 1998].

Shaoshi Chen has told me while he was at NCSU that some of the
algorithms for symbolic summation have worst case performance beyond
quadratic. Those and the above are all candidates for polynomial-time prob-
lems that are not practically solvable for large inputs, although one may re-
quire much more than Cook’s original 10,000 bits for the inputs. It is my con-
clusion that the Thesis fails on that side: PracSolv ∩NAT ( polytime∩NAT .

Stephen Cook at the Turing Centennial celebration in San Francisco in
June 2012 has suggested to me to consider in place of polytime the class
of logarithmic space as the practical one (in my talk I stated it as poly-

logarithmic space).

3 Faugère’s Question

After my talk in Paris, Jean-Charles Faugère asked me the following ques-
tion: does it make sense to study and implement algorithms that have
exponential running time? My answer was “no,” with some disapproval from
the audience. I clarified that one may study algorithms that are worst-case
exponential, but that run polynomial-time on the inputs studied. Execut-
ing an exponential-time algorithm, say a combinatorial search, constitutes a
single computation, not providing an algorithm for general use.

I should add Ludovic Perret’s comment to me at NCSU in October 2012:
One studies exponential algorithms to know their run times, for example
when choosing size of a key in a crypto scheme.
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