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ABSTRACT
We propose algorithms performing sparse interpolation
with errors, based on Prony’s–Ben-Or’s & Tiwari’s algo-
rithm, using a Berlekamp/Massey algorithm with early
termination. First, we present an algorithm that can
recover a t-sparse polynomial f from a sequence of val-
ues, where some of the values are wrong, spoiled by ei-
ther random or misleading errors. Our algorithm re-
quires bounds T ≥ t and E ≥ e, where e is the num-
ber of evaluation errors. It interpolates f(ωi) for i =
1, . . . , 2T (E + 1), where ω is a field element at which
each non-zero term evaluates distinctly.
We also investigate the problem of recovering the min-

imal linear generator from a sequence of field elements
that are linearly generated, but where again e ≤ E
elements are erroneous. We show that there exist se-
quences of < 2t(2e + 1) elements, such that two dis-
tinct generators of length t satisfy the linear recurrence
up to e faults, at least if the field has characteristic
6= 2. Uniqueness can be proven (for any field charac-
teristic) for length ≥ 2t(2e + 1) of the sequence with
e errors. Finally, we present the Majority Rule Berle-
kamp/Massey algorithm, which can recover the unique
minimal linear generator of degree t when given bounds
T ≥ t and E ≥ e and the initial sequence segment of
2T (2E + 1) elements. Our algorithm also corrects the
sequence segment. The Majority Rule algorithm yields
a unique sparse interpolant for the first problem.
The algorithms are applied to sparse interpolation al-

gorithms with numeric noise, into which we now can
bring outlier errors in the values.
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1. INTRODUCTION
The problem of reconstructing a sparse polynomial

from its values stands at the nexus of symbolic and nu-
meric computing. The astounding success of the numeri-
cal versions of the exact symbolic sparse interpolation al-
gorithms [10, 1, 13, 14], namely the“GLL”-algorithm [7],
in medical signal processing by Annie Cuyt, Wen-shin
Lee, and others (see, e.g., http://smartcare.be) leads to
a statistical problem variant: allow for outlier measure-
ment errors in addition to noise.

Exact Sparse Interpolation With Errors. We be-
gin by investigating the exact, symbolic problem for-
mulation: we give algorithms that reconstruct a sparse
polynomial from its values even if some values are in-
correct. More precisely, we give algorithms that from
2T (E + 1) values at points of our choice (evaluations at
consecutive powers of an element, e.g., roots of unity)
can compute a t-sparse interpolant, where the input in-
cludes upper bounds T ≥ t and E ≥ e, where e eval-
uations are incorrect. The output can be a list of at
most E interpolants, but necessarily containing the cor-
rect one. We can produce a unique t-sparse interpolant
from 2T (2E+1) evaluations at points of our choice. Our
method is based on Ben-Or’s and Tiwari’s [1] algorithm,
which computes the sparse support (the set of non-zero
terms) via a linear recurrence. We compute the linear
generators for multiple segments of the sequence to ex-
pose the faults in some of the segments.

We also study on its own the Berlekamp/Massey algo-
rithm on input sequences with faulty elements, and show
that uniqueness of a linear generator of degree t cannot
be guaranteed from a sequence segment of < 2t(2e+ 1)
consecutive elements with e errors. For sequence seg-
ments of ≥ 2T (2E+1) consecutive elements with e ≤ E
errors, we not only can easily recover the unique linear
generator of degree t ≤ T where the bounds T,E are
input, but we can also locate and correct the errors. For
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sequences arising in sparse interpolation, fewer elements
may suffice for a unique interpolant, as we do not have
the corresponding counterexamples.
The exact dense interpolation problem with errors is

studied in [20]. The exact sparse problem is also inves-
tigated in [28], where it is assumed, as we do not, that
the support of the sparse polynomial is known. However,
Saraf’s CCC ’11 talk has motivated our investigations.
The Nature of Noise. In numerical data, noise is

a result of imprecise measurement or of floating point
arithmetic. It is assumed that there is some accuracy in
the data. In digital data, noise spoils several bits and
accuracy is measured as having a small Hamming dis-
tance. When approximating a transcendental function
by a Taylor series or Padé fraction, noise is the model
error of the inexact representation. Hybrid symbolic-
numeric algorithms have traditionally assumed that the
input scalars have with some relative error been de-
formed. For instance, if one allows substantial oversam-
pling, a sparse polynomial can be recovered from numer-
ical noisy values, where each value has a relative error of
0.5 [9], perhaps even 0.99, with still more oversampling.
Here we consider errors in the Hamming distance sense,
i.e., several incorrect values without assumption on any
accuracy. But we can combine our model with that of
numerical noise in all other values, hence we borrow the
statistical term outlier for the nature of these errors.
One could also presume, as Annie Cuyt does, that the

black box mechanism that produces the values for our
interpolant, with possibly both inaccuracies and outlier
errors, represents an unknown, possibly irrational, func-
tion that the sparse polynomial model approximates.
However, the model fitting algorithm cannot distinguish
errors in the model from noise and outliers in the values,
at least not if the produced errors are independent on
the locality of the input probe.
Numeric Sparse Interpolation. Linear recurrence-

based sparse interpolation goes back to the French rev-
olution [25]. In fact, Prony’s algorithm is Ben-Or’s/
Tiwari’s if one replaces the polynomial variables by ex-
ponential functions x = ey. For imaginary replace-
ments x = ei y one obtains periodic sparse sinusoid (fi-
nite Fourier) signals (cf. [4]). Prony’s algorithm disap-
peared from numerical analysis books for reason of con-
ditioning [Wen-shin Lee, private communication]. The
probabilistic analysis of the randomized early termina-
tion algorithm [14] together with analysis of the distri-
bution of the corresponding condition numbers [7, 18]
now justifies its use, even numerically. Ill-conditioning
arises precisely at the point of termination, and con-
dition number estimation or stochastic input sensitiv-
ity analysis can be used to identify this point. Already
Prony’s paper shows that the sparse terms can have neg-
ative, and possibly rational, exponents.
Numeric Outliers. Important variants of our algo-

rithms can deal with numerical noise, from floating point
or empirical input values, and outliers. We demonstrate
that the Prony-GLL style algorithms [7, 18] are appli-
cable to our majority voting approach by describing our
early-terminated numeric version of the Ben-Or/Tiwari
Algorithm; some particular examples are given in Sec-
tion 6.

The Ben-Or/Tiwari Algorithm. We briefly review
Ben-Or’s/Tiwari’s algorithm in the setting of univariate
sparse polynomial interpolation. Let f be a univariate
polynomial, mj its distinct terms, t the number of terms,
and cj the corresponding non-zero coefficients:

f(x) =
∑t

j=1 cjx
ej =

∑t

j=1 cjmj 6= 0, ej ∈ Z.

Theorem 1 [1] Let bj = ωej , where ω is a value from
the coefficient domain to be specified later, let ai = f(ωi)
=

∑t

j=1 cjb
i
j , and let Λ(λ) =

∏t

j=1(λ − bj) = λt +

γt−1λ
t−1+ · · ·+γ0. The sequence (a0, a1, . . .) is linearly

generated by the minimal polynomial Λ(z).

The Ben-Or/Tiwari algorithm then proceeds in the four
following steps:
1. Find the minimal-degree generating polynomial Λ for

(a0, a1, . . .), using the Berlekamp/Massey algorithm.
2. Compute the roots bj of Λ, using univariate polyno-

mial factorization.
3. Recover the exponents ej of f , by repeatedly dividing

bj by ω.
4. Recover the coefficients cj of f , by solving the trans-

posed t× t Vandermonde system







1 1 . . . 1
b1 b2 . . . bt
...

...
. . .

...
bt−1
1 bt−1

2 . . . bt−1
t















c1
c2
...
ct







=








a0

a1

...
at−1







.

By Blahut’s theorem [2, 22], the sequence (ai)i≥0 has
linear complexity t, hence only 2t coefficients suffice for
the Berlekamp/Massey algorithm to recover the minimal
polynomial Λ. In the presence of errors in some of the
evaluations, this fails. Our work shows how to overcome
that obstruction.

2. LENGTH BOUNDS FOR COMPUT–
ING LINEAR GENERATORS
FROM SEQUENCES WITH ERROR

2.1 Necessary length of the input sequence

Example 1 Suppose the base field is F, where char(F) 6=
2. Given e, t ≥ 1, let 0̄ denote the zero vector of length
t− 1. Consider the following sequence of length 4t:

(0̄, 1, 0̄, 1
︸︷︷︸

−1

, 0̄, 1, 0̄,

1
︷︸︸︷

−1 )
⇒ −1 + λt

⇒ 1 + λt
.

Here, the underbrace and overbrace represent distinct
“corrections” that would yield two different minimal lin-
ear generators (1 + λt and −1 + λt, respectively). If we
concatenate this sequence with itself e − 1 times, then
append the sequence (0̄, 1, 0̄), the result is a sequence of
length 4et + 2t − 1 = 2t(2e + 1) − 1, where two sets of
“corrections”would each yield a different minimal linear
generator. Thus, at least 2t(2e+1) sequence entries are
necessary to guarantee a unique solution.

Example 2 Suppose again that the base field is F, where
char(F) 6= 2. Let α be an e-th root of unity, for e even,
and consider the following sequence of 2(2e+ 1)− 1 en-
tries:
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(1, α, . . . , αe−1, 1,−α, . . . , (−α)e−1,
1, α, . . . , αe−1, 1,−α, . . . , (−α)e−1, 1).

If the odd powers of −α are changed to odd powers of α,
then −α + λ is the minimal linear generator. However,
if the odd powers of α are changed to odd powers of −α,
then α + λ is the minimal linear generator. Note that
there are e changes made to the sequence in either case.
Thus, at least 2(2e+1) entries are required to guarantee
a unique solution when t = 1.
For the case t > 1, we place the zero-vector of length

t−1 in between each entry above, and on each end of the
sequence. Again, we see that at least 2t(2e+ 1) entries
are required to guarantee a unique solution.
As an explicit example, let e = 4, t = 1, and consider

the following sequence:

(1, i
︸︷︷︸

−i

,−1, −i
︸︷︷︸

i

, 1,

i
︷︸︸︷

−i ,−1,

−i
︷︸︸︷

i ,

1, i
︸︷︷︸

−i

,−1, −i
︸︷︷︸

i

, 1,

i
︷︸︸︷

−i ,−1,

−i
︷︸︸︷

i , 1).

When e is odd, we can take the example for e+1, remove
the last 4t entries, then change the last αe to −αe. The
resulting sequence has 2t(2(e+1)+1)−1−4t = 2t(2e+
1) − 1 entries, as in the case where e is even. As an
explicit example, let t = 1 and e = 3. We start with the
example for e = 4:

(1, α
︸︷︷︸

−α

, α2, α3

︸︷︷︸

−α3

, 1,

α
︷︸︸︷

−α , α2,

α3

︷︸︸︷

−α3,

1, α
︸︷︷︸

−α

, α2, α3

︸︷︷︸

−α3

, 1,

α
︷︸︸︷

−α , α2,

α3

︷︸︸︷

−α3, 1)

then modify it to

(1, α
︸︷︷︸

−α

, α2, α3

︸︷︷︸

−α3

, 1,

α
︷︸︸︷

−α , α2,

α3

︷︸︸︷

−α3, 1, α
︸︷︷︸

−α

, α2,

α3

︷︸︸︷

−α3, 1).

2.2 Bounds on generator degree and loca-
tion of last error

Lemma 1 Suppose the infinite sequence (a0, a1, . . .) has
monic minimal linear generator Λ(λ) with Λ(0) 6= 0. If
we introduce errors into the sequence, with the last error
at entry k, then λkΛ(λ) is the monic minimal linear
generator of the infinite sequence (b0, b1, . . ., bk−1, ak,
ak+1, . . .), where bk−1 6= ak−1.

Proof. Write the monic minimal linear generator of
the erroneous sequence as λlΞ(λ), where Ξ(0) 6= 0. The
polynomial λkΛ will generate the erroneous sequence,
which implies λlΞ | λkΛ. Note that for m = max{l, k},
Λ and Ξ are both linear generators for (am, am+1, . . .),
but Λ is minimal by Lemma 3, so Λ | Ξ.
Let Ξ = ΛΓ. Then Γ is monic and has a non-zero

constant term (because both Λ and Ξ do), so then λlΛΓ |
λkΛ, say λlΛΓp = λkΛ. Then we have λlΛ(Γp−λk−l) =
0, which implies Γp = λk−l because Λ 6= 0, where l ≤ k
due to the divisibility statements above. Thus, both Γ
and p are monomials in λ, but this forces Γ = 1, so
Ξ = Λ.
To finish the proof, note that if l < k, then λlΞ =

λlΛ would fail to generate (b0, b1, . . . , bk−1, ak, ak+1, . . . ,

ak+t−1), so we must have l = k and the minimal linear
generator of the erroneous sequence is λkΛ.

Theorem 2 Suppose the infinite sequence (a0, a1, . . .)
has monic minimal linear generator Λ(λ) with Λ(0) 6= 0
and deg(Λ) = t, and suppose that errors are introduced
into the sequence, with the last error occurring at entry
k. If only bounds for t and k are known, say, t ≤ T
and k ≤ K, then Algorithm 1 and Algorithm 2 can be
used to recover Λ and the intended sequence, if given
min{K + 2T, k + t + K + T} entries of the erroneous
sequence.

Proof. If given K + 2T entries, then calling Algo-
rithm 1 on the sequence (aK+2T−1, aK+2T−2, . . . , aK),
which contains no error, will return Λsr (i.e., the scaled
reciprocal polynomial of Λ) by Lemma 4. We can then
call Algorithm 2 with Λsr, K, and (aK+T−1, aK+T−2,
. . . , a0) as input.

However, if T ≫ t, then K + 2T entries may be more
than necessary, as we may be able to find Λ from an
early-terminated Algorithm 1 running in the forward di-
rection. Specifically, if a sequence has a monic minimal
linear generator of unknown degree d and d ≤ δ, where δ
is known, then Algorithm 1 will compute the (reciprocal
polynomial of the) generator after processing 2d entries.
After processing d + δ entries, any future discrepancy
would cause the degree of the generator to exceed δ, so
the algorithm may stop; see Theorem 5 and Remark 1
in [16, 29]. Here, we have d = k + t (by Lemma 1) and
δ = K + T , so Algorithm 1 may stop after processing
k+ t+K + T entries, which will be fewer than K + 2T
entries when T > k + t.

3. REED-SOLOMON DECODING
We show in this section that the problem of sparse in-

terpolation with errors is dual with that of Reed-Solomon
decoding. This rapid overview on error correcting codes
is not comprehensive. The reader can refer to [24] for a
treatment of the subject in appropriate details.

Reed-Solomon as evaluation codes. The popular
Reed-Solomon codes can be defined (as in their original
presentation by [26]) as evaluation interpolation codes.
Let K be the finite field Fq, set n = q − 1 and let ξ be
a primitive n-th root of unity in K.

A message is a vector of k < n symbols from Fq, form-
ing a polynomial f = a0+a1X+· · ·+ak−1X

k−1 of degree
at most k − 1. The encoding of the message is the vec-
tor of the n evaluations of f in the consecutive powers
of ξ: c = Ev(f) = (f(ξ0), f(ξ1), . . . , f(ξn−1)) = Vξf ,

where Vξ =








1 1 . . . 1
1 ξ . . . ξn−1

...
...

. . .
...

1 ξn−1 . . . ξ(n−1)2








is the Vander-

monde matrix of the evaluation points 1, ξ, ξ2, . . . ξn−1.
For simplicity, we equate a polynomial with the vector of
its coefficients. This procedure defines the (n, k)-Reed-
Solomon code as the set C of evaluations of all polyno-
mials of degree at most k − 1: C = {(f(ξ0), f(ξ1), . . . ,
f(ξn−1)) | f ∈ Fq[X], deg(f) ≤ k}. Decoding works by
a simple interpolation. Suppose that a weight e error ε
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affects the communication, so that one receives the mes-
sage c′ = c+ ε, where e coefficients of ε are non zero. A
consequence of the BCH theorem is that if E = ⌊n−k

2
⌋

and e ≤ E, then c is the unique codeword at distance
no more than E to c′. This makes it possible to correct
and decode a codeword affected by up to E errors.
Let I be the interpolation function associated to the

points ξ, ξ2, . . . , ξn. As I is linear, it satisfies I(c′) =
I(c)+I(ε) = f+I(ε). In particular, the last n−k mono-
mials of I(c′) are those of I(ε), which form a contigu-
ous subsequence of the Discrete Fourier Transform of ε
called the syndrome. Blahut’s Theorem [3] states that
the D.F.T. of a vector of weight t is linearly generated
by a polynomial of degree less than t. Hence applying
the Berlekamp-Massey algorithm on these n−k ≥ 2t co-
efficients will recover this generating polynomial, called
error locator: it vanishes at the ξi where errors occurred.
Relation with Sparse interpolation with errors.

To summarize, the Reed-Solomon decoding problem is
the following: Given c′ ∈ F

n
q , find f of degree less than

k and ε of weight t such that c′ = Vξf+ε. This problem
has a unique solution provided t ≤ n−k

2
. In comparison,

the sparse interpolation problem can be written asGiven
c′ ∈ F

n
q , find an error f and a sparse polynomial ε of

weight t such that c′ = f + Vξε. The Vandermonde
matrix Vξ satisfies V −1

ξ = Vξ−1/n, hence its inverse is
a (scaled) Vandermonde matrix and corresponds, up to
sign, to the evaluation function in the powers of ξ−1.
Left-multiplying c′ = f + Vξε by V −1

ξ makes it a Reed-
Solomon decoding problem (based on the primitive root
ξ−1). This problem has a unique solution provided that
the 2t trailing coefficients of the error vector f are zeros.
Hence, a t-sparse polynomial can be recovered from n
evaluations provided that the last 2t of them are not
erroneous.
Now as the location of a consecutive sub-sequence

of 2t non-faulty evaluations is a priori unknown, one
needs to inspect several segments of length 2t. In the
Reed-Solomon decoding viewpoint, one tries to decode
that same sequence with several Reed-Solomon codes (of
varying length, dimension and set of evaluation points).
This adaptive decoding is similar to the one proposed
in [20] for decoding CRT codes. In this context, the
uniqueness of the solution is no longer guaranteed. In
the following sections, we will propose two decoding al-
gorithms: the first decodes with the shortest sequence of
evaluation points, but can return a list a several candi-
dates, and the second guaranties a unique solution, but a
with a longer sequence of evaluations, however optimal,
with respect to the lower bound proven in Section 2.

4. A FAULT-TOLERANT BERLEKAMP/
MASSEY ALGORITHM

We address the problem of recovering the minimal-
degree monic polynomial that generates a sequence of n
elements, where at most E entries have been modified
by errors; we address this problem first by a heuristic:
it returns a list of at most E candidates, but that nec-
essarily contains the correct one.
We recall in Algorithm 1 the specification of the well-

known Berlekamp/Massey algorithm to find the monic

minimal generating polynomial of a sequence; this algo-
rithm can recover the monic generating polynomial of
least degree t from 2t consecutive sequence entries.

Algorithm 1: Berlekamp/Massey algorithm

Input: (a0, . . . , an−1) a sequence of field elements.

Result: Λ(λ) =
∑Ln

i=0 γiλ
i a monic polynomial of

minimal degree Ln ≤ n such that
∑Ln

i=0 γiai+j = 0 for j = 0, . . . , n− Ln − 1.

Lemma 2 Let S = (a0, a1, . . .) be an infinite sequence
generated by a minimal linear relation of degree t, so
that ai+t =

∑t−1
j=0 γjai+j for all i ≥ 0 with γ0 6= 0. Let

Λ(λ) = λt −
∑t

j=0 γjλ
j . Then calling Algorithm 1 on

any subsequence (ai, . . . , ai+2t−1) will return Λ.

In a sequence of 2T (E + 1) elements affected by at
most E errors, there has to be at least one clean sub-
sequence of length 2T . However, some unlikely combi-
nation of errors may lead to a block of 2T elements for
which the Berlekamp/Massey algorithm will produce a
degree t ≤ T generating polynomial that is not the origi-
nal generating polynomial. We can discriminate against
some of these false positive cases by checking the gener-
ating polynomial against the remaining elements in the
sequence. This is done by Algorithm 2, which can then
be used in Algorithm 3 to select only the polynomials of
degree t that generate a sequence of Hamming distance
less than E to the input sequence. Unfortunately, some
false positive may still generate the sequence with less
than E errors, as shown in Section 2. Section 5 will ad-
dress this issue with a stronger assumption on the length
of the sequence: n ≥ 2T (2E + 1).

Theorem 3 If n ≥ 2T (E + 1), Algorithm 3 run on a
sequence altered by at most E errors returns a list of
less than E polynomials containing the generating poly-
nomial of the initial clean sequence. It runs in O(T 2E)
arithmetic operations.

Proof. As n ≥ 2T (E + 1), there has to be an iter-
ation where the segment (a2Ti, . . . , a2Ti+2T−1) has no
error, and for which the Berlekamp/Massey algorithm
will return the correct polynomial and the call to Algo-
rithm 2 will fix the sequence with less than E correc-
tions. The complexity is that of E applications of the
Berlekamp-Massey algorithm on 2T elements.

Note that the condition on the length of the sequence
n ≥ 2T (E + 1) is the tightest possible in order to apply
a syndrome decoding. Indeed if n < 2T (E + 1) some

errors of weight E, e.g. e =
∑⌊ n

2T
⌋

i=1 e2Ti where ei denotes
the i-th canonical vector, are such that no length 2T
consecutive sub-sequence of evaluations is error-free, and
Ben-Or/Tiwari’s algorithm can not be applied on any
part of such a sequence.

On the other hand, this algorithm can also return a
list of several candidates. Each reconstructed sparse pol-
ynomial can be tested on a few more evaluations until
only one remains.
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Algorithm 2: SequenceCleanUp

Input: Λ(λ) =
∑t

i=0 γiλ
i a monic polynomial of

degree t, such that Λ(0) 6= 0.
Input: E the maximum number of changes to the

sequence allowed.
Input: (a0, . . . , an−1) a sequence of field elements

where n ≥ 2t+ 1.
Input: k ≤ n− 2t− 1 initial position for clean-up
Output: ((c0, . . . , cn−1), e) such that either e > E or

(c0, . . . , cn−1) is a linearly recurrent sequence
of field elements, generated by Λ, of
Hamming distance at most E to (a0, . . . ,
an−1), such that (ck, . . . , ck+2t−1) = (ak,
. . . , ak+2t−1) .

begin

(c0, . . . , cn−1)← (a0, . . . , an−1)
i← k + 2t; e← 0
while i ≤ n− 1 and e ≤ E do

1 if
∑t

j=0 γjcj+i−t 6= 0 then

2 ci ← −
∑t−1

j=0 γjci+j−t; e← e+ 1

i← i+ 1

i← k − 1
while i ≥ 0 and e ≤ E do

3 if
∑t

j=0 γjcj+i 6= 0 then

ci ← −
∑t

j=1

γj

γ0
ci+j ; e← e+ 1

i← i− 1

return (c0, . . . , cn−1), e

5. THE MAJORITY RULE BERLE–
KAMP/MASSEY ALGORITHM

If one has e errors in a sequence of 2t(2e+ 1) linearly
generated elements by a generator of degree t, e + 1
“blocks” of 2t elements must have the same correct gen-
erator. However, it is not so clear that with the correct
generator one can locate and correct the errors, because
an erroneous block could still have the same correct gen-
erator. Here, we show that location and correction of er-
rors are always possible, and that one only needs upper
bounds T ≥ t and E ≥ e.
Properties and correctness of the Majority Rule

Berlekamp/Massey algorithm. For convenience, we
first assume that T = t. By supplying Algorithm 4 with
2t(2E + 1) sequence entries, we guarantee that during
Step 1, at least E + 1 of the Λi will be the correct (“in-
tended”) generator, Λ, by Lemma 3. If exactly E + 1
of the Λ agree, then every block with Λ as a generator
is “clean”, while every other block contains exactly one
error.

Lemma 3 Suppose the infinite sequence (a0, a1, . . .) has
monic minimal linear generator Λ(λ) with Λ(0) 6= 0 and
deg(Λ) = t. Then Λ is also the minimal linear generator
of (ak, ak+1, . . .), for any integer k ≥ 0.

Proof. First, consider k = 1. Let Γ(λ) be the mini-
mal linear generator for the sequence (a1, a2, . . .). This
sequence is generated by Λ as well, so we have Γ | Λ,
which implies deg(Γ) ≤ deg(Λ). Suppose that deg(Γ) <
deg(Λ). We have that λΓ generates the sequence (a0, a1,

Algorithm 3: FTBM: Fault Tolerant Berlekamp/Massey
algorithm

Input: (c0, . . . , cn−1) a sequence of field elements.
Input: T an upper bound for t, the degree of the

monic minimal generator.
Input: E an upper bound on the number of errors.
Output: L a list of pairs ((c0, . . . , cn−1),Λ) formed by

a sequence of distance less than E to (a0

, . . . , an−1) and its minimal degree monic
generating polynomial. We require Λ(0) 6= 0.

begin

L← [ ]
for i← 0, . . . , ⌊ n

2T
⌋ − 1 do

Λ← BM([a2Ti, . . . , a2Ti+2T−1])
/* Λ(λ) = γ0 + γ1λ+ · · ·+ γsλ

s, γs = 1 */

if γ0 6= 0 then
((c0, . . . , cn−1), e)←
SequenceCleanUp(Λ, E, (a0, . . . , an−1), 2T i)
if e ≤ E then

L← L.push(((c0, . . . , cn−1),Λ))

return L

. . .), so we must have Λ | λΓ as well, so deg(Λ) ≤
deg(λΓ). But deg(λΓ) ≤ deg(Λ) because deg(Γ) <
deg(Λ), thus we have deg(λΓ) = deg(Λ). Both of these
polynomials are monic, so Λ | λΓ implies that Λ = λΓ,
which implies Λ(0) = 0, contradiction. Thus, deg(Γ) =
deg(Λ), so that Γ | Λ implies Γ = Λ (again because both
polynomials are monic). We can inductively repeat this
argument to show that Λ is the monic minimal linear
generator for any k > 1 as well.

Lemma 4 Suppose the sequence (a0, a1, . . . , a2t−1) has
monic minimal linear generator Λ(λ) with Λ(0) 6= 0 and
deg(Λ) = t, where Λ = −γ0 − γ1λ − · · · − γt−1λ

t−1 +
λt. Then the sequence (a2t−1, a2t−2, . . . , a0) has monic
minimal linear generator Λ

sr
= (1/γ0)(−1+γt−1λ+· · ·+

γ1λ
t−1 + γ0λ

t), called the (scaled) reciprocal polynomial
of Λ (see, e.g., [12, Section V]).

Lemma 5 Suppose the sequence (a0, a1, . . . , a2t−1) has
monic minimal linear generator Λ(λ) with Λ(0) 6= 0 and
deg(Λ) = t, where Λ = −γ0− γ1λ− · · · − γt−1λ

t−1 +λt.
If we introduce at most t errors into the sequence, with
the last error no later than entry t, or equivalently the
first error no earlier than entry t+1, then the erroneous
sequence cannot also have Λ as monic minimal linear
generator.

Proof. First, we consider the case of the last error
no later than entry t. Suppose that Λ also generated
the erroneous sequence. Let the last error be located at
entry k and denote the erroneous sequence by

(b0, b1, . . . , bk−1, ak, ak+1, . . . , at, . . . , a2t−1),
where bk−1 6= ak−1. Denote by H and H ′ the t × t
Hankel matrices generated by the first 2t − 1 entries of
the original and erroneous sequences, respectively, and
denote by ~x the vector (γ0, γ1, . . . , γt−1)

T . Then H~x =

H ′~x = (at, at+1, . . . , a2t−1)
T , so that (H −H ′)~x = ~0.

Note that row k of H −H ′ is (ak − bk, 0, 0, . . . , 0), so
that entry k of (H −H ′)~x is (ak−1 − bk−1)γ0 6= 0, con-
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Algorithm 4: Majority Rule Berlekamp/Massey

Input: (a0, . . . , a2T (2E+1)−1) + ~ε where (ai) is a
linearly recurrent sequence (of degree t ≤ T ) of
field elements, and ~ε is a vector of Hamming
weight e ≤ E. Denote this sequence as (bi).

Input: T an upper bound for t, the degree of the
monic minimal linear generator

Input: E an upper bound for the number of errors in
the above sequence

Output: (a0, . . . , a2T (2E+1)−1) the intended sequence
Output: Λ the monic minimal linear generator of the

intended sequence
begin

1 for i← 0, . . . , 2E do

Λi ← BM((b0+2Ti, . . . , b2T−1+2Ti))
2 L← [0, 1, . . . , 2E]; m← 0
3 for i ∈ L do

4 Li ← [ ]
5 for j ∈ L do

6 if Λi = Λj then Li ← Li ∪ {j};
L← L \ {j}

7 if Card(Li) > Card(Lm) then m← i

8 Λ← Λm

9 for i ∈ Lm do

10 ((c0, . . . , c2T (2E+1)−1), e) ← Sequence-

CleanUp(Λ, E, (b0, . . . , b2T (2E+1)−1), 2T i)
11 if e ≤ E then break

12 return (c0, . . . , c2T (2E+1)−1),Λ

tradiction. Thus, the erroneous sequence cannot have f
as monic minimal linear generator.
For the case of the first error no earlier than entry

t + 1, let the first error be located at entry k and con-
sider the reversed sequences (a2t−1, . . . , a0) and
(b2t−1, b2t−2, . . . , bk−1, ak−2, ak−3, . . . , at−1, . . . , a0),

noting by Lemma 4 that the former sequence has Λ
sr

as
monic minimal linear generator. The original erroneous
sequence has Λ as monic minimal linear generator if and
only if the reversed erroneous sequence has Λsr as monic
minimal linear generator, again by Lemma 4. We then
repeat the argument above to show that the reversed
erroneous sequence cannot have Λsr as monic minimal
linear generator. Therefore, the original erroneous se-
quence cannot have Λ as its monic minimal linear gen-
erator.

Corollary 1 Suppose the sequence (a0, a1, . . . , a2t−1) has
monic minimal linear generator Λ(λ) with Λ(0) 6= 0 and
deg(Λ) = t. Then the one-error sequence (a0, a1, . . .,
ak−2, bk−1, ak, . . ., a2t−1), bk−1 6= ak−1 cannot also
have monic minimal linear generator Λ.

As stated earlier, if exactly E + 1 of the Λi agree in
Step 1, then each of the E remaining blocks of 2t entries
must contain exactly one error. In this case, we can run
Algorithm 2 during Steps 10-11 in parallel, correcting
each erroneous block with the nearest clean block.
If more than E+1 of the Λi agree in Step 1, then there

may be an erroneous block of of 2t entries that falsely
yields the correct generator; call this a“deceptive block”.

This block must contain at least one error in both its
first t entries and its last t entries, by Lemma 5. In this
case, we show that Algorithm 2 must return e > E if it
is seeded in Step 10 with a deceptive block.

Theorem 4 If Algorithm 2 is called in Step 10 of Al-
gorithm 4 with a deceptive block, then Algorithm 2 will
return e > E.

Proof. For convenience, assume the deceptive block
is first, i.e., (b0, . . . , b2t−1). Suppose the last error in the
deceptive block is bk−1 6= ak−1, where t+1 ≤ k ≤ 2t. If
(b2t, b2t+1, . . . , bk+t−1) = (a2t, a2t+1, . . . , ak+t−1), then
there must be a (non-zero) discrepancy in Step 1 in Al-
gorithm 2 for i = k + t− 1 because bk−1 is the only er-
roneous value in the test of the linear recurrence, and is
multiplied by Λ(0) 6= 0. In this case, an “erroneous cor-
rection” will occur (i.e., Algorithm 2 will change bk+t−1

to b′k+t−1 6= ak+t−1).
If there is at least one error in entries b2t, b2t+1, . . . ,

bk+t−1, then it is possible for Algorithm 2 to make no
change before entry bk+t−1, in which case there was at
least one “deceptive error” in the second block. If Al-
gorithm 2 does make a correction before entry bk+t−1,
then it is not necessarily erroneous.

Denote by (c2t, c2t+1, . . . , ck+t−1) the output of Algo-
rithm 2 when run on entries b2t, b2t+1, . . . , bk+t−1 (whether
or not there is an error). Let cs be the last entry such
that cs 6= as; note that this must exist because bk−1 6=
ak−1, so that Algorithm 2 cannot return (c2t, c2t+1, . . . ,
ck+t−1) = (a2t, a2t+1, . . . , ak+t−1). Considering entries
bs+1, bs+2, . . . , bs+t, we can repeat the above arguments
to show that there will be at least one correction (erro-
neous or not) or deceptive error during the execution of
Algorithm 2.

Continuing this process, we see that after entry k,
there will be at least one correction or deceptive error
in every block of length t. At least two errors occurred
in the first block of length 2t, so there may be at most
E− 2 deceptive errors. At the (E+1)-st correction, the
first block of length 2t must have been deceptive.

To prove why we will see the (E + 1)-st correction,
note that in Step 1 of Algorithm 4, there must be a clean
block no later than the (E + 1)-st block. At this point,
we relax the assumption that the deceptive block is first.
The deceptive block must occur before the (E + 1)-st
block in order to be used for seeding in Step 10 of Algo-
rithm 4. To see the (E+1)-st correction in Algorithm 2,
we need at most 2t + t(E − 2) + t(E + 1) = t(2E + 1)
consecutive entries (including the seeded 2t block), but
we are guaranteed at least 2t(E+2) consecutive entries.
Thus, Algorithm 2 will return e > E.

It follows immediately from Theorem 4 that deceptive
blocks will be exposed until the first clean block is found
(Steps 9-11 of Algorithm 4), at which point all remaining
errors will be found and corrected.

Now suppose that T > t. If the first block of 2T en-
tries that yields Λ is clean, then the intended generator
Λ will be found in Step 8 of Algorithm 4 and all errors
will be detected and corrected thereafter. If the first
block of 2T entries that yields Λ is deceptive, then we
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look to the properties of the corresponding block of 2t
entries.
If entries 1, 2, . . . , 2t are clean, then there must be an

error before entry 2T , but the first non-zero discrepancy
after entry 2t, say at entry r > 2T , will cause Lr =
max{Lr−1, r − Lr−1} = max{t, r − t} > t by [23]. This
contradicts the deceptive 2T -block yielding Λ.
If the block of entries 1, 2, . . . , 2t is itself deceptive,

then we repeat the argument of Theorem 4, as we will
see at least one correction or deceptive error in every
block of length t, following entry 2t.
If the block of entries 1, 2, . . . , 2t is itself erroneous,

i.e., yields generator Γ 6= Λ, then we must have deg(Γ) ≤
t, else L2T > t, contradiction. If deg(Γ) = t′ < t, i.e., if
L2t = t′ < t, then there must be a degree jump before
entry 2T , say at entry r > 2t; at this jump, we will have
Lr = max{Lr−1, r−Lr−1} = r−Lr−1 = r−t′ > 2t−t′ >
t, again by [23], so in fact L2T > t, hence the deceptive
block of 2T entries cannot yield Λ, contradiction.
If deg(Γ) = t, then there must be a non-zero dis-

crepancy before entry 2T , say at entry r > 2t, else the
deceptive block yields Γ 6= Λ, contradiction. But then
Lr = max{Lr−1, r − Lr−1} = max{t, r − t} > t, which
again contradicts the deceptive 2T -block yielding Λ.
Therefore, even in the case of T > t, Algorithm 4 will

return the intended sequence and generator.

6. NUMERIC NOISE AND OUTLIERS
We now adopt the strategy of Majority Rule to ac-

count for outlier errors in an early-terminated numeric
version of the sparse polynomial interpolation algorithm
in [1], which is recalled in the algorithm that follows The-
orem 1. Here, we assume only upper bounds T ≥ t and
D ≥ d = deg(f); early termination follows from the al-
gorithm detailed in [18]: instead of executing the Berle-
kamp/Massey algorithm to determine t, we compute the
2-norm relative condition number of the leading princi-
pal submatrices of the Hankel matrix H = [ui+j−2]

2T
i,j=1,

where uk = f(ωk+1). Note that by [27], for any Hankel
matrix H̄, the reciprocal of ‖H̄−1‖2 is the distance from
H̄ to the nearest singular Hankel matrix.
In the numeric setting, we choose for ω a complex root

of unity, with prime order p > D. The algorithm also
works for interpolation of sparse Laurent polynomials,
in which case we choose p > D −Dlow, where Dlow is a
lower bound on the low degree of f . We implement noise
as a (randomly positive or negative) scaling factor on
a random floating-point number between 1 and 5 times
‖f‖2, which is added to each evaluation. Outliers simply
multiply a random position by 5. All computations are
done in double floating point precision.
As noted in Section 1 of [18], the leading principal sub-

matrices ofH are (with high probability) well-conditioned
up to and including dimension t; the (t + 1) × (t + 1)
leading principal submatrix will be ill-conditioned unless
substantial noise (and/or an outlier) interferes. Thus,
we set a threshold for ill-conditionedness, then obtain
an estimate t′ for t. We then determine Λ by obtain-
ing a least squares solution to a well-conditioned t′ × t′

Hankel system. (In the exact case, the coefficients of Λ
form the solution to the non-singular Hankel system.)

After finding the roots bj of Λ, we take advantage
of the fact that ω is a prime-order root of unity, by
comparing the arguments of ω and bj to determine ej
(modulo p, but there is a unique representative in the set
{0, 1, . . . , D} because p > D). Finally, we determine the
coefficients ci of f by obtaining a least squares solution
to a transposed Vandermonde system.

For Majority Rule to expose outliers, we require 2E+1
segments of 2T + 1 evaluations, where again we assume
there are e ≤ E outlier errors in the evaluations. As
suggested in Section 3 of [18], our implementation allows
the use of several roots of unity as (initial) evaluation
points in a single execution of the algorithm; in this case,
we set t′ to the maximum of all sparsity estimates.

In contrast to the symbolic case, a majority is not
guaranteed in the numeric case, because the numeric
algorithm can under- and even overestimate t due to
unlucky randomization and noise, respectively. Simi-
larly, wrong majorities may arise. In the cases where a
majority does not exist, segments with outliers are in-
distinguishable from faulty noisy ones, so the algorithm
returns FAIL if there is no majority for any root of unity.
A hypothetical example of Majority Rule with four roots
of unity and E = 1 (i.e., three segments per root) is
shown below.

Root Sparsity Estimates Majority Vote
ω1 5 5 7 5
ω2 ? 5 ? ?
ω3 4 6 5 ?
ω4 4 4 ? 4

Computed Sparsity max{5, 4} = 5

When substantial/unlucky noise does interfere, we still
may be able to recover some accurate information. For
example, given the 10-term Laurent polynomial f =
48x32 + 24x25 − 53x22 + 67x−1 − 69x−7 − 5x−10 −
63x−16−37x−28−25x−35+16x−43 with Dlow = −100,
D = 100, T = 15, a noise scaling factor of 10−7, ill-
conditionedness threshold of 103, and three random roots
of unity, a particular randomization (of random floating
point noise distribution and choice of roots of unity)
yields an interpolant f9 that has only nine terms and is
a poor fit to the noisy evaluations (compared to f it-
self). However, the nine exponents of f9 are found in
f , and ‖f9‖2 has a relative error (with respect to ‖f‖2,
ignoring the dropped monomial) of 0.036.

Another randomization yields an interpolant f10 that
has ten terms and is a slightly better fit to the noisy
data than f itself; in this case, ‖f10‖2 has a relative
error (with respect to ‖f‖2) on the order of 10−7. Yet
another randomization yields an interpolant f11 that has
eleven terms and is also a slightly better fit to the noisy
data than f itself, though a worse fit than f10. However,
‖f11‖2 has a smaller relative error (with respect to ‖f‖2,
ignoring the extra monomial) than ‖f10‖, which suggests
that the behavior of the noise is partially encoded in the
extra monomial of f11, where the coefficient has absolute
value on the order of 10−6.

7. FUTURE WORK
Our problem formulation, smoothing over incorrect

values during the process of sparse reconstruction, ap-
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plies to all such inverse problems, e.g., supersparse poly-
nomial interpolation [5] and [17, Section 2.1], computing
the sparsest shift [11, 6] and the supersparsest shift [8],
or the more difficult exact and numeric sparse and super-
sparse rational function recovery [15, 19]. Our methods
immediately apply to algorithms that are based on com-
puting a linear recurrence, such as the supersparse in-
terpolation algorithms in [17] and [5]. The former needs
no modification, and for the latter, one uses the major-
ity rule algorithm for the sparse recovery with errors of
the modular images f(x) mod (xp − 1), where p is cho-
sen sufficiently large (and random). The sparse interpo-
lation with errors is at ω = (xr mod (xp−1 + · · ·+ 1)),
where r is random for early termination. One may as-
sume that some polynomial residues f(ωi) mod (xp−1

+ · · · + 1) are faulty. The Chinese remaindering of the
term exponents with several p can be done by diversi-
fication [9]. The sparsest shift algorithms in [6] can be
modified similarly. When computing symbolic polyno-
mial values f(yi + z) with y and z variables one can
use Reed-Solomon error correction. Algorithms for the
supersparsest shift and sparse and supersparse rational
function recovery with outliers in the values are subjects
of current research.
As stated in the introduction, an important variant

is the hybrid symbolic-numeric algorithm for noisy se-
quences that also contain outlier errors. We have demon-
strated that our approach can be combined with the
Prony-GLL algorithms [7, 18], which in turn could be in-
corporated into the Zippel [30] variable-by-variable mul-
tivariate ZNIPR-algorithm for polynomials [15]. In ad-
dition, numeric Reed-Solomon decoding based on ap-
proximate polynomial GCD can be incorporated into
ZNIPR. That and the numeric properties of the spars-
est shift algorithm in the presence of noise and outliers
are subjects of papers in preparation. A sparse inter-
polation algorithm using blocking and the matrix Berle-
kamp/Massey algorithm is described in [17, Section 2.2],
which potentially has better error detection/noise reduc-
tion properties.
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Note added on August 29, 2012:

Some typographical errors have been corrected:

1. Section 1, first paragraph (changed“interpolations al-
gorithms” to “interpolation algorithms”)

2. Section 1, seventh paragraph (changed“Ben-Or/Tiwari’s”
to “Ben-Or’s/Tiwari’s”)

3. Section 4, second-to-last paragraph (changed“are error-
free” to “is error-free”)

4. Section 5, first sentence (changed “in a t of” to “in a
sequence of”)

5. Proof of Lemma 5, first paragraph (changed “with
bands given” to “generated”)

6. Section 7, first paragraph (changed“polynomials residues”
to “polynomial residues”)
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