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Abstract We compute approximate sparse polynomial models of the fqsth=
z‘j:lé‘j (x—9)% to a functionf(x), of which an approximation of the evaluation
f({) at any complex argument valdecan be obtained. We assume that several of
the returned function evaluatiomé{ ) are perturbed not just by approximation/noise
errors but also by highly perturbed outliers. None ofthes, e; and the location of
the outliers are known before-hand. We use a numericaloreisi an exact algo-
rithm by [4] together with a numerical version of the Reed-Solomonrearecting
coding algorithm. We also compare with a simpler approaceta@n root finding
of derivatives, while restricted to characteristic 0. listhreliminary report, we dis-
cuss how some of the problems of numerical instability akdahditioning in the
arising optimization problems can be overcome. By way ofegxpents, we show
that our techniques can recover approximate sparse shiftgdomial models, pro-
vided that there are few ternaisfew outliers and that the sparse shift is relatively
small.

1 Introduction

Sparse polynomial interpolation algorithms, where the bernof values required
depends on the number of non-zero terms in a chosen repaiisantbase rather
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than on the degree of the polynomial, originate from two sesir One is Prony’s
1795 algorithm for reconstructing an exponential surd [[see also §]) and an-
other is Blahut’s exact sparse polynomial interpolatiogoathm in the decoding
phase of the Reed-Solomon error correcting code. Both itthgas first determine
the term structure via the generator (“error locator poiyirad”) of the linear recur-
rent sequence of the valuééw'), i = 0,1,2,..., of the sparse functiof. Blahut's
algorithm has led to a rich collection of exact sparse maitate polynomial inter-
polation algorithms, among them,[L2, 20, 16, 13]. Prony’s algorithm suffers from
numerical instability unless randomization controls,haliigh probability and for
functions of significant sparsity, the conditioning of imtediate Hankel matrices.
The probabilistic spectral analysis in the GLL algorithin{] adapts the analysis of
the exact early termination algorithm of]. The resulting numerical sparse inter-
polation algorithms have recently had a high impact on nadignal processing;
see the web sitet t p: / / snart car e. be of Wen-shin Lee and her collabora-
tors. The GLL algorithm can be generalized to multivariadypomial and rational
function recovery via Zippel's variable-by-variable spainterpolation4].

Already in the beginning days of symbolic computation, theice of polyno-
mial basis was recognizetk — 2)1°°+ 1 is a concise representation of a polyno-
mial with 101 terms in power basis representation. The disecontinuous op-
timization problem of computing the sparsest shift of ancéxaivariate poly-
nomial surprisingly has a polynomial-time solutiofy [LO, 4]. Our subject is the
computation of an approximate interpolant that is spacsifieough a shift. One
can interpret our algorithm as a numerical version of theeegparsest shift algo-
rithms. As in least squares fitting, noise can be controlieduersampling (cf. ).
The main difficulty is that the shift is unknown. Our numetiaggorithm adapts
Algorithm Uni Spar sest Shi fts(one proj, two seq) in [4] to compute
the shift: Uni Spar sest Shi fts(one proj, two seq) carries the shift as
a symbolic variable throughout the sparse interpolation algorithm. Since the c
efficients of the polynomials in the shift variat#eare spoiled by noise, the GCD
step becomes an approximate polynomial GCD. A main quesatisivered here is
whether the arising non-linear optimization problems rieraeell-conditioned. Our
answer is a conditional yes: an optimal approximate shifiusid among the argu-
ments of all local minima, but the number of local minima ighhipreventing the
application of standard approximate GCD algorithms. ladteve perform global
optimization, as a fallback, by computing all zeros of thadient ideal. In addition,
our algorithm requires high precision floating point arigtio.

In [3], we have introduced outlier values to the sparse intetfpolgoroblem.
There, outlier removal requires high oversampling, as tlestvcase ofk-error
linear complexity is 22k + 1), wheret is the generator degree. However, ours
is only an upper bound for sparse interpolation. The sibuis different for Al-
gorithm Uni Spar sest Shi fts(one proj, two seq). Outliers can be re-
moved at the construction stage of the values containingltife variablez, by a
numeric version of Blahut's decoding algorithm for intelg@@n with errors. The
algorithm, numerical interpolation with outliers, is inésting in its own right. As
we will show in SectiorB, the analysis in{, 3] does not directly apply, as random-
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ization can only be applied with a limited choice of randoralaation points. We
have successfully tested it as a subroutine of our numesjizakest shift algorithm.
Note that a few outliers per interpolation lead to a very $s@érse interpolation
problem for error location, which can be handled succelssliyl sparse interpola-
tion with noisy values.

For the sake of comparison with this algorithm, we restdatharacteristic 0 and
compare a sparse shift representation to a Taylor expaesessed at a point that
will make the representation sparse. This leads to findimgpagommon to many
derivatives. Combined with a weighted least squares fitdéamaving outliers and
tolerating noise, we manage to compare favorably to the adgirithm.

In Sectiond, we present the preliminary experimental results that tgordghms
can recover sparse models even in the presence of subktammand outliers. See
Section4.3for our conclusions.

2 Computing Sparse Shifts

We introduce in this subsection an algorithm to compute fieshsparse interpolant
in a numerical setting. The exact algorithm accepts ostherd uses early termina-
tion; we adapt it to a numerical setting, considering noisgt arroneous data. It is
based on a numerical version of Blahut’s decoding algorithm

2.1 Main Algorithm with Early Termination.

The Early Termination Theorem iri§] is at the heart of computing a sparsest shift.
Let

t
g¥) =y ¢x, c¢j#£0forall1<j<t,
=

be at-sparse polynomial with coefficients in an integral donfairFurthermore, let

ai(ly)=9g(y') eDly], fori=12,...

be evaluations of at powers of an indeterminageProny’s/Blahut’s theorem states
that the sequence of thg is linearly generated b|7|tj:1()\ —y®&). Therefore, if one
considers the Hankel matrices

ap Oz ... Q0
" B az Qa3 ... Qj41 b i fori — 1.2
I(y)_ : : .. : € [y] ’ ori=1.¢...

Qi Qi1 ... Ogi-1
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one must have dé#4 1) = 0. Theorem 4 in13] simply states that dét#) £ 0 for
all 1 <i <t. One canreplace the indetermingtey a randomly sampled coefficient
domain element to have de#) £ 0 for all 1 <i <t with high probability (w.h.p.).

We seek ars in any extension of the field df such that for a giveri (x) € K[x]
the polynomialf (x+s) = h(x) is t-sparse for a minimal. Now considerg(x) =
f(x+2z) € D[x] with D = K[Z. We have4i(y,z) = det{s%) € (K[Z)]y]; note that
ai(y,z2) = g(y') = f(y' +2). By the above Theorem 4, the sparsest shift is aith
Ai11(y,s) = 0 for the smallest. Algorithm Uni Spar sest Shi fts (one proj,
two seq)computesas

z+ sdivides (w.h.p.) GCDA1(Y1,2),At1+1(Y2,2)), whereyy,y, are random irK;

note that the first with a nontrivial GCD is possibly smaller for the projectibp
y = y1 andy = y», but with low probability.
For numeric sparse interpolation with a shift, we assumeféna (x) € C[x] we
can obtain
f({) + noise+ outlier error, forany( € C.

Here only a fraction of the values contain an outlier errod aoise is a random
perturbation off ({) by a relative error of 109, say. Our algorithm returns a sparse
interpolantg(x) that at all probed valueg, save for a fraction that are removed as
outliers, approximates the returnéd) + noise. Note that probingf at { twice
may produce a different noise and possibly an outlier.

We now give the outline of our Algorithmppr oxUni Spar seShi ft (one
proj, sev seq). Note that because of the approximate nature of the shifted
sparse interpolant, there is a trade-off between backwaod @nd sparsity. Hence
we call our algorithm a “sparse shift” algorithm. As in Algghvm Uni Spar sest
Shifts(one proj, two seq), forL complex valuey = ¥, 0@, ..., @
we compute3'(2) = 4;(w!’), 2) from @ (wl),2), £ =1,2,...,L. Here the tilde ac-
cent mark indicates that the values have noise in their scalars. AgmE choose
thew!’! to be different random roots of unity of prime order. Our aitjon consists
of the four following tasks:

Step 1: For/ =1,2,...,L, compute the numeric complex ponnomiﬂﬁ{wW,z)
via a numeric version of the Blahut decoding algorithm; seetisn 3.
Steplis assumed to have removed all outliers.

Step 2: Compute the determinan@é](z) of numeric polynomial Hankel matrices
j%m(z) for all ¢, iterating Step8 and4 oni. We perform the determinant
computations with twice the floating point precision as we fos Stepsl,

3 and4.

Step 3: Determine the sparsity and an approximate shift. Note tesapproximate
shiftSis an approximate root of the polynom@@ (2), 5[2} (2),..., SI[L] (2).
Our method finds the smallest perturbation of 6ﬁ@(z) that produces a

common root, simultaneously for dll If that distance is large, we assume
that there is no common root and the dimension of the Hank&ixnaas
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Step 4:

too small. It might happen that an accurate shift is diagddse early, but
then the constructed model produces a worse backward error.

The 2-norm distance to the nearest polynomial system witimanton root
Sis given by formula (se€l[l] and the literature cited there):

S= arginfi |5,W(Z)|2/( iolfmlz),

(eC /=1

whered = maxg{dequ (2))} and in all polynomials, any term coefficients
of Z", whereme {0,1,...,d}, can be deformed.

In our experiments in Sectioh) we have only considered real shifis R.
The optimization problem is then

L ~ - d
Sear=arginfy ((0§)(€)%+(08")(€)? &,
ea = arginf3 (0 ) /( 3 6)
whereDaw and Daw are the real and imaginary parts of the polynomials

6,[5], respectively. We fing.5 among the real roots of the numerator of the
derivative of the objective function i,

03(08")@?+(03"h@?)

d
0z (n;ozzm)
- i (08 @2+ (08" @) x ( S EmZ™ 1), ()
/=1

m=0

and choose the root that minimizes the objective functigii)jn

We have observed that a larger numheof separatew!’!! can improve
the accuracy of the optimal shift, at a cost of oversamphig.have also
observed that the optimization problefr) &nd @) has numerous local op-
tima, some near the optimal approximate shift, which prevéme use of
any local approximate GCD algorithm.

With the approximate sparsest stgftcomplete the sparse polynomial re-
construction, as ind] and [3, Section 6].

One reuses the evaluations from previous steps, havinguehthose that
were declared outliers in Stdp

In the remainder of this section, we restrict ourselves tratteristic 0. We now
describe a more naive approach for the same problem. Satygeanination can
also be achieved here. Unlike the main algorithm, this omacgrecover errors in
the exact setting.
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2.2 Using Taylor Expansions

Let f(x) = 3t_; ci(x—9)® be at-sparse shifted polynomial of degréeWe can see
this expression as a Taylor expansionfaitx =s:

ro =5 P

A sparsest shift is then athat is a root of the maximum number of polynomials in
the listS= { (' f /') (x) | i € {0,...,d— 1} }.

Remark 1. It is stated in Theorem 1 inl[/] that if t < (d+ 1)/2 then the shifsis
unique and rational. Moreover, the proof gives the strosteement: for any other
shift §, with a sparsityf, one has > d+1—t.

This statement is not true in characterigtie O: for instance, consider the two
shifts—1 and 0 in the polynomigik+ 1)P = xP+1 modp.

Lemma 1. Let Sy be the list of the last 2t elements in S. The root that zeros the
maximum number of polynomialsin Sy isthe sparsest shift.

Proof. We prove this by contradiction. Assume a slsiippears times inSy and
another shifsappears times. We first notice that the number of elementS for
whichs$is aroot, and the number of elements for which it is not a reat) tod + 1.
So we have the inequality£f < d+1.

Suppose now that > r. The sparsity off in the s-shifted basis being, the
number of elements i8y that do not haveds arootis 2—f <t, thusr>t. On the
other handf > d + 1 —t. Summing these last two inequalities yields £ > d + 1,
which is impossible. O

Early termination can be achieved; indeed, under certadnistances, one need
not compute all 2derivatives. For example, suppose that the degteel) term of
f in the sparsest shifted basis is missing andstriye root of(ddflf/ﬁxdfl) (x),
as a shift; this is the Tschirnhaus transformation (oriynatroduced for solving
cubic equations). If the “back-shifted” polynomiiix+s) has fewer thaiid +1)/2
terms, then by Remark sis the unique sparsest shift. We can extend this technique
by trying all rational roots in the lis§; for a smallt.

Now we state the naive algorithm based on the above, then odifyrit for a
numeric setting. Consider first the following exact aldgurit

Step 1: Compute the exact interpolant usilbg+ 1 calls to the black box, where
D >d.

Step 2: Try early termination or$;, for a smallt, and return if successful.

Step 3: Compute all remaining derivatives #, for 8 = min(2T,D).

Step 4: The sparsest shift is the rational radhat zeros the most derivatives$.

Step 5: The “back-shifted” polynomiaff (x+ s) gives the support for the sparse
polynomial.
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This algorithm can be easily translated to a numerical oageth on least squares
fitting:

Step 1: Compute a degreB-weighted least squares fit with(D+E) calls to the
black box.

Step 2: Remove outliers by comparing relative errors, then updadit.

Step 3: Compute thed derivatives inS (possibly terminate early and proceed to
Step6).

Step 4: The approximate roatthat zeros most derivatives is the sparsest shift.

Step 5: The polynomialf (x+ s) gives the support for the sparse polynomial.

Step 6: A Newton iteration can be conducted on the result of Step increase
accuracy.

2.3 Discussion on the Numeric Algorithm

Step4 is sensitive to noise and requires more sampling from $tdfe approxi-
mate roots are determined to be equal up to a certain tolei@mcinstance 107).

In Steps5 and6, the coefficients near 0 may be forced to 0 (which would aceele
ate convergence in Ste). Step6 is conducted on the functioh(m, --- ,m,,s’) =

yK  m{(x—¢)M, with initial condition from Stegb, random samples; and noisy
evaluationsf (x;); the outliers are removed by checking relative errors. df tiin-
dom samples; are not only taken from data in Stépthen oversampling will help
“de-noising” the outputs.

Remark 2. It is unknown to us, in the exact algorithm, how to use a nunatbenlls
to the black box in Sted depending only o, in order to compute the deriva-
tives. However, it is reasonable to expose the following:are only interested in
the higher-degree terms 6f Consider the Euclidean divisidr{x) = Q(x)x?+ R(x);
then, with high numeric precision and big randgmwve can recover an approxima-
tion of Q by a least squares fit on samples;) /x' ~ Q(X).

3 Numeric Interpolation with Outliers

Blahut's decoding algorithm for Reed/Solomon codes is thasesparse interpola-
tion. Suppose one has values of

f(x) =cqg 414+ +coeK[x, degf)<d-1

at powersw': & = f(w'),i =0,1,2,...,n— 1, wheren = d + 2E. Furthermore sup-
pose fork < E, where the upper bourid is known, those values are spoiled ky
outlier errorsh; = a; + &, with a,’ej # 0 exactly at the indices@8 e; <ey < -+ <
& <d+2E—1.If wis ann'th = (d + 2E)’th primitive root of unity, then ther x n
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Fourier (Vandermonde) matrix(w) = [ooi'm]osi’mgn,l satisfies

W=V(w) = %V(arl) wherew ! = ", 3)
hence
Wb =Wa+Wa' = [g] - %V(afl)a’. (4)

The last E entries inWb allow sparse interpolation @f{x) = E‘J‘Zla’ej X8

¢ =V(whb) =gw') ford<I<d+2E—1.
Note that all vectors are indexedl)...,n—1, e.g.,

ag bo
a= : and b= :
an-1 Pn-1

By our convention, primed quantities contain outlier information. Thus, as in
Section2, the sequencey,cy ,,... is linearly generated by\(A) = n‘j‘:l()\ -
w &) ( called the “error locator polynomial”), which is a squaesf polynomial
by virtue of the primitivity of w. One may also comput& from the reverse se-
quUeNCECy, o= _1,Cy, 2, ---» Which is linearly generated by the reciprocal polyno-
mial [1*_;(A — w®).

Not knowingk, the probabilistic analysis of early termination as ir¥][and
Section2 does not directly apply, as the choicecofs restricted to a primitive’'th
root of unity. Furthermore, the locatioes of the outlier errora‘;j may depend on

the evaluation pointe). Blahut's decoding algorithm processes &l aluesc.
If one hasg; in each evaluation, namely = & +a; + &, where|ag, — a;j |/ |ae;| >
0 (one may assume that = 0), then
Wh = [

g} - %V(wfl)a/ + V(w0 Y,

SO
g=NV(@hHb) =g+ V(wHe) =g(w ') +§ford<| <d+2E—1,

where|g| < |&1| + - + |&n|. Again, there is an immediate trade-off between noise
and outliers: at what magnitude does nogebecome an outliee/? For now
we assume that the relative error in noise is small, say'40while the rela-
tive error in outliers is big, say £0The recovery of an approximate interpolant
g(x) = z'j‘:lﬂjxei for the evaluation€] hinges on the condition number of the
k x k Hankel matrix:
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6/d €d+1--- Efd+k71
T d+1 “~d+2 - d+k

6Ziqufil. €d+k €d+2k72

If the matrix is well-conditioned, the error locatioescan be determined from
the approximate linear generatﬁras in the GLL algorithm T, 3]. As is shown
there, the conditioning is bounded by|w® — w®|. Large values there are pre-
vented by randomizingy, as the term exponents are fixed for any evaluation.
Using anw' instead ofw here, where GCD,n) = 1, allows redistributing of the
w®, but thee; may then become different.

A special case ik = 1: In that case

A = 8] = [9(w %) + &) = [a, 0 % + &),

which, by our assumption on a large outligr and small noise, is a well-conditioned
matrix. This is the case we tested in Sectfon

Remark 3. When the relative difference between the magnitudes of thllﬂ'aeoa,’e1
and noiseg, €1, ..., &4 2e_1 IS Ot SO pronounced, erroneous recovery of the expo-
nente; can occur: we havesy, €y, --,Cy, o _1) = (€4, Cy 1), SO the linear gener-

ator/N\(/\) = A — w ® can be approximated by computing

Cop Ao Yo +Ed
Cy a{elw*del + &4

g1 — W gy o

7e1 o
w 14 aglardmra, =w. (5)

For this reason, we define a bougagise > max |&| and assum@sngise < |ag1| SO
that

|€d+1| + |l 2Nénoise
T lag | el T lag |- Nénoise
By the distribution of complex roots of unity (of ordey on the unit circle, we
have thaiwS*! — w®| = |w — 1| = 2sin(7/n) for any integess. Thus,|® — w1 <
sin(7r/n) will guarantedw — w | < |w— w’| for anys# —e; (modn).
Combining this fact with§) above, we arrive at the sufficient condition

Edy1— W gy

W—w &= =
| | aglardel + &

(6)

sin(mt/n)

<sin(m/n) < N&gise< |a:31|'2+T(n/n)

- (7

- o< 2Nénoise
o |a€1| — Nénoise

out the experiment, we havigx) = 87x! — 56x* o 97X TR — 4 —
83x— 10 andd — 1 = 11, evaluating at powers of the ordee d + 2E = 14 com-
plex root of unityw = exp(2mi /14). We add to each evaluation noise, which is
implemented as a complex number with polar modulus unifprchiosen at ran-
dom in the rangé0, 2% and polar argument uniformly chosen at random in the
range|0, 2m1]. An absolute outlier value is chosen the same way, but theutaed

Table1 shows some experiments of decrea@%@?s] for a fixed €@l Through-
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is in the ranggo[2bel 20[2881 1 the exponene is also chosen uniformly at ran-
dom from{0,1,...,d+ 2E — 1 = 13}. Each row of the table corresponds to 1000
realizations of the random variable that generates noid®atiiers, re-seeding the
random number generator with each run. All computationgwerformed with 15
floating point digits of precision. In the tablg, = sin(rt/n)/(2+ sin(rr/n)).

The column “% Circle” shows the percentage of runs whigbe- w | <
sin(rr/n); “% Sector” shows the percentage of runs whigve- w | > sin(m/n),
but|w— w ®| < |w— w®| foranys# —e; (mod n); “% Wrong” shows the percent-
age of the remainder of the runs. When the raffis/o2>®l is either sufficiently
large or small, one can see frof) that the value ofo is determined mainly by the
value of eithera(31 or &4,1/&q, respectively; this corresponds with the first and last

rows of each section of Table wheregg, 1/&4 is far fromw—® in general.

Table 1: Experiments of varying outlier error in the preseotnoise

s e _
Ehoes Ol SopEs ¥ % Circle % Sector % Wrong

noise outlier Cn@o?ﬁliser outlier
2.5e-01 8.0e+00 4.4e+00 4.4e-01 99.7 0.3 0.0
2.5e-01 4.0e+00 8.7e+00 8.8e-01 92.4 5.0 2.6

2.5e-01 2.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
2.5e-01 1.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
2.5e-01 5.0e-01 7.0e+01 7.0e+00 4.2 15.0 80.8
2.5e-01 2.5e-01 1.4e+02 1.4e+01 1.8 9.2 89.0

5.0e-01 1.6e+01 4.4e+00 4.4e-01 99.7 0.3 0.0
5.0e-01 8.0e+00 8.7e+00 8.8e-01 92.4 5.0 2.6
5.0e-01 4.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
5.0e-01 2.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
5.0e-01 1.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8
5.0e-01 5.0e-01 1.4e+02 1.4e+01 1.8 9.2 89.0

1.0e+00 3.2e+01 4.4e+00 4.4e-01 99.7 0.3 0.0
1.0e+00 1.6e+01 8.7e+00 8.8e-01 92.4 5.0 2.6
1.0e+00 8.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
1.0e+00 4.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
1.0e+00 2.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8
1.0e+00 1.0e+00 1.4e+02 1.4e+01 1.8 9.2 89.0

However, between the extreme valuesipinore interesting behavior can occur.
Figure1 shows two individual algorithm runs of the table rows 825l = 1. Each
power ofw is represented by ax”; the sphere of radius sfm/n) is drawn around
each power ofw, as well as the corresponding (interior) sector; the sdlidase
denotesw®, while the solid circle denotes; | 1/&4; @a complex outliela,’e1 =¢&is
fixed, then the functiomo(té) (fort € [2-7,27]) is plotted as a curve, with several
points whose label is the relative errotdfcompared tav©. In Figurela, outliers
of relative error less than 6% causeto approach 0, so that it becomes infeasible
to compute a reliable guess fer; here, noise constitutes approximately.a88%
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relative error. By contrast, Figureb shows an example where nearly any outlier
relative error greater than375% would result ifw — w®| < sin(7r/n) for one of
three values 0§ (modn), so that the “nearesb® neighbor” criterion is no longer
reliable; here, noise constitutes approximately40&o relative error.

@) (b)

Fig. 1: Examples of varying outlier relative error (labekslpercentages). Noise
relative error is approximately.00%.

Decoding the interpolatw/b can also be done via the extended Euclidean algo-
rithm for anyw with w® £ w®: the Berlekamp-Welch algorithm; se&. We will
study the numerical properties of variants based on apprabe GCD techniques in
follow-up work.

4 Implementation and Experiments ofNuner i cSpar sest
Shi ft

4.1 lllustrative Examples for the Main Algorithm

We reversely engineer a noisy black box for

fi(x) =2(x—=7)3+3(x—7)° - 7(x—7)0 =
— 7x10 4+ 490¢° — 154358 + 28812 — 352946 K5 + 29647422° — 17294182%"
+691755548° — 1815804318+ 2824450258 — 1976974482 (8)
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Our algorithm computes with a precision of 100 floating-padiigits (except in
Step2, where the precision is doubled). To each evaluation, weraddom noise
causing a relative error of & 1028, For each interpolation problem of a given
degree in Stepl, we add one outlier error of relative error 5. We uise 3 different
17'th roots of unityc!’!.

Stepl correctly locates each of the outliers in its 213 x 7 interpolation calls.
The relative 2-norm differences

18 - & @I/ 118 @) 12

of the coefficient vectors of the 44 matrix determinants after St&pare 2126 x
1027, 2.681x 1027, 6.596x 102" for ¢ = 1,2, 3 all within the added noise (after
outlier removal).

The polynomial ) in Step3 has 4 real roots, and its minimum objective function
value (1) is atS= 6.9989162726 with an objective function value 0028x 107,
as opposed to the exact case (without noise).28@x 10 "L ats= 7 (there is 1
more root with much larger objective value).

The sparse model recovered fr@mroduces the correct term exponegts= 3,
e, = 6, andez = 10, and the least squares fit at the non-erroneous=2%23— 21
prior black box evaluations produces the approximate mizd¢B),

2.009369x — 8)° +2.998102x — §° — 6.997705x — §1°, §=6.9989162726

The relative 2-norm backward error of the model (with respeche noisy black
box evaluations) is $96557x 103, while that of f; itself is 5774667x 10 28 A
similar model can be produced with 90 floating-point digitst not with 80.

When doubling the noise to relative errox 2028 with 100 floating-point digits,
the computed model is

2.036489x —8)° +2.992182x — §° — 6.991277x— 9§1°, §=6.9957389337

with relative 2-norm backward error.Z22096x 103, compared to 154933x
1027 for f1. Even with relative noise of 4 1028, the computed model is

2.125876x—9)° +2.967832x — §° — 6.972579x— §1°, §=6.9848087178

with relative 2-norm backward error.751040x 102, compared to B09866x
1027 for f;. At relative noise of 8& 1028, the algorithm fails to determine a sparse
approximant, even when increasing the number of sequeates t10.

Such failure is deceptive. The lack of sparsity, namely 3 afaimum of 11
terms, allows for denser models that provide fits. In addjteoshift of 7 produces
large evaluations at roots of unity, as indicated in the pdvasis representation
of (8). Making the shift smaller and the degree larger, and cenisig the polyno-
mial

fo(x) = 2(x— 1.55379)3+ 3(x— 1.55379)° — 7(x— 1.5537) %,
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we can recover fronh = 3 sequences, with a relative noise in the evaluations of
1x 1014 and again 1 outlier per interpolation, the approximate ehod

1.999718x— 8)% 4 2.998609x — §)° — 7.000117x— §*°, §=1.5537114392

with relative 2-norm backward error@0329x 10 1, compared to & 101 (to 7
digits) for fy itself.

For this particular example, we see a case of the effect oreediin [3], where
the sparse model can fit the noisy evaluations nearly as amedl §ometimes better)
than the exact black box.

Increasing the noise still, another model wihk- 1.5537013193 can be recov-
ered with relative noise of 2 1013, where now the model anf] relative 2-norm
backward errors are.580450x 102 and 1108027x 10~ 11, respectively. In this
case, a different choice &f = 3 different 17’th roots of unity was needed in order
to compute a sparse model. Both computations used 357 btecvaluations.

4.2 Comparison with the Nive Algorithm

For the examples given above, the naive algorithm recdtiersparsest represen-
tation with noise such as»x101° and precision 20 floating point digits. The pre-
cision obtained is close to the level of noisex(10 8 relative error for the shift
and 2x 1019 maximum relative error on the coefficients in the shifted$)adhe
number of calls to the black box is below 170.

For a more demanding example such as a degree 55 polynontiesparsity
8 and a shift between 1 and 2, a level of relative noiselD 22 is tolerable with
precision 200 digits (as in an example above). However, thehber of calls was
above 600 to get a relative error less than0-2° on shift and coefficients. Due to
the numerical optimization in Stej this is unattainable with the main algorithm,
for the moment. The Tschirnhaus early termination was ned yet.

Besides, with more calls to the black box during the Newterations, we can
further increase the precision on the shift and coefficjethiis may however be
considered as de-noising.

We can also run experiments on a black box of the typeQs whereP is a
polynomial with a sparse shift representation &ds a dense polynomial of same
degree with coefficients bounded by this may be viewed as perturbation on the
coefficients. The algorithms described perform well, hosvehey do not remove
outliers if they are introduced as an erroneous term.
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4.3 Discussion

Our preliminary experiments lead to the following concturs: Our correction of
1 outlier per interpolation with Blahut’s numerical decoglis highly numerically
reliable. The optimization problem in Sté&prequires substantial precision for its
real root finding, and is numerically sensitive when thetskiflarge and there is
noise in the evaluations. Our main algorithm works well withnoise and outliers,
or in high precision with noise when the shift is small and ¢parsity is high. We
plan to work on a more thorough experimental analysis, oiolythe case of two or
more outliers per interpolation. The naive algorithm giweotivation and potential
for improvements to the main one. On the other hand, the nuwibealls to the
black box in the former could be reduced.
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