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Abstract We compute approximate sparse polynomial models of the formf̃ (x) =
∑t

j=1 c̃ j(x− s̃)e j to a function f (x), of which an approximation of the evaluation
f (ζ ) at any complex argument valueζ can be obtained. We assume that several of
the returned function evaluationsf (ζ ) are perturbed not just by approximation/noise
errors but also by highly perturbed outliers. None of thec̃ j, s̃, e j and the location of
the outliers are known before-hand. We use a numerical version of an exact algo-
rithm by [4] together with a numerical version of the Reed-Solomon error correcting
coding algorithm. We also compare with a simpler approach based on root finding
of derivatives, while restricted to characteristic 0. In this preliminary report, we dis-
cuss how some of the problems of numerical instability and ill-conditioning in the
arising optimization problems can be overcome. By way of experiments, we show
that our techniques can recover approximate sparse shiftedpolynomial models, pro-
vided that there are few termst, few outliers and that the sparse shift is relatively
small.

1 Introduction

Sparse polynomial interpolation algorithms, where the number of values required
depends on the number of non-zero terms in a chosen representation base rather
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than on the degree of the polynomial, originate from two sources. One is Prony’s
1795 algorithm for reconstructing an exponential sum [18] (see also [2]) and an-
other is Blahut’s exact sparse polynomial interpolation algorithm in the decoding
phase of the Reed-Solomon error correcting code. Both algorithms first determine
the term structure via the generator (“error locator polynomial”) of the linear recur-
rent sequence of the valuesf (ω i), i = 0,1,2, . . ., of the sparse functionf . Blahut’s
algorithm has led to a rich collection of exact sparse multivariate polynomial inter-
polation algorithms, among them [1, 12, 20, 16, 13]. Prony’s algorithm suffers from
numerical instability unless randomization controls, with high probability and for
functions of significant sparsity, the conditioning of intermediate Hankel matrices.
The probabilistic spectral analysis in the GLL algorithm [5, 7] adapts the analysis of
the exact early termination algorithm of [13]. The resulting numerical sparse inter-
polation algorithms have recently had a high impact on medical signal processing;
see the web sitehttp://smartcare.be of Wen-shin Lee and her collabora-
tors. The GLL algorithm can be generalized to multivariate polynomial and rational
function recovery via Zippel’s variable-by-variable sparse interpolation [14].

Already in the beginning days of symbolic computation, the choice of polyno-
mial basis was recognized:(x− 2)100+ 1 is a concise representation of a polyno-
mial with 101 terms in power basis representation. The discrete-continuous op-
timization problem of computing the sparsest shift of an exact univariate poly-
nomial surprisingly has a polynomial-time solution [9, 10, 4]. Our subject is the
computation of an approximate interpolant that is sparsified through a shift. One
can interpret our algorithm as a numerical version of the exact sparsest shift algo-
rithms. As in least squares fitting, noise can be controlled by oversampling (cf. [8]).
The main difficulty is that the shift is unknown. Our numerical algorithm adapts
Algorithm UniSparsestShifts〈one proj, two seq〉 in [4] to compute
the shift:UniSparsestShifts〈one proj, two seq〉 carries the shift as
a symbolic variablez throughout the sparse interpolation algorithm. Since the co-
efficients of the polynomials in the shift variablez are spoiled by noise, the GCD
step becomes an approximate polynomial GCD. A main questionanswered here is
whether the arising non-linear optimization problems remain well-conditioned. Our
answer is a conditional yes: an optimal approximate shift isfound among the argu-
ments of all local minima, but the number of local minima is high, preventing the
application of standard approximate GCD algorithms. Instead, we perform global
optimization, as a fallback, by computing all zeros of the gradient ideal. In addition,
our algorithm requires high precision floating point arithmetic.

In [3], we have introduced outlier values to the sparse interpolation problem.
There, outlier removal requires high oversampling, as the worst case ofk-error
linear complexity is 2t(2k + 1), wheret is the generator degree. However, ours
is only an upper bound for sparse interpolation. The situation is different for Al-
gorithmUniSparsestShifts〈one proj, two seq〉. Outliers can be re-
moved at the construction stage of the values containing theshift variablez, by a
numeric version of Blahut’s decoding algorithm for interpolation with errors. The
algorithm, numerical interpolation with outliers, is interesting in its own right. As
we will show in Section3, the analysis in [7, 3] does not directly apply, as random-

http://smartcare.be
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ization can only be applied with a limited choice of random evaluation points. We
have successfully tested it as a subroutine of our numericalsparsest shift algorithm.
Note that a few outliers per interpolation lead to a very small sparse interpolation
problem for error location, which can be handled successfully by sparse interpola-
tion with noisy values.

For the sake of comparison with this algorithm, we restrict to characteristic 0 and
compare a sparse shift representation to a Taylor expansionexpressed at a point that
will make the representation sparse. This leads to finding a root common to many
derivatives. Combined with a weighted least squares fit for removing outliers and
tolerating noise, we manage to compare favorably to the mainalgorithm.

In Section4, we present the preliminary experimental results that our algorithms
can recover sparse models even in the presence of substantial noise and outliers. See
Section4.3for our conclusions.

2 Computing Sparse Shifts

We introduce in this subsection an algorithm to compute a shifted sparse interpolant
in a numerical setting. The exact algorithm accepts outliers and uses early termina-
tion; we adapt it to a numerical setting, considering noisy and erroneous data. It is
based on a numerical version of Blahut’s decoding algorithm.

2.1 Main Algorithm with Early Termination.

The Early Termination Theorem in [13] is at the heart of computing a sparsest shift.
Let

g(x) =
t

∑
j=1

c jx
e j , c j 6= 0 for all 1≤ j ≤ t,

be at-sparse polynomial with coefficients in an integral domainD. Furthermore, let

αi(y) = g(yi) ∈D[y], for i = 1,2, . . .

be evaluations ofg at powers of an indeterminatey. Prony’s/Blahut’s theorem states
that the sequence of theαi is linearly generated by∏t

j=1(λ − ye j). Therefore, if one
considers the Hankel matrices

Hi(y) =




α1 α2 . . . αi

α2 α3 . . . αi+1
...

...
. . .

...
αi αi+1 . . . α2i−1


 ∈D[y]i×i, for i = 1,2, . . .
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one must have det(Ht+1) = 0. Theorem 4 in [13] simply states that det(Hi) 6= 0 for
all 1≤ i ≤ t. One can replace the indeterminatey by a randomly sampled coefficient
domain element to have det(Hi) 6= 0 for all 1≤ i ≤ t with high probability (w.h.p.).

We seek ans in any extension of the field ofK such that for a givenf (x) ∈ K[x]
the polynomialf (x + s) = h(x) is t-sparse for a minimalt. Now considerg(x) =
f (x + z) ∈ D[x] with D = K[z]. We have∆i(y,z) = det(Hi) ∈ (K[z])[y]; note that
αi(y,z) = g(yi) = f (yi + z). By the above Theorem 4, the sparsest shift is ans with
∆t+1(y,s) = 0 for the smallestt. AlgorithmUniSparsestShifts〈one proj,
two seq〉 computess as

z+ s divides (w.h.p.) GCD(∆t+1(y1,z),∆t+1(y2,z)), wherey1,y2 are random inK;

note that the firstt with a nontrivial GCD is possibly smaller for the projectionby
y = y1 andy = y2, but with low probability.

For numeric sparse interpolation with a shift, we assume that for f (x) ∈ C[x] we
can obtain

f (ζ )+ noise+ outlier error, for anyζ ∈ C.

Here only a fraction of the values contain an outlier error, and noise is a random
perturbation off (ζ ) by a relative error of 10−10, say. Our algorithm returns a sparse
interpolantg(x) that at all probed valuesζ , save for a fraction that are removed as
outliers, approximates the returnedf (ζ ) + noise. Note that probingf at ζ twice
may produce a different noise and possibly an outlier.

We now give the outline of our AlgorithmApproxUniSparseShift〈one
proj, sev seq〉. Note that because of the approximate nature of the shifted
sparse interpolant, there is a trade-off between backward error and sparsity. Hence
we call our algorithm a “sparse shift” algorithm. As in Algorithm UniSparsest
Shifts〈one proj, two seq〉, for L complex valuesy = ω [1], ω [2], . . ., ω [L]

we computẽδ [ℓ ]
i (z) = ∆̃i(ω [ℓ ],z) from α̃i(ω [ℓ ],z), ℓ = 1,2, . . . ,L. Here the tilde ac-

cent mark̃ indicates that the values have noise in their scalars. As in [7], we choose
theω [ℓ ] to be different random roots of unity of prime order. Our algorithm consists
of the four following tasks:

Step 1: For ℓ = 1,2, . . . ,L, compute the numeric complex polynomialsα̃i(ω [ℓ ],z)
via a numeric version of the Blahut decoding algorithm; see Section 3.
Step1 is assumed to have removed all outliers.

Step 2: Compute the determinants̃δ [ℓ ]
i (z) of numeric polynomial Hankel matrices

H̃
[ℓ ]

i (z) for all ℓ, iterating Steps3 and4 on i. We perform the determinant
computations with twice the floating point precision as we use for Steps1,
3 and4.

Step 3: Determine the sparsity and an approximate shift. Note that the approximate

shift s̃ is an approximate root of the polynomialsδ̃ [1]
i (z), δ̃ [2]

i (z), . . ., δ̃ [L]
i (z).

Our method finds the smallest perturbation of theδ̃ [ℓ ]
i (z) that produces a

common root, simultaneously for allℓ. If that distance is large, we assume
that there is no common root and the dimension of the Hankel matrix was
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too small. It might happen that an accurate shift is diagnosed too early, but
then the constructed model produces a worse backward error.
The 2-norm distance to the nearest polynomial system with a common root
s̃ is given by formula (see [11] and the literature cited there):

s̃ = arginf
ζ∈C

L

∑
ℓ=1

|δ̃ [ℓ ]
i (ζ )|2

/( d

∑
m=0

|ζ m|2
)
,

whered =maxℓ{deg(δ̃ [ℓ ]
i (z))} and in all polynomials, any term coefficients

of zm, wherem ∈ {0,1, . . . ,d}, can be deformed.
In our experiments in Section4, we have only considered real shiftss̃ ∈ R.
The optimization problem is then

s̃real= arginf
ξ∈R

L

∑
ℓ=1

(
(ℜδ̃ [ℓ ]

i )(ξ )2+(ℑδ̃ [ℓ ]
i )(ξ )2

)/( d

∑
m=0

ξ 2m
)
, (1)

whereℜδ̃ [ℓ ]
i andℑδ̃ [ℓ ]

i are the real and imaginary parts of the polynomials

δ [ℓ ]
i , respectively. We find̃sreal among the real roots of the numerator of the

derivative of the objective function in (1),

∂ ∑l((ℜδ̃ [ℓ ]
i )(z)2+(ℑδ̃ [ℓ ]

i )(z)2)

∂ z
×
( d

∑
m=0

z2m
)

−
L

∑
ℓ=1

((ℜδ̃ [ℓ ]
i )(z)2+(ℑδ̃ [ℓ ]

i )(z)2)×
( d

∑
m=0

(2m)z2m−1
)
, (2)

and choose the root that minimizes the objective function in(1).
We have observed that a larger numberL of separateω [ℓ ] can improve
the accuracy of the optimal shift, at a cost of oversampling.We have also
observed that the optimization problem (1) and (2) has numerous local op-
tima, some near the optimal approximate shift, which prevents the use of
any local approximate GCD algorithm.

Step 4: With the approximate sparsest shifts̃, complete the sparse polynomial re-
construction, as in [6] and [3, Section 6].
One reuses the evaluations from previous steps, having removed those that
were declared outliers in Step1.

In the remainder of this section, we restrict ourselves to characteristic 0. We now
describe a more naı̈ve approach for the same problem. Some early termination can
also be achieved here. Unlike the main algorithm, this one cannot recover errors in
the exact setting.
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2.2 Using Taylor Expansions

Let f (x) = ∑t
i=1 ci(x− s)ei be at-sparse shifted polynomial of degreed. We can see

this expression as a Taylor expansion off at x = s :

f (x) =
∞

∑
i=0

(
∂ i f /∂xi

)
(s)

i!
(x− s)i .

A sparsest shift is then ans that is a root of the maximum number of polynomials in
the listS =

{(
∂ i f /∂xi

)
(x) | i ∈ {0, . . . ,d−1}

}
.

Remark 1. It is stated in Theorem 1 in [17] that if t ≤ (d +1)/2 then the shifts is
unique and rational. Moreover, the proof gives the strongerstatement: for any other
shift ŝ, with a sparsitŷt, one haŝt > d+1− t.

This statement is not true in characteristicp 6= 0: for instance, consider the two
shifts−1 and 0 in the polynomial(x+1)p = xp +1 modp.

Lemma 1. Let S2t be the list of the last 2t elements in S. The root that zeros the
maximum number of polynomials in S2t is the sparsest shift.

Proof. We prove this by contradiction. Assume a shifts appearsr times inS2t and
another shift ˆs appears ˆr times. We first notice that the number of elements inS for
which ŝ is a root, and the number of elements for which it is not a root,sum tod+1.
So we have the inequality ˆr+ t̂ ≤ d +1.

Suppose now that ˆr ≥ r. The sparsity off in the s-shifted basis beingt, the
number of elements inS2t that do not have ˆs as a root is 2t− r̂ ≤ t, thus ˆr ≥ t. On the
other hand,̂t > d +1− t. Summing these last two inequalities yields ˆr+ t̂ > d +1,
which is impossible. ⊓⊔

Early termination can be achieved; indeed, under certain circumstances, one need
not compute all 2t derivatives. For example, suppose that the degree(d−1) term of
f in the sparsest shifted basis is missing and try ¯s, the root of

(
∂ d−1 f /∂xd−1

)
(x),

as a shift; this is the Tschirnhaus transformation (originally introduced for solving
cubic equations). If the “back-shifted” polynomialf (x+ s̄) has fewer than(d+1)/2
terms, then by Remark1, s̄ is the unique sparsest shift. We can extend this technique
by trying all rational roots in the listSτ for a smallτ.

Now we state the naı̈ve algorithm based on the above, then we modify it for a
numeric setting. Consider first the following exact algorithm:

Step 1: Compute the exact interpolant usingD+ 1 calls to the black box, where
D ≥ d.

Step 2: Try early termination onSτ , for a smallτ, and return if successful.
Step 3: Compute all remaining derivatives inSθ , for θ = min(2T,D).
Step 4: The sparsest shift is the rational roots that zeros the most derivatives inSθ .
Step 5: The “back-shifted” polynomialf (x + s) gives the support for the sparse

polynomial.
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This algorithm can be easily translated to a numerical one, based on least squares
fitting:

Step 1: Compute a degree-D weighted least squares fit with O(D+E) calls to the
black box.

Step 2: Remove outliers by comparing relative errors, then update the fit.
Step 3: Compute theθ derivatives inSθ (possibly terminate early and proceed to

Step6).
Step 4: The approximate roots that zeros most derivatives is the sparsest shift.
Step 5: The polynomialf (x+ s) gives the support for the sparse polynomial.
Step 6: A Newton iteration can be conducted on the result of Step5 to increase

accuracy.

2.3 Discussion on the Numeric Algorithm

Step4 is sensitive to noise and requires more sampling from Step1. The approxi-
mate roots are determined to be equal up to a certain tolerance (for instance 10−2).
In Steps5 and6, the coefficients near 0 may be forced to 0 (which would acceler-
ate convergence in Step6). Step6 is conducted on the functionf (m′

1, · · · ,m
′
k,s

′) =

∑k
i=1 m′

i(x− s′)hi , with initial condition from Step5, random samplesx j and noisy
evaluationsf (x j); the outliers are removed by checking relative errors. If the ran-
dom samplesx j are not only taken from data in Step1, then oversampling will help
“de-noising” the outputs.

Remark 2. It is unknown to us, in the exact algorithm, how to use a numberof calls
to the black box in Step1 depending only onT , in order to compute the deriva-
tives. However, it is reasonable to expose the following: weare only interested in
the higher-degree terms off . Consider the Euclidean divisionf (x) =Q(x)xq+R(x);
then, with high numeric precision and big randomxi, we can recover an approxima-
tion of Q by a least squares fit on samplesf (xi)/xq

i ≈ Q(xi).

3 Numeric Interpolation with Outliers

Blahut’s decoding algorithm for Reed/Solomon codes is based on sparse interpola-
tion. Suppose one has values of

f (x) = cd−1xd−1+ · · ·+ c0 ∈ K[x], deg( f ) ≤ d−1

at powersω i: ai = f (ω i), i = 0,1,2, . . . ,n−1, wheren = d+2E. Furthermore sup-
pose fork ≤ E, where the upper boundE is known, those values are spoiled byk
outlier errors:bi = ai + a′i, with a′e j

6= 0 exactly at the indices 0≤ e1 < e2 < · · · <

ek ≤ d+2E−1. If ω is ann’th = (d+2E)’th primitive root of unity, then then×n
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Fourier (Vandermonde) matrixV (ω) = [ω i·m]0≤i,m≤n−1 satisfies

W =V (ω)−1 =
1
n

V (ω−1) whereω−1 = ωn−1, (3)

hence

Wb =Wa+Wa′ =
[
c
0

]
+

1
n

V (ω−1)a′. (4)

The last 2E entries inWb allow sparse interpolation ofg(x) = ∑k
j=1a′e j

xe j :

c′l = (V (ω−1)b )l = g(ω−l) for d ≤ l ≤ d +2E −1.

Note that all vectors are indexed 0,1, . . . ,n−1, e.g.,

a=




a0
...

an−1


 and b =




b0
...

bn−1


 .

By our convention, primed′ quantities contain outlier information. Thus, as in
Section2, the sequencec′d ,c

′
d+1, . . . is linearly generated byΛ(λ ) = ∏k

j=1(λ −

ω−e j ) ( called the “error locator polynomial”), which is a squarefree polynomial
by virtue of the primitivity ofω . One may also computeΛ from the reverse se-
quencec′d+2E−1,c

′
d+2E−2, . . ., which is linearly generated by the reciprocal polyno-

mial ∏k
j=1(λ −ωe j).

Not knowing k, the probabilistic analysis of early termination as in [13] and
Section2 does not directly apply, as the choice ofω is restricted to a primitiven’th
root of unity. Furthermore, the locationse j of the outlier errorsa′e j

may depend on

the evaluation pointsω i. Blahut’s decoding algorithm processes all 2E valuesc′l .

If one hasεi in each evaluation, namelỹbi = ai+a′i+εi, where|ae j −a′e j
|/|ae j |≫

0 (one may assume thatεe j = 0), then

W b̃ =

[
c
0

]
+

1
n

V (ω−1)a′+
1
n

V (ω−1)ε,

so

c̃′l = (V (ω−1)b̃ )l = g(ω−l)+ (V (ω−1)ε )l = g(ω−l)+ ε̄l for d ≤ l ≤ d +2E −1,

where|ε̄l | ≤ |ε1|+ · · ·+ |εn|. Again, there is an immediate trade-off between noise
and outliers: at what magnitude does noiseεi become an outliera′i? For now
we assume that the relative error in noise is small, say 10−10, while the rela-
tive error in outliers is big, say 105. The recovery of an approximate interpolant
g̃(x) = ∑k

j=1 ã′e j
xe j for the evaluations̃c′l hinges on the condition number of the

k× k Hankel matrix:
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H̃
′

k =




c̃′d c̃′d+1 . . . c̃′d+k−1
c̃′d+1 c̃′d+2 . . . c̃′d+k

...
...

. . .
...

c̃′d+k−1 c̃′d+k . . . c̃′d+2k−2


 .

If the matrix is well-conditioned, the error locationse j can be determined from
the approximate linear generatorΛ̃ as in the GLL algorithm [7, 3]. As is shown
there, the conditioning is bounded by 1/|ωeu −ωev |. Large values there are pre-
vented by randomizingω , as the term exponentse j are fixed for any evaluation.
Using anωr instead ofω here, where GCD(r,n) = 1, allows redistributing of the
ωe j , but thee j may then become different.

A special case isk = 1: In that case

H̃
′

1 = [c̃′d ] = [g(ω−d)+ ε̄d] = [a′e1
ω−de1 + ε̄d ],

which, by our assumption on a large outliera′e1
and small noise, is a well-conditioned

matrix. This is the case we tested in Section4.

Remark 3. When the relative difference between the magnitudes of the outlier a′e1
and noiseε0,ε1, . . . ,εd+2E−1 is not so pronounced, erroneous recovery of the expo-
nente1 can occur: we have(c̃′d , c̃

′
d+1, . . . , c̃

′
d+2E−1) = (c̃′d , c̃

′
d+1), so the linear gener-

atorΛ̃(λ ) = λ −ω−e1 can be approximated by computing

c̃′d+1

c̃′d
=

a′e1
ω−(d+1)e1 + ε̄d+1

a′e1
ω−de1 + ε̄d

= ω−e1 +
ε̄d+1−ω−e1ε̄d

a′e1
ω−de1 + ε̄d

= ω̃ . (5)

For this reason, we define a boundεnoise≥ maxi |εi| and assumenεnoise< |a′e1
| so

that

|ω̃ −ω−e1|=

∣∣∣∣∣
ε̄d+1−ω−e1ε̄d

a′e1
ω−de1 + ε̄d

∣∣∣∣∣≤
|ε̄d+1|+ |ε̄d|

|a′e1
|− |ε̄d|

≤
2nεnoise

|a′e1
|− nεnoise

. (6)

By the distribution of complex roots of unity (of ordern) on the unit circle, we
have that|ωs+1−ωs|= |ω −1|= 2sin(π/n) for any integers. Thus,|ω̃ −ω−e1|<
sin(π/n) will guarantee|ω̃ −ω−e1|< |ω̃ −ωs| for anys 6≡ −e1 (mod n).

Combining this fact with (6) above, we arrive at the sufficient condition

|ω̃ −ω−e1| ≤
2nεnoise

|a′e1
|− nεnoise

< sin(π/n) ⇔ nεnoise< |a′e1
| ·

sin(π/n)
2+ sin(π/n)

. (7)

Table1 shows some experiments of decreasingΘ [abs]
outlier for a fixedε [abs]

noise. Through-
out the experiment, we havef (x) = 87x11−56x10−62x8+97x7−73x4−4x3−
83x−10 andd −1= 11, evaluating at powers of the ordern = d +2E = 14 com-
plex root of unityω = exp(2π i /14). We add to each evaluation noise, which is
implemented as a complex number with polar modulus uniformly chosen at ran-
dom in the range[0,ε [abs]

noise] and polar argument uniformly chosen at random in the
range[0,2π ]. An absolute outlier value is chosen the same way, but the modulus
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is in the range[Θ [abs]
outlier,2Θ [abs]

outlier]; the exponente1 is also chosen uniformly at ran-
dom from{0,1, . . . ,d +2E −1 = 13}. Each row of the table corresponds to 1000
realizations of the random variable that generates noise and outliers, re-seeding the
random number generator with each run. All computations were performed with 15
floating point digits of precision. In the table,Cn = sin(π/n)/

(
2+ sin(π/n)

)
.

The column “% Circle” shows the percentage of runs where|ω̃ − ω−e1| <
sin(π/n); “% Sector” shows the percentage of runs where|ω̃ −ω−e1| ≥ sin(π/n),
but|ω̃−ω−e1|< |ω̃−ωs| for anys 6≡ −e1 (mod n); “% Wrong” shows the percent-
age of the remainder of the runs. When the ratioε [abs]

noise/Θ
[abs]
outlier is either sufficiently

large or small, one can see from (5) that the value of̃ω is determined mainly by the
value of eithera′e1

or ε̄d+1/ε̄d , respectively; this corresponds with the first and last
rows of each section of Table1, whereε̄d+1/ε̄d is far fromω−e1 in general.

Table 1: Experiments of varying outlier error in the presence of noise

ε [abs]
noise Θ [abs]

outlier
nε [abs]

noise

CnΘ [abs]
outlier

nε [abs]
noise

Θ [abs]
outlier

% Circle % Sector % Wrong

2.5e-01 8.0e+00 4.4e+00 4.4e-01 99.7 0.3 0.0
2.5e-01 4.0e+00 8.7e+00 8.8e-01 92.4 5.0 2.6
2.5e-01 2.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
2.5e-01 1.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
2.5e-01 5.0e-01 7.0e+01 7.0e+00 4.2 15.0 80.8
2.5e-01 2.5e-01 1.4e+02 1.4e+01 1.8 9.2 89.0

5.0e-01 1.6e+01 4.4e+00 4.4e-01 99.7 0.3 0.0
5.0e-01 8.0e+00 8.7e+00 8.8e-01 92.4 5.0 2.6
5.0e-01 4.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
5.0e-01 2.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
5.0e-01 1.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8
5.0e-01 5.0e-01 1.4e+02 1.4e+01 1.8 9.2 89.0

1.0e+00 3.2e+01 4.4e+00 4.4e-01 99.7 0.3 0.0
1.0e+00 1.6e+01 8.7e+00 8.8e-01 92.4 5.0 2.6
1.0e+00 8.0e+00 1.7e+01 1.8e+00 47.5 27.0 25.5
1.0e+00 4.0e+00 3.5e+01 3.5e+00 17.0 26.1 56.9
1.0e+00 2.0e+00 7.0e+01 7.0e+00 4.2 15.0 80.8
1.0e+00 1.0e+00 1.4e+02 1.4e+01 1.8 9.2 89.0

However, between the extreme values ofω̃ , more interesting behavior can occur.
Figure1 shows two individual algorithm runs of the table rows forε [abs]

noise= 1. Each
power ofω is represented by a “×”; the sphere of radius sin(π/n) is drawn around
each power ofω , as well as the corresponding (interior) sector; the solid square
denotesω−e1, while the solid circle denotes̄εd+1/ε̄d ; a complex outliera′e1

= ξ is
fixed, then the functioñω(tξ ) (for t ∈ [2−7,27]) is plotted as a curve, with several
points whose label is the relative error oftξ compared toω−e1. In Figure1a, outliers
of relative error less than 6% causẽω to approach 0, so that it becomes infeasible
to compute a reliable guess fore1; here, noise constitutes approximately a 0.38%
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relative error. By contrast, Figure1b shows an example where nearly any outlier
relative error greater than 0.375% would result in|ω̃ −ωs| < sin(π/n) for one of
three values ofs (mod n), so that the “nearestωs neighbor” criterion is no longer
reliable; here, noise constitutes approximately a 0.40% relative error.

(a) (b)

Fig. 1: Examples of varying outlier relative error (labeledas percentages). Noise
relative error is approximately 0.40%.

Decoding the interpolantWb can also be done via the extended Euclidean algo-
rithm for anyω with ωeu 6= ωev : the Berlekamp-Welch algorithm; see [15]. We will
study the numerical properties of variants based on approximate GCD techniques in
follow-up work.

4 Implementation and Experiments ofNumericSparsest
Shift

4.1 Illustrative Examples for the Main Algorithm

We reversely engineer a noisy black box for

f1(x) = 2(x−7)3+3(x−7)6−7(x−7)10=

−7x10+490x9−15435x8+288120x7−3529467x6+29647422x5−172941825x4

+691755542x3−1815804312x2+2824450258x−1976974482. (8)
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Our algorithm computes with a precision of 100 floating-point digits (except in
Step2, where the precision is doubled). To each evaluation, we addrandom noise
causing a relative error of 1× 10−28. For each interpolation problem of a given
degreei in Step1, we add one outlier error of relative error 5. We useL = 3 different
17’th roots of unityω [ℓ ].

Step1 correctly locates each of the outliers in its 21= 3×7 interpolation calls.
The relative 2-norm differences

‖δ [ℓ ]
4 (z)− δ̃ [ℓ ]

4 (z)‖2/‖δ [ℓ ]
4 (z)‖2

of the coefficient vectors of the 4×4 matrix determinants after Step2 are 2.126×
10−27, 2.681×10−27, 6.596×10−27 for ℓ= 1,2,3 all within the added noise (after
outlier removal).

The polynomial (2) in Step3 has 4 real roots, and its minimum objective function
value (1) is at s̃ = 6.9989162726 with an objective function value of 2.028×10−57,
as opposed to the exact case (without noise) of 2.280× 10−71 at s = 7 (there is 1
more root with much larger objective value).

The sparse model recovered from̃s produces the correct term exponentse1 = 3,
e2 = 6, ande3 = 10, and the least squares fit at the non-erroneous 252= 273−21
prior black box evaluations produces the approximate modelfor (8),

2.009369(x− s̃)3+2.998102(x− s̃)6−6.997705(x− s̃)10, s̃ = 6.9989162726.

The relative 2-norm backward error of the model (with respect to the noisy black
box evaluations) is 1.596557×10−3, while that of f1 itself is 5.774667×10−28. A
similar model can be produced with 90 floating-point digits,but not with 80.

When doubling the noise to relative error 2×10−28 with 100 floating-point digits,
the computed model is

2.036489(x− s̃)3+2.992182(x− s̃)6−6.991277(x− s̃)10, s̃ = 6.9957389337,

with relative 2-norm backward error 6.222096× 10−3, compared to 1.154933×
10−27 for f1. Even with relative noise of 4×10−28, the computed model is

2.125876(x− s̃)3+2.967832(x− s̃)6−6.972579(x− s̃)10, s̃ = 6.9848087178,

with relative 2-norm backward error 2.151040× 10−2, compared to 2.309866×
10−27 for f1. At relative noise of 8×10−28, the algorithm fails to determine a sparse
approximant, even when increasing the number of sequences to L = 10.

Such failure is deceptive. The lack of sparsity, namely 3 of amaximum of 11
terms, allows for denser models that provide fits. In addition, a shift of 7 produces
large evaluations at roots of unity, as indicated in the power basis representation
of (8). Making the shift smaller and the degree larger, and considering the polyno-
mial

f2(x) = 2(x−1.55371)3+3(x−1.55371)6−7(x−1.55371)15,
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we can recover fromL = 3 sequences, with a relative noise in the evaluations of
1×10−14, and again 1 outlier per interpolation, the approximate model

1.999718(x− s̃)3+2.998609(x− s̃)6−7.000117(x− s̃)15, s̃ = 1.5537114392,

with relative 2-norm backward error 8.000329×10−1, compared to 8×10−1 (to 7
digits) for f1 itself.

For this particular example, we see a case of the effect mentioned in [3], where
the sparse model can fit the noisy evaluations nearly as well (and sometimes better)
than the exact black box.

Increasing the noise still, another model withs̃ = 1.5537013193 can be recov-
ered with relative noise of 2×10−13, where now the model andf1 relative 2-norm
backward errors are 5.180450× 10−2 and 1.108027× 10−11, respectively. In this
case, a different choice ofL = 3 different 17’th roots of unity was needed in order
to compute a sparse model. Both computations used 357 black box evaluations.

4.2 Comparison with the Näıve Algorithm

For the examples given above, the naı̈ve algorithm recoversthe sparsest represen-
tation with noise such as 1×10−10 and precision 20 floating point digits. The pre-
cision obtained is close to the level of noise (1× 10−8 relative error for the shift
and 2×10−10 maximum relative error on the coefficients in the shifted basis). The
number of calls to the black box is below 170.

For a more demanding example such as a degree 55 polynomial with sparsity
8 and a shift between 1 and 2, a level of relative noise 1×10−28 is tolerable with
precision 200 digits (as in an example above). However, the number of calls was
above 600 to get a relative error less than 1×10−20 on shift and coefficients. Due to
the numerical optimization in Step3, this is unattainable with the main algorithm,
for the moment. The Tschirnhaus early termination was not used yet.

Besides, with more calls to the black box during the Newton iterations, we can
further increase the precision on the shift and coefficients, this may however be
considered as de-noising.

We can also run experiments on a black box of the typeP+Qε whereP is a
polynomial with a sparse shift representation andQε is a dense polynomial of same
degree with coefficients bounded byε – this may be viewed as perturbation on the
coefficients. The algorithms described perform well, however they do not remove
outliers if they are introduced as an erroneous term.



14 Brice Boyer, Matthew T. Comer, and Erich L. Kaltofen

4.3 Discussion

Our preliminary experiments lead to the following conclusions: Our correction of
1 outlier per interpolation with Blahut’s numerical decoding is highly numerically
reliable. The optimization problem in Step3 requires substantial precision for its
real root finding, and is numerically sensitive when the shift is large and there is
noise in the evaluations. Our main algorithm works well without noise and outliers,
or in high precision with noise when the shift is small and thesparsity is high. We
plan to work on a more thorough experimental analysis, including the case of two or
more outliers per interpolation. The naı̈ve algorithm gives motivation and potential
for improvements to the main one. On the other hand, the number of calls to the
black box in the former could be reduced.
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