
Supersparse Black Box Rational Function Interpolation*

Erich L. Kaltofen
Dept. of Mathematics, NCSU

Raleigh, North Carolina 27695-8205,USA
kaltofen@math.ncsu.edu www.kaltofen.us

Michael Nehring
Dept. of Mathematics, NCSU

Raleigh, North Carolina 27695-8205,USA
michaelnehring@yahoo.com

ABSTRACT
We present a method for interpolating a supersparse black-
box rational function with rational coefficients, for example,
a ratio of binomials or trinomials with very high degree.
We input a blackbox rational function, as well as an up-
per bound on the number of non-zero terms and an upper
bound on the degree. The result is found by interpolating
the rational function modulo a small prime p, and then ap-
plying an effective version of Dirichlet’s Theorem on primes
in an arithmetic progression progressively lift the result to
larger primes. Eventually we reach a prime number that is
larger than the inputted degree bound and we can recover
the original function exactly. In a variant, the initial prime
p is large, but the exponents of the terms are known modulo
larger and larger factors of p − 1.

The algorithm, as presented, is conjectured to be poly-
logarithmic in the degree, but exponential in the number of
terms. Therefore, it is very effective for rational functions
with a small number of non-zero terms, such as the ratio
of binomials, but it quickly becomes ineffective for a high
number of terms.

The algorithm is oblivious to whether the numerator and
denominator have a common factor. The algorithm will re-
cover the sparse form of the rational function, rather than
the reduced form, which could be dense. We have experi-
mentally tested the algorithm in the case of under 10 terms
in numerator and denominator combined and observed its
conjectured high efficiency.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms: algorithms, experimentation

Keywords: lacunary polynomials, Cauchy interpolation,
sparse solution vectors

∗
This research was supported in part by the National Science Foun-

dation under Grants CCF-0830347, CCF-0514585 and DMS-0532140.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.

1. INTRODUCTION
A supersparse (lacunary) polynomial g over the integers Z

in n variables with τ terms is represented as a sum (list) of
monomials g(x1, . . . , xn) =

Pτ
i=1 ci

Qn
j=1 x

ei,j

j where each
monomial is represented as a coefficient ci 6= 0 and the
term degree vector [. . . , ei,j , . . .]. The bit storage size, using
“dense” binary numbers for the ei,j , is O(

P

i log(|ci| + 2) +
P

i,j log(ei,j +2)), hence proportional to the logarithm of the

total degree deg(g) = maxi

P

j ei,j . Although several prob-
lems in polynomial algebra, such as greatest common divisor
and root finding in a finite field, are NP-hard with respect
to this compact size measure [26, 22], important other prob-
lems such as computing low degree factors and sparse roots
have polynomial time algorithms [3, 23, 16, 4, 8, 9].

Here we consider the problem of interpolating a fraction
of two supersparse polynomials f = g/h over Z. Again
we seek algorithms that have polynomial running time in
the supersparse size of the interpolant polynomials g and
h. Since the values of a supersparse polynomial at integer
points may have exponentially many bits in the size of the
polynomial, we shall assume that the values can be obtained
modulo any large prime p. That is, we have an algorithm
(“black box”) for evaluating f at any point modulo p. If
the denominator h evaluates to 0, the black box returns ∞.
This idea is illustrated below:

γ ∈ Zn
p , p

−−−−−−−−→

g, h ∈ Z[x1, . . . , xn]

f(γ) =
“ g

h
(γ) mod p

”

∈ Zp ∪ {∞}
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Note that a straight-line program representation for g/h [13]
provides such a black box. We further assume that we have
accurate (but not necessarily tight) bounds on the number
of terms, the degree, and the coefficients.

Dense rational function interpolation goes back to Cauchy.
Multivariate sparse rational function interpolation with al-
gorithms that are polynomial in the degrees and number
of variables and terms in g and h are presented in [13, 18,
21]. An important ingredient are Zippel’s or Ben-Or and
Tiwari’s sparse multivariate polynomial interpolation algo-
rithms (see, e.g., [17] and the references there). A variant of
Ben-Or and Tiwari’s polynomial interpolation modulo large
primes p, where p − 1 have only small prime factors and
hence one has a fast discrete logarithm [27], was given by
Kaltofen in 1988 (see [14, 15]). Already there we observed
that by Kronecker’s substitution the multivariate problem
reduces to the univariate problem (see Section 7.1 below).
In [5] the supersparse polynomial interpolation problem is
solved by Chinese remaindering the symmetric functions of

177

www.kaltofen.us

the term exponents modulo small primes without the need
of special primes.

Our algorithm consists of two major steps. The first step
is to recover the rational function modulo a small prime.
The second step is then to lift that rational function to pro-
gressively larger primes. The first step constitutes comput-
ing a sparse null space vector modulo a small prime of a
Vandermonde-like matrix. At this time, we can execute this
step efficiently only if there are a few terms. Unlike Cauchy
interpolation, the critical input of this algorithm is a bound
on the number of terms, not a bound on the degrees. If the
bound is sufficiently tight, then the algorithm will recover a
sparse form of the rational function (see Section 7.2).

A surprising property is that our algorithm recovers the
sparse form of the function f even if GCD(g, h) is non-trivial.
For instance, our algorithm can reconstruct the sparse frac-

tion representation (x2δ

− 1)/(x − 1) from a black box of
the polynomial

P

0≤i<2δ xi in polynomial time in δ. After

learning about our result, [10] considered the problem of the
sparsest polynomial multiple when the denominator of the
fractional representation of a polynomial can be dense.

Our methods are adaptable to supersparse vector rational
function recovery in the sense of [25], or computing a spars-
est shift for the supersparse rational function in the sense of
[6, 7], but we do not discuss those generalization here. We
will focus on the univariate case, as the multivariate case is
handled via Kronecker substitution.

Notation: For a prime p we have

xe ≡ x · x(e−1) mod (p−1) (mod xp − x), for e ≥ 1, (1)

which preserves the sparsity of a polynomial. For our evalu-
ations γ ∈ Zp we have γp = γ and we shall take the liberty to
omit xp−x from our polynomial congruences such as xp ≡ x
(mod p). Note that in (1) the exponent e mod (p−1) is rep-
resented in a residue system {1, . . . , p − 1}.

Outline of approach: Suppose f(x) = g(x)/h(x) is the su-
persparse fraction. Our algorithm chooses a relatively small
random prime p and constructs a sparse fraction modulo
xp − x by evaluating at γ ∈ Zp and computing a sparse null
space vector in the arising linear system

“

g(x) mod (xp − x)
”

`

γ
´

≡ f(γ)
“

h(x) mod (xp − x)
”

`

γ
´

,

(see Section 2). We then lift the exponents from one prime
p to the next prime p′ by ensuring that p′ − 1 is divisible
by p − 1 so that the new exponent candidates in (1) are
restricted to

1+((e−1) mod (p−1))+i(p−1), 0 ≤ i < (p′−1)/(p−1). (2)

(see Section 3). Such prime sequences exist due to effective
versions of Dirichlet’s Theorem on primes in an arithmetic
progression (see Section 3.1). Once the term exponents are
known, the rational coefficients are recovered by rational
vector recovery. Alternatively, we may reduce the range of
(2) to 2 choices by evaluating at powers of γ in the manner
of the Silver-Pohlig/Hellman discrete logarithm algorithm
(see Section 4).

2. COMPUTING A MODULAR IMAGE OF
THE SUPERSPARSE FRACTION

First, we compute the fraction modulo a small prime. In
Section 3 we enlarge that modulus.

2.1 A System of Linear Equations
Since f has a representation as a rational function, f(x) =

g(x)/h(x) let f be represented as follows:

f(x) =
“

Pd
i=0 aix

i+1
”

‹

“

Pd
i=0 bix

i+1
”

.

Note that the numerator and denominator are divisible by
x, which does not affect the sparsity. There may be further
common factors. The black box allows us to evaluate f at
any point and get the value modulo p. Modulo p, γp = γ,
so one only needs to concern one’s self with the exponents
from 1 to p−1 in the numerator and denominator before any
wrap-around occurs. Note that there is no constant term in
the numerator or denominator because we multiplied numer-
ator and denominator by x to remove the constant term, and
no other exponent maps to the constant term. This gives us
the following:

f(x) ≡
“

Pp−1
i=1 αix

i
”

‹

“

Pp−1
i=1 βix

i
”

(mod xp − x, p).

Clearing the denominators and subtracting the left side from
the right yields the following.

Pp−1
i=1 αix

i − f(x) ×
“

Pp−1
i=1 βix

i
”

≡ 0 (mod xp − x, p)

As in [21], for each evaluation of x = γ, γ ∈ 1, 2, . . . , p − 1,
this produces a linear equation. Indeed, even for values for
which the function is undefined there is a linear equation
for the denominator. The resulting system of equations has
the form A = [V | DW], where V and W are Vandermonde
matrices and D is a diagonal matrix. The matrix V will have
a row of zeros whenever the residue of evaluation causes the
function to be undefined. The matrix D has the values of
the function f along the diagonal, and a 1 where for rows
that correspond to a residue γ that makes f(γ) undefined.
The coefficient list of the rational function is a vector in
the null space of that matrix. Unfortunately, for any prime
p there are only p − 1 residues to work with and 2p − 2
unknowns. There are only p − 1 useful residues, since 0
provides no useful information because we know in advance
that the function will be undefined at 0. It is easy to see
that the resulting matrix has full rank and therefore the null
space has dimension p − 1. We wish to find a sparse vector
in that null space. Finding the sparsest vector in a linear
subspace is in general NP-hard [2], and we have observed no
obvious property in the resulting null space that would make
it much easier to find a sparse null space vector. It should
be noted however if g(x)/h(x) is a rational representation
of the given function, then so is x × g(x)/(x × h(x)), x2 ×
g(x)/(x2 × h(x)), and so forth. This means, assuming that
no unexpected wrap-around occurs, there will be p−1 sparse
null space vectors, where one vector is the same as the other,
except that the coefficients are shifted to the right and then
wrapped around appropriately. That means that the null
space contains many very sparse vectors and thus one can
hope that they will not be too difficult to find.

2.2 Finding a Sparse Vector
The problem of finding the sparsest null space vector for

any given matrix has been shown to be NP-hard. Due to the
nature of the matrix being investigated, it may be possible to
create an algorithm to find sparse vectors in the null space
by exploiting the structure of the matrix and null space.
However, we have not yet found such an algorithm.

The simplest exhaustive search technique is pick τ many
columns and guess that those columns correspond to the
non-zero coefficients. Then, we look in the null space to see

178

if there is a vector where all other entries are zero. If so, then
we have found a vector with the desired sparsity. If not, then
we have to pick a different set of τ columns. We do this until
we have searched all possible combinations. However, in
practice, this technique is not as fast the following technique.

The current strategy, which is effective for a small num-
ber of non-zero terms, is to guess new linear equations. We
currently have p − 1 equations and 2p − 2 unknowns. How-
ever, we are told that most of the coefficients are zero. A
coefficient being zero represents an additional linear equa-
tion. We are not told, however, which specific coefficients
are zero. Therefore, the strategy is to pick at least p − 1
coefficients at random and set them equal to zero. One may
have to pick more if any unexpected equation dependencies
occur. We pick enough coefficients that the dimension of
the resulting null space is precisely 1. If we only picked only
correct coefficients, then the null space vector will indeed
be our desired sparse null space vector. If, however, we set
coefficients equal to zero that are in fact non-zero, then the
resulting null space vector will be an incorrect dense vector.
We repeat this process until we find a vector whose den-
sity is no higher than the inputted bound. If we exhaust all
combinations, then we conclude the bound is incorrect and
return FAIL.

This process is exponential in the number of non-zero
terms. We can note that one can decrease the chances of
setting a non-zero coefficient to zero by picking a large p,
because the pool of zero coefficients will increase, but the
number of non-zero coefficients remains the same, thus de-
creasing the chances that we mistaken try to set a non-zero
coefficient to zero. However, increasing p will also increase
the computational cost of the algorithm.

At this point it should be noted that this process is more
likely to find the sparsest vector, as opposed to a less sparse
vector. The process forces certain coefficients to be zero,
and determines the remaining coefficients. If there is a very
sparse form, and a somewhat less sparse form, the process
is more likely to hit a non-zero coefficient of the less sparse
form, because it has more non-zero coefficients to hit.

Take for example the following function, mod 11, in the
following two forms:

x9 − 1

x − 1
=

x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

1
.

The first sparse form has only 4 non-zero terms, and the sec-
ond model has 10 non-zero terms. So, in randomly setting
coefficients to zero, the process is more likely to eliminate
a coefficient corresponding to one of the 10 non-zero terms
in the dense form than it is to eliminate a coefficient corre-
sponding to one of the 4 non-zero terms in the sparse form.
Therefore, this algorithm is unaware of whether the numer-
ator and denominator have a common factor, and it will
generally find the sparsest form before it finds other forms.

2.3 Uniqueness of the Sparsest Vector
One concern that this algorithm brings up is whether the

sparsest vector in the null space is the vector we desire. In
fact, this is not always the case. If g(x)/h(x) and g(x)/h(x)
are both rational functions in the null space of the given
matrix, then so is the following:

“

λg(x) + λ̄ḡ(x)
”.“

λh(x) + λ̄h̄(x)
”

, λ, λ̄ ∈ Z.

So, if there are two rational functions in the null space
that have the same monomials as support, then it would

be possible to eliminate one of those monomials by taking
a linear combination of the two rational functions, thus re-
sulting in a sparser function. Every rational function has a
sparsest representation over the rational numbers, and that
sparsest representation corresponds to a sparse representa-
tion modulo any given prime. If there is another vector in
the null space with the same support, then a linear combina-
tion would result in a sparser vector for that prime. Also, for
a finite number of primes, there is also the possibility that
two non-zero monomials will collide, either to a single mono-
mial, which is easy to deal with, or they may destructively
collide to zero, which we have to deal with probabilistically
later.

It is possible to construct examples where a given ratio-
nal function has a sparser representation modulo a given
prime. Here is one example to illustrate what happens. Take
the rational function (x34 + 4x)/(2x − 3x40) If we multiply
the numerator and denominator by x3, we get the same ra-
tional function in another form, (x37 + 4x4)/(2x4 − 3x43).
Now, we can look at both those rational functions modulo
7. Recall that modulo 7, the exponents wrap around modulo
6, so the functions are the following two functions, respec-
tively: (x4 + 4x)/(2x − 3x4) and (4x4 + x)/(2x4 − 3x). We
can now take the same linear combination of the numerator
and denominator and get another equivalent rational func-
tion

(x4 + 4x) − 4(4x4 + x)

(2x − 3x4) − 4(2x4 − 3x)
=

−15x4

14x − 11x4
≡

−x4

3x4
mod 7.

So, for certain rational functions, the sparsest represen-
tation over the integers may not be the sparsest modulo a
certain prime. While we do not currently have a proof of
this, it seems unlikely that there are many, if any, rational
functions that have a sparser representation modulo many
prime numbers. In any case, the valid sparse solution will
be among the sparse candidate vectors.

2.4 An Example
Let f(x) be a blackbox of the function

f(x) = (8x882704 − 3x6098)
‹

(5x1048576 + 1).
We want there to be no constant terms, so f(x) is the same
as the following rational function, except at the point x = 0,

(8x882705 − 3x6099)
‹

(5x1048577 + x).
We choose the prime p = 13, so all exponent wrap-around
will occur modulo 12. We now evaluate this box black at all
the residues modulo 13, except for 0.

x 1 2 3 4 5 6 7 8 9 10 11 12
f(x) 3 7 2 4 4 1 1 4 4 2 7 3

This data allows us to set up a system of linear equations,
which is represented by the null space of the following ma-
trix. The matrix
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 1 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10
2 4 8 3 6 12 11 9 5 10 7 1 12 11 9 5 10 7 1 2 4 8 3 6
3 9 1 3 9 1 3 9 1 3 9 1 7 8 11 7 8 11 7 8 11 7 8 11
4 3 12 9 10 1 4 3 12 9 10 1 10 1 4 3 12 9 10 1 4 3 12 9
5 12 8 1 5 12 8 1 5 12 8 1 6 4 7 9 6 4 7 9 6 4 7 9
6 10 8 9 2 12 7 3 5 4 11 1 7 3 5 4 11 1 6 10 8 9 2 12
7 10 5 9 11 12 6 3 8 4 2 1 6 3 8 4 2 1 7 10 5 9 11 12
8 12 5 1 8 12 5 1 8 12 5 1 7 4 6 9 7 4 6 9 7 4 6 9
9 3 1 9 3 1 9 3 1 9 3 1 3 1 9 3 1 9 3 1 9 3 1 9

10 9 12 3 4 1 10 9 12 3 4 1 6 8 2 7 5 11 6 8 2 7 5 11
11 4 5 3 7 12 2 9 8 10 6 1 1 11 4 5 3 7 12 2 9 8 10 6
12 1 12 1 12 1 12 1 12 1 12 1 3 10 3 10 3 10 3 10 3 10 3 10

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

has the form [V DW], where V and W are Vandermonde
and D is a diagonal matrix whose values are the negative of
the function values.

179

We wish to find a sparse vector in the null space of that
matrix. The matrix has currently column dimension 24 and
a 12 dimensional null space. The current strategy is to ran-
domly add equations where we set one coefficient equal to
zero. Since the rational function is sparse, we know that
we have a reasonable chance of only adding correct equa-
tions. For visual illustrative purposes, rather than adding
new rows to the matrix, we set the values in the correspond-
ing columns to zero in
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1 0 0 0 1 1 0 1 1 1 0 0 0 10 0 10 0 10 10 10 0 0 10
0 4 0 0 0 12 11 0 5 10 7 0 0 0 9 0 10 0 1 2 4 0 0 6
0 9 0 0 0 1 3 0 1 3 9 0 0 0 11 0 8 0 7 8 11 0 0 11
0 3 0 0 0 1 4 0 12 9 10 0 0 0 4 0 12 0 10 1 4 0 0 9
0 12 0 0 0 12 8 0 5 12 8 0 0 0 7 0 6 0 7 9 6 0 0 9
0 10 0 0 0 12 7 0 5 4 11 0 0 0 5 0 11 0 6 10 8 0 0 12
0 10 0 0 0 12 6 0 8 4 2 0 0 0 8 0 2 0 7 10 5 0 0 12
0 12 0 0 0 12 5 0 8 12 5 0 0 0 6 0 7 0 6 9 7 0 0 9
0 3 0 0 0 1 9 0 1 9 3 0 0 0 9 0 1 0 3 1 9 0 0 9
0 9 0 0 0 1 10 0 12 3 4 0 0 0 2 0 5 0 6 8 2 0 0 11
0 4 0 0 0 12 2 0 8 10 6 0 0 0 4 0 3 0 12 2 9 0 0 6
0 1 0 0 0 1 12 0 12 1 12 0 0 0 3 0 3 0 3 10 3 0 0 10

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Now the null space of that matrix, ignoring the trivial null
space vectors is the following:

[0 0 0 0 0 0 5 0 6 0 2 0 0 0 7 0 7 0 11 0 1 0 0 0]T .

The bold entries correspond to the entries that we forced to
be zero with our random equations. The vector has seven
non-zero entries, instead of the required four non-zero en-
tries. So we must try again with different columns, illus-
trated in the matrix below. Again, we look at the non-trivial
null space vector of the matrix. Now it is the following:

[0 0 0 0 0 8 0 0 0 0 0 10 0 5 0 0 0 0 0 0 0 1 0 0]T .

There are four non-zero entries in the new null space. That
is the desired sparsity, so we selected correct columns and
found a sparse vector. This vector corresponds to the ratio-
nal function f̂(x) = (8x6 + 10x12) / (5x2 + x10). The fol-
lowing relationship holds, where the exponents on the right
are mapped according to x13 ≡ x, and the coefficients are
taken modulo 13: f̂(x) ≡ f(x)× x10

‹

x10 mod (x13 − x, 13).
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 1 0 1 1 0 1 0 0 1 1 0 10 0 0 10 0 10 0 10 10 0 0

0 0 8 0 6 12 0 9 0 0 7 1 0 11 0 0 10 0 1 0 4 8 0 0

0 0 1 0 9 1 0 9 0 0 9 1 0 8 0 0 8 0 7 0 11 7 0 0

0 0 12 0 10 1 0 3 0 0 10 1 0 1 0 0 12 0 10 0 4 3 0 0

0 0 8 0 5 12 0 1 0 0 8 1 0 4 0 0 6 0 7 0 6 4 0 0

0 0 8 0 2 12 0 3 0 0 11 1 0 3 0 0 11 0 6 0 8 9 0 0

0 0 5 0 11 12 0 3 0 0 2 1 0 3 0 0 2 0 7 0 5 9 0 0

0 0 5 0 8 12 0 1 0 0 5 1 0 4 0 0 7 0 6 0 7 4 0 0

0 0 1 0 3 1 0 3 0 0 3 1 0 1 0 0 1 0 3 0 9 3 0 0

0 0 12 0 4 1 0 9 0 0 4 1 0 8 0 0 5 0 6 0 2 7 0 0

0 0 5 0 7 12 0 9 0 0 6 1 0 11 0 0 3 0 12 0 9 8 0 0

0 0 12 0 12 1 0 1 0 0 12 1 0 10 0 0 3 0 3 0 3 10 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3. LIFTING THE MODULAR IMAGE

3.1 Dirichlet’s Theorem
Dirichlet’s Theorem on Arithmetic Progressions states that

for relatively prime numbers a and n, there are infinitely
many prime numbers in the Arithmetic Progression a + λn,
λ ∈ Z≥0. In the lifting step that follows, we will need a se-
quence of primes of the form p1, p2, p3, . . ., pk, where pi − 1
divides pi+1−1. That is, pi+1 = ri(pi−1)+1. Such a prime
is guaranteed to exist by Dirichlet’s theorem, since pi−1 and
1 have no common factors. Since this particular sequence of
primes will prove to be inconsequential in the final version
of the algorithm, we will not discuss the distribution of such
primes (see Section 4.1 instead). However, we will present
a quick example, starting with 13, the prime we used in our
example rational function.

i 1 2 3 4 5 6 7
pi 13 37 73 433 1297 2593 10369

pi+1 37 73 433 1297 2593 10369 72577
ri 3 2 6 3 2 4 7

Digression: Our sequence construction above leads to the
following, possibly new, number theoretic function: define
κp(n) as the minimum over all prime sequences starting at
p and ending above n of the maximum of all multipliers in
each sequence. For instance, we have the following minimal
multipliers.

n 210 220 240 280 2160 2320 2640 21280

κ2(n) 4 5 15 16 49 53 132 224

3.2 Lifting to Larger Primes – The Easy Way
Assume that we know the rational function modulo a

small prime p1. We construct a sequence of primes {p1, p2,
p3, . . ., pk} such that (pi−1) divides (pi+1−1) for 1 ≤ i ≤
k−1 and pk is larger than the upper bound on the degree.
Furthermore, define ri = (pi+1−1)/(pi−1). Such a sequence
can be constructed according to Dirichlet’s Theorem.

As above, we remember that xp ≡ x mod xp − x. Specifi-
cally, if we know the rational function mod pi, we know the
exponents of the terms modulo pi−1. Suppose, for example,
that one exponent is congruent to m mod (pi − 1). Since
pi −1 divides pi+1−1, that is pi+1−1 = ri(pi −1), we know
that there are precisely ri possibilities for each exponent
modulo pi+1 − 1. In our case, those possibilities are

m, m + (pi − 1), m + 2(pi − 1), . . . , m + (ri − 1)(pi − 1). (3)

This means if there are τi known exponents modulo xpi −x,
then there are τi · ri unknown exponents modulo xpi+1 − x.
At this point we know that the coefficients of all other terms
must be zero. Therefore, as above, we can construct a sys-
tem of linear equations, but this time we have only τi · ri

many unknowns, but up to pi+1 equations. Let {α1, . . . , αd1}
be the computed list of possible numerator exponents mod-
ulo xpi+1−x and {β1, . . . , βd2} be the list of computed expo-
nents of possible denominator exponents modulo xpi+1 − x.
Then, the following equation holds:
a1x

α1 + a2x
α2 + · · · + ad1xαd1

− f(x)(b1x
β1 + b2x

β2 + · · · + bd2xβd2) ≡ 0 (mod pi+1).
For every value of γ ∈ Zpi+1 this yields of a linear equation
with unknowns {a1, . . ., ad1 , b1, . . ., bd2}. It should be noted
at this point that not all pi+1 equations are needed to find
the null space vector.

We can bound the number of new equations by proceeding
as in [21, Section 4.1]. Assume that g(x)/h(x) and g(x)/h(x)
are two different rational functions whose coefficient vectors
lie in the null space of the matrix. Then g(x)h(x)−g(x)h(x)
evaluates to zero for every residue that we used in build-
ing the null space. That is to say that vector representing
g(x)h(x) − g(x)h(x) is in the null space of a Vandermonde-
like matrix, with the difference being that we only consider a
limited number of powers of x, specifically, those that could
occur in g(x)h(x), of which there are at most d1d2 many.
Therefore, it is possible that picking two separate residues
will not generate a unique row in the Vandermonde-like ma-
trix. For example, if the only powers we are considering
are x2 and x10 modulo 13, then the residues 4 and 9 would
both generate the row [3, 9]. However, this Vandermonde-
like matrix is a submatrix of the full Vandermonde matrix,
which is non-singular, and thus by adding sufficient rows
(corresponding to residues), we can also insure that our

180

Vandermonde-like matrix is non-singular. If γ is a primi-
tive root of unity modulo pi+1, then picking the residues γ,
γ2, γ3, . . . will ensure that no row is repeated until all pos-
sible rows have been exhausted. Once we have d1d2 many
unique rows, then the Vandermonde-like matrix will have
as many rows as columns, and will be non-singular. Since
g(x)h(x)−g(x)h(x) will lie in the null space of a non-singular
matrix, that indicates that g(x)h(x) − g(x)h(x) = 0, and
therefore g(x)/h(x) = g(x)/h(x) up to a common factor in
the numerator and denominator. As we see in the follow-
ing example, having a common factor in the numerator and
denominator is not bad, and in fact is expected and can be
dealt with.

3.3 An Example For the Lifting Step
We will return to our previous example. Recall, we have

a blackbox for the function

f(x) = (8x882704 − 3x6098)/(5x1048576 + 1).

In the initial step, we recovered this function as

f̂(x) = (8x6 + 10x12)/(5x2 + x10).

And we noted the following equality, where the exponents
on the right are mapped according to x13 = x, and the co-
efficients are taken mod 13, f̂(x) ≡ f(x) × x10/x10 mod 13.
Note that 13−1 divides 37−1 and that (37−1)/(13−1) = 3.
The exponent wrap-around occurs modulo 12. In our de-
sired representation modulo 37, the exponent wrap-around
will be modulo 36. The numerator exponents recovered from
the first step are 6 and 12, and the denominator exponents
are 2 and 10.
Numerator exponent pool: {6, 6+12, 6+24, 12, 12+12, 12+
24} = {6, 18, 30, 12, 24, 36}.
Denominator exponent pool: {2, 2+12, 2+24, 10, 10+12, 10+
24} = {2, 14, 26, 10, 22, 34}.
The remaining 36 − 6 = 30 coefficients corresponding to
other powers are known to be zero. Therefore, we essen-
tially already have 60 linear equations, since we know that
60 coefficients are zero. Furthermore, we can garner 36 ad-
ditional linear equations by evaluating the black box. Since
there are only 72 unknowns, we will be able to determine
the desired null space vector. For simplicity we will set up
a system with only 12 unknowns corresponding to the 12
possible non-zero coefficients listed above. We now sample
our blackbox to get some linear equations, as represented by
the matrix below:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 1 1 1 1 30 30 30 30 30 30
27 26 36 10 11 1 1 34 26 33 10 7
26 10 1 26 10 1 31 2 14 20 29 15
26 10 1 26 10 1 10 16 26 12 1 9
11 10 36 26 27 1 8 17 6 22 23 35
36 1 36 1 36 1 8 8 8 8 8 8
26 10 1 26 10 1 28 4 21 3 25 30
36 1 36 1 36 1 18 32 18 32 18 32
10 26 1 10 26 1 35 8 22 23 17 6
1 1 1 1 1 1 7 34 7 34 7 34
1 1 1 1 1 1 12 9 12 9 12 9

10 26 1 10 26 1 12 1 16 26 9 10
x6 x12 x18 x24 x30 x36 x2 x10 x14 x22 x26 x34

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(The final row labels the columns.)
We now look at the null space of that matrix:

[0 29 9 0 0 0 1 0 0 0 0 15]T ,
[9 0 0 0 0 29 0 0 0 15 1 0]T ,
[0 0 0 29 9 0 0 15 1 0 0 0]T .

There are 3 vectors, and each vector is the same as the

other, up to wrap-around. This is expected, since the vectors
correspond to the following rational functions modulo 37
(with exponents modulo 36).

29x12 + 9x18

x2 + 15x34
,
9x6 + 29x36

15x22 + x26
,
29x24 + 9x30

15x10 + x14

Note that each rational function is equal to each other ra-

tional function up to being multiplied by x12

x12 or x24

x24 , with
exponents wrapped around modulo 36. Any of those 3 vec-
tors can be lifted.

3.4 Controlling Wrap-Around
Up to this point we have taken the direct approach to

interpolating rational functions modulo a prime. However,
this gives us little control of how the exponent wrap-around
occurs. Indeed, it must always occur modulo one less than a
prime. This can make complexity analysis on the lifting step
difficult, because it is uncertain where the next prime will
land. Also, it leaves us more vulnerable to destructive wrap-
around. For example, the rational function (xN −x)/(x−1)
evaluates to zero at every point modulo the first 50 primes.
Here N = 1 + lcm(2− 1, 3− 1, 5− 1, 7− 1, 11− 1, . . . , 223−
1, 227−1, 229−1). Therefore, since each p−1 divides N for
the first 50 primes, xN will map to x for the first 50 primes
and cancel with the −x term, giving us the false impression
that the rational function is zero. The chance of such de-
structive wrap-around is lowered if we do not limit ourselves
to wrap-around modulo a prime minus one. Indeed, N is a
27 decimal digit number and has destructive wrap-around
for all wrap-around modulo p − 1 for p − 1 ≤ 228. If we
could make our wrap-around occur modulo any n, where n
is an integer, the same N would have to be 97 digits long to
have destructive wrap-around modulo all n ≤ 228.

Suppose we wish the wrap-around to occur modulo n,
where n is any integer. The first step is to compute a prime
of the form p = kn + 1, which always exists due to Dirich-
let’s Theorem. Now, instead of interpolating f(x) mod p, we
interpolate f(xk) mod p. Since k divides p − 1, f(xk) mod
xp − x will map every exponent to a multiple of k, and have
wrap-around modulo kn. We recover f(xk) as outlined ear-
lier and divide each exponent by k and have the original
function, but with the wrap-around occurring modulo n.

This can be briefly illustrated using our previous exam-
ple function, (8x882705−3x6099)/(5x1048577 +x). Suppose we
want to know the exponents of rational function modulo 10.
We first find a prime of the form p = 10k+1. One such prime
is 31 = 3 · 10+1. Now, we know the following must be true:
f(x3) = (8x3×882705 − 3x3×6099)/(5x3×1048577 + x3×1). We
have a black box of f(x3). We simply evaluate at the cube of
each residue. Thus, we see that f(x3) is equivalent to the fol-
lowing, modulo 31: f(x3) ≡ (8x15+28x27)/(5x21+x3). Note
that the coefficients are taken modulo 31 and the exponent
wrap-around occurs modulo 30. We divide each of the expo-
nents by 3 to get back f(x): f(x) ≡ (8x5 +28x9)/(5x7 +x).
And indeed we see that the exponents match modulo 10.
This technique can be used both in the initial step, as il-
lustrated by example here, or in the lifting step, as we will
illustrate next.

4. SILVER-POHLIG/HELLMAN LIFTING
We now discuss how to reduce the number of candidate

exponents in each lifting step (3) by adapting the powering
technique of the Pohlig and Hellman [27] discrete logarithm

181

algorithm, whose independent discovery they also attribute
to Roland Silver (and Richard Schroeppel and H. Block).

4.1 Dirichlet’s Theorem Revisited
Dirichlet’s Theorem on Arithmetic Progressions states that

for relatively prime numbers a and n, there are infinitely
many prime numbers in the Arithmetic Progression a + λn,
λ = 1, 2, . . . In our algorithm we are interested in prime
numbers pj such that 2j(p0 − 1) divides pj − 1, where p0 is
the initial prime that we picked. That is, we want primes of
the form pj = mj 2j(p0 − 1) + 1. Since 1 and n = 2j(p0 − 1)
are relatively prime, Dirichlet’s Theorem guarantees the ex-
istence of such prime numbers. Furthermore, we know there
is a polynomial bound on the first such prime. Specifi-
cally, pj = O(nL) for some Linnik’s constant L (= 5.5)
(smaller bounds [24] exclude a zero-density set of multipliers
n) or, assuming the Generalized Riemann Hypothesis holds,
pj = O(ϕ(n)2(ln n)2) where ϕ is Euler’s totient function
[12]. Heath-Brown [11] had stated earlier that the conjec-
ture L = 2 “may presumably be reduced to ≪ n(log n)2.”
Note that the later conjecture, as well as similar others,
are asymptotic and do not provide effective estimates for
the big-O constant implied by ≪. Since primality testing
is computationally inexpensive, and because in practice the
first prime generally occurs early in the sequence, finding
such sequences of primes is feasible.

For p0 − 1 = 12 we can have the following sequence:

j 0 1 2 3 4 5 6 7
pj − 1 is div. by 12 24 48 96 192 384 768 1536

pj 13 73 97 97 193 769 769 7681
mj 1 3 2 1 1 2 1 5

The reader may have also already observed that one can pick
a single prime number, the last prime in the sequence, and
simply change the multipliers, as shown below:

j 0 1 2 3 4 5 6 7
pj − 1 is div. by 12 24 48 96 192 384 768 1536

pj 7681 7681 7681 7681 7681 7681 7681 7681
mj 640 320 160 80 40 20 10 5

The latter is useful when a large number of evaluation points
γ or a large modulus are needed at the start. In the single
prime case, p0 need not be a prime number.

4.2 SPH-Lifting to Larger Primes
Assume that we know the rational function modulo a

small prime p0. We construct a sequence of primes {p0, p1,
p2, ..., pk} such that 2j(p0 − 1) divides pj − 1 for 1 ≤ j ≤ k
and 2k(p0 − 1) is larger than the upper bound on the de-
gree. Such a sequence can be constructed and will likely not
have excessively large primes (see the above Section 4.1).
We write pj = mj2

j(p0 − 1) + 1. Note m0 = 1.
In the first step of the algorithm, we find the supersparse

representation of the function modulo xp0 − x, p0. This
means we know the exponents modulo p0 − 1 since xp0 eval-
uates the same as x modulo p0. In this section, we will
compute the exponents modulo 2(p0 − 1), 22(p0 − 1), . . .,
2k(p0−1). Since 2k(p0−1) is then larger than degree bound,
we will actually know the exponents.

Suppose, at this point, that we know the exponents of the
non-zero terms modulo 2j−1(p0 − 1) where j is between 1
and k. The case j = 1 is the initial step of the algorithm.
We now wish to determine the exponents of the non-zero
terms modulo 2j(p0 − 1).

Recall that f was represented as f(x) =
Pd+1

η=1 aηxη
‹

Pd+1
η=1 bηxη. Now, consider evaluating f at xmj . Then we

get f(xmj) =
Pd+1

η=1 aηxmjη
‹

Pd+1
η=1 bηxmjη. Let ηj−1 =

η mod(2j−1(p0 − 1)) in the residue system {1, ..., (pj−1 −
1)/mj−1}, where (pj−1 − 1)/mj−1 = 2j−1(p0 − 1), and let
ζj = (mjη) mod (pj − 1) in the residue system {1, . . . , pj −
1} (see (1)). Since mj divides pj − 1, all ζj are divisible by
mj . Furthermore ηj = ζj/mj = η mod (2j(p0 − 1)), where
(pj − 1)/mj = 2j(p0 − 1), and either ηj = ηj−1 or ηj =
ηj−1 + 2j−1(p0 − 1).

Now, we wish to exploit our knowledge of the term expo-
nents modulo 2j−1(p0−1) to help us compute the exponents
modulo 2j(p0 −1). If xe, e ∈ {1, 2, . . . , 2j−1(p0 −1)−1} has
coefficient zero modulo 2j−1(p0 − 1), then we know both xe

and xe+2j−1(p0−1) have coefficient zero modulo 2j(p0 − 1).
We are temporally ignoring the case where those two terms
have coefficients that sum to zero. Similarly, suppose we
have a complete set of residues of the exponents for the non-
zero terms modulo 2j−1(p0−1), say {e1, e2, . . . , eτ}, then we
know the only possible terms with non-zero coefficients will
have exponents {e1, e2, . . . , eτ} ∪ {e1 + 2j−1(p0 − 1), e2 +
2j−1(p0 − 1), . . . , eτ + 2j−1(p0 − 1)} modulo 2j(p0 − 1).

When we set up our new linear equation modulo pj , we
know in advance that most of the coefficients are going to
be zero. We have at most 2τ possible terms that are going
to be non-zero, but up to (pj − 1)/mj = 2j(p0 − 1) equa-
tions. Therefore, the number of equations will far exceed the
number of unknowns, and our system will likely have fullest
possible rank.

With all that said, we can now formalize what we said into

a system of linear equations. Let {e
[num]
1 , e

[num]
2 , . . . , e

[num]

τ [num]}
be the exponents of the non-zero terms of the numerator

modulo 2j−1(p0 − 1). Similarly, let {e
[den]
1 , e

[den]
2 , . . . , e

[den]

τ [den]}
be the denominator. That simply says the following.

f(xmj−1) ≡

Pτ [num]

i=1 αix
mj−1e

[num]
i

Pτ [den]

i=1 βixmj−1e
[den]
i

mod (xpj−1 − x, pj−1).

Lifting the prime to pj and the exponents to 2j(p0−1) yields
the following mod(xpj − x, pj):

f(xmj)≡

Pτ [num]

i=1 α̂ix
mje

[num]
i +α̃ix

mj(e
[num]
i

+2j−1(p0−1))

Pτ [den]

i=1 β̂ixmje
[den]
i +β̃ixmj(e

[den]
i

+2j−1(p0−1))
(4)

We also note α̂i+α̃i = αi and β̂i+β̃i = βi if the αi’s and βi’s
are known as integers or if we use a single larger modulus
(see Section 6). Clearing the denominators and evaluating at

various residues will create linear equations in α̂i, α̃i, β̂i, and
β̃i. Note that multiplying both numerator and denomina-

tor with xmj2j−1(p0−1) = x(pj−1)/2 gives a second, possibly
linearly independent solution coefficient vector to (4).

We will now briefly address that possibility of destruc-
tive wrap-around. For example, consider the polynomial
x80 − 3x4 − x2. If this polynomial is looked at modulo 7,
we observe that the exponent wrap-around occurs modulo
6, so the polynomial evaluates like x80 mod 6 − 3x4 mod 6 −
x2 mod 6 = x2 − 3x4 − x2 = −3x4. So, it is possible for de-
structive wrap-around to occur, and that would make our
rational function appear even sparser than it is. Further-
more, when we attempt to lift, we will fail, because we as-
sume that the coefficients corresponding to x80 and x2 are
both zero, because the two coefficients canceled each other
out modulo 6. The bad news is that we know of no elegant

182

solution to fix this. The good news is that this can happen
for only a small finite number of primes, so if destructive
wrap-around causes the lifting step to fail, we can give up
and try with a different initial prime and it will not take
long until we have exhausted all primes for which destruc-
tive wrap-around occurs.

5. THE ALGORITHM
The reader may note at this point that we likely will never,

by lifting alone, recover the actual original function, but
rather an alternative representation thereof. That is be-
cause the lifting step cannot tell whether the numerator and
denominator were both multiplied by a power of x. Also,
the coefficients are taken modulo a prime, and may be mul-
tiplied by a constant. Furthermore, nothing will cause the
exponents to match up exactly, but rather modulo the fi-
nal wrap-around. However, once we have reached the de-
gree bound and know we can stop lifting. The coefficients
can easily be recovered using rational vector reconstruction
[20, Section 4]. If we lift to a wrap-around that is at least
twice the degree bound, which is computationally inexpen-
sive since it is only one further lifting step, then we can easily
compute an exponent shift such that all the exponents after
shifting fall below the degree bound. If there are multiple
such shifts, then one can sample the trial function and the
blackbox at random points and compare. The function that
corresponds to the blackbox is correct.

Outline of Algorithm

Input A blackbox of a supersparse rational function f ∈
Q(x), an upper bound on the number of non-zero co-
efficients τ , and an upper bound on the degree d, and
an upper bound on the integer coefficient lengths.

Output A supersparse representation of the rational func-
tion or FAIL. The algorithm can fail in several ways.
The moduli choices may be unlucky, say they cause de-
structive wrap-around or sparser image fractions. Or
the input bounds for degree and sparsity may be too
low. Those causes are not distinguishable.

ssri1 Compute a prime p0 such that p0 > 3τ .
ssri2 Compute a list of primes p0, p1, . . . , pk such that pj =

mj2
j(p0 − 1) + 1 and 2k(p0 − 1) > 2d.

ssri3 Construct a (p0 − 1) × 2(p0 − 1) matrix A, where the
ith row is [1, i, i2, ..., ip0−1, −f(i), −if(i), −i2f(i),
..., −ip0−1f(i)] mod p0.
Do until break

ssri4 Select at least p0 coefficients and set them to zero.
That is, add a row of the form [0, 0, ..., 0, 1, 0, ..., 0],
where the 1 corresponds to the coefficient we wish to
set to zero.

ssri5 Compute the nullspace of the above matrix mod p0.
ssri6 If the number of non-zero entries in a null space vec-

tor is no more than τ , record the vector and break
from do loop.

ssri7 Else if there is more than one null space vector, re-
move at least one more column and go to SSRI5.

ssri8 Else if all possible combination of columns have been
attempted, return FAIL.

End do

For j from 1 to k − 1 do

Let v[num] = {e
[num]
1 , e

[num]
2 , . . . , e

[num]
τ[num]

} and v[den] =

{e
[den]
1 , e

[den]
2 , . . . , e

[den]
τ[den]

} be lists containing the expo-
nents of the non-zero terms of the null space vector

modulo 2j−1(p0−1) of the numerator and denomina-
tor, respectively, that were computed in the previous
step.

ssri9 Let V [num] = {e, e + 2j−1(p0 − 1)|e ∈ v[num]}. Let

V [den] be computed similarly. (Note that V [num] and

V [den] represent the list of possible exponents mod
2j(p0 − 1).)

ssri10 Select a list of at least |V [num]| + |V [den]| random

residues i mod pj+1 and store in M , where |V [num]|

represents the number of elements in the list V [num].
Do until break

ssri11 Construct the |M | × (|V [num]| + |V [den]|) matrix A

where the row for residue i in M is given by [imjV
[n]
1 ,

imjV
[n]
2 , ..., −f(imj)imjV

[d]
1 , −f(imj)imjV

[d]
2 , ...] mod

pj .
ssri12 Compute the null space of A mod p in reduced col-

umn echelon form.
ssri13 If the null space has dimensions greater than 2, add

more residues to M and thus more rows to A and
go to SSRI12.

ssri14 If the null space has dimension 2, select a null space
vector at random and break.

ssri15 If the null space has dimension less than 2, restart
algorithm with new initial vector or prime. If all
possible starting vectors have been exhausted, re-
turn FAIL.

End do until

ssri16 Record the exponents from the null space vector in
v[num] and v[den]. These will be the exponents of the
function mod pj+1.

End do

ssri17 Use rational vector recovery to recover the coeffi-
cients of the rational function. Multiply the numer-
ator and denominator by the same power of x so that
all exponents are less than the degree bound. (Recall
that 2k(p0 − 1) > 2d.) If no such power exists, return
DEGREE BOUND TOO SMALL. Otherwise, return
the rational function. End of Algorithm.

The algorithm inputs bounds on both the number of non-
zero terms and the degree. Due to the nature of the linear
system, it is of only moderate advantage to have separate
degree bounds on the numerator and denominator, because
both the numerator and denominator are lifted at every step.
However, having separate bounds for the number of non-zero
terms in the numerator and denominator can lead to better
column elimination strategies in the initial step.

6. COMPLEXITY ANALYSIS
We now attempt to give some plausible reasons that the

algorithm can be implemented to work in random polyno-
mial time for a fixed τ , the bound for the sum of the number
of terms in a sparsest solution g/h ∈ Q(x), g, h ∈ Z[x]. We
may assume, as before, that both g and h have a factor x.

We do not take into consideration several of the heuristic
improvements discussed before, but wish to show that the
algorithm can be modified to produce a correct result for
fixed τ . We will work modulo a single large prime p =
µq2l + 1, where q is a randomly chosen small prime that
needs to have certain properties for the analysis to work, l
is sufficiently large to cover the degree bounds, and µ is the
smallest multiplier for the arithmetic progression 1 + λ q2l,

183

λ = 1, 2, . . . We shall assume that a µ can be found (see
Section 4.1). It needs not be small.

The algorithm, once q and l are chosen, computes the
coefficients of a sparsest pair ḡj , h̄j ∈ Zp[x] in terms of the
number of nonzero coefficients of the linear system

(gh̄j−hḡj)(x
mj) ≡ 0 mod (xp−x, p), mj = µ2l−j , (5)

for j = 0, ..., l. Again, we may assume that ḡj and h̄j

have a factor x. The terms xe+1 in g and h (5) map to

x xmje mod (p−1) = x x(e mod q)µ2l−j

. We shall make the fol-
lowing two sparsity assumptions:
Sp1 q has been sampled so that the term exponents in g

and the term exponents in h map to distinct residues
modulo q with high probability. For that a random q
with O(τ2 log(deg g+deg h)) suffices: q must not divide
the products of differences of the term degrees of the
numerator and denominator (cf. [19, Lemma 4.3]).

Sp2 the image of g and h forms a sparsest solution to (5)
for all j. At this moment we have no proof that the
latter is true with high probability (see Section 2.3).

We shall perform the interpolation in Steps ssri3 and ssri-
13 above at points γη where γ is a primitive root modulo
p and η ranges 0 ≤ η < 2τ2. Primitive roots are abundant
as ϕ(n) = Ω(n/ ln ln n) and if µ is small can be computed
effectively as p − 1 is smooth. Since (gh̄j − hḡj)(x

mj) mod
(xp − x) has no more than 2τ2 terms, (gh̄j −hḡj)(γ

ηmj) = 0
for all η must imply (5) for ḡj , h̄j by the argument in [21,
Section 4.1], as the term evaluations in (5) remain distinct
for the primitive root and the corresponding Vandermonde
coefficient matrix is of full rank.

In Step ssri3 our algorithm tests all sparse exponent vec-
tors (modulo q times m0) for ḡ0(x

m0) and h̄0(x
m0). For a

sparsest solution, the vector is unique (up to a scalar multi-
ple) by the argument in Section 2.3. Two linearly indepen-
dent solutions for the same exponent choice can produce a
sparser solution via linear combination.

A similar argument works (for some f) for all j > 0 in
Step ssri13 above. There are two, possibly linearly in-
dependent, sparsest solutions, ḡj , h̄j and x(p−1)/(2mj)ḡj ,
x(p−1)/(2mj)h̄j for (5). Note that shifting the second solu-

tion by multiplying again by x(p−1)/(2mj) results in the first
since x xp−1 ≡ x. If our assumptions (Sp1) and (Sp2) hold,
there is no sparser solution and lifting the sparsest solution
corresponding to g and h will lead the sparsest solutions
with exactly one of α̂i and α̃i and exactly one of β̂i and β̃i

in (4) equal to 0 for all i. There are still 2τ [num]+τ [den]

many
candidate interpolants, each of which we will test. Assume

now that there is a third such sparsest interpolant ¯̄gj ,
¯̄hj at

all γη. If the coefficient vector of ¯̄gj(x
mj2j

), ¯̄hj(x
mj2j

) is not
the coefficient vector (or a scalar multiple) of ḡ0, h̄0 then a
sparser vector can be constructed for j = 0. Otherwise, in
the two solutions

(ḡj − ¯̄gj)(x
mj2j

), (h̄j −
¯̄hj)(x

mj2j

)

(x(p−1)/(2mj)ḡj − ¯̄gj)(x
mj2j

), (x(p−1)/(2mj)h̄j −
¯̄hj)(x

mj2j

)

certain coefficients cancel to 0. In fact, if τ [num] + τ [den]

is an odd integer, one of the two solutions must have fewer
non-zero terms, in contradiction to assumption (Sp2) above.

We add that the exact integer coefficients can be recovered
for each j from their residues modulo p and false interpolants
may be eliminated by virtue of having large recovered integer
coefficients.

7. OBSERVATIONS AND EXPERIMENTS

7.1 Multiple Variables
The algorithm as presented works only for the single vari-

able case. However, a simple variable substitution due to
Kronecker can be applied to make this algorithm work in
multiple variables. Suppose there are n variables, x1, ..., xn

and d is a bound on the degree of all individual variables.

Then we can apply the substitutions xi = x(d+1)i−1

, i = 1,
..., n. This means that a general monomial is mapped as fol-
lows: xe1

1 · · ·xen
n = xE with E = e1 +(d+1)e2 + · · ·+en(d+

1)n−1. Because d is an upper bound on the degree, there
is no chance that two multivariate monomials get mapped
to the same single variable monomial. Furthermore, since
the algorithm is conjectured to be polylogarithmic in the
degree, then it would become polynomial in the number of
variables.

7.2 Some Experiments
Both algorithms were implemented in Maple 12 and tested

on a MacPro with 16 cores (Intel Xeon 2.67GHz) with 32GB
of real memory on a Nehalem memory bus running Linux
version Ubuntu 2.6.31-22.70 (Ubuntu). The times given in
the table are in seconds. The first column is the number
of non-zero terms in the numerator and in the denominator,
and the first row is the degree of the numerator and denomi-
nator. The table below shows the time it took to recover the
random rational function with random integer coefficients in
the range −5, . . . , 5 and includes the garbage collection cost.

210 220 230 240 250 260 270 2100

3 3.6 4.4 3.9 2.5 7.1 13.5 20.2 729.9
4 3.7 4.2 7.8 6.0 15.0 23.2 51.2 1109.2
5 4.4 5.2 8.2 22.4 30.9 65.9 77.2 809.3
6 5.0 7.5 9.9 27.0 51.6 121.9 278.1 3258.6
7 50.2 38.9 9.8 66.0 193.5 308.4 637.8 2926.5
8 144.7 75.8 339.2 554.4 2247.6 1703.2 8205.8 18092.0
9 1673.8 307.2 289.9 4126.5 2887.2 2011.4 1963.1 45148.1

10 440.9 1951.7 462.3 4453.91 14613.2 6262.2 29445.3 39455.0

The degrees of numerators and denominators given in the
first row. The number of non-zero terms in both the numer-
ators and denominators are given in the first column. The
second table below shows the number of blackbox calls.

210 220 230 240 250 260 270 2100

3 347 527 707 729 1065 1422 1681 5090
4 377 617 1307 906 1295 1646 2240 5696
5 377 707 1007 1395 1736 2317 2592 5267
6 434 797 1157 1428 1818 2675 3651 7304
7 467 887 1307 1814 2654 3644 4319 7619
8 497 962 1457 2639 4118 5087 9116 12584
9 527 962 2543 3158 4222 5229 6502 11689

10 554 1151 1748 2353 5981 6817 8591 11941

Note that the performance is not uniform due to the sparse
vector construction. The first three columns and the 10
terms problem for degree 240 are runs with Silver-Pohlig/
Hellman lifting (Section 4), and the others runs with “easy”
lifting (Section 3.2).

Additionally, the algorithm with Kronecker’s substitution

was used on the rational function f(x, y) = (x2100

− 1)×

(y250

− 1)
‹

((x − 1)(y − 1)). The given sparse form of
the function, rather than the very dense reduced form, was
recovered with easy lifting in 2771.9 seconds with 8600 black
box calls.

184

7.3 Drawbacks
The algorithm, as presented, has a number of drawbacks.

At the moment, there is no proven way of certifying that
a null space vector is indeed the correct null space vector.
Therefore, it would be possible to lift an incorrect vector,
perhaps multiple times, before discovering that the vector
does not represent the actual function.

In the lifting step, it is also not known what the dimension
of the null space will be. Even if we did know that the matrix
has the fullest possible rank given all possible equations, we
do not know how many equations are needed to get that
rank; however, see Section 6 for a possible solution.

The most significant shortcoming, however, is that the
initial guess of the vector appears to be exponential in the
number of non-zero terms, since one may have to traverse all
possible combinations before the correct vector is found.

8. FURTHER WORK
Again, the obvious weak point of the algorithm is the fact

that exponentially many combinations may have to be pro-
cessed. Although finding the sparsest vector in a null space
is NP-hard in general, it is certainly possible that the par-
ticular null spaces that are generated have special proper-
ties that allow one to find (at least with high probability) a
sparse vector in polynomial time. Indeed, in general if one
knows one vector in the null space generated in the initial
step of the algorithm, one generally knows p − 2 more vec-
tors in the null space (except for finitely many degenerate p),
since if f

g
is the rational function that generated the system

of equations, then so is xi f(x)/(xi g(x)) for i = 1, . . . , p−2.
After p−2, everything wraps around mod p−1.This banded
nature of the null space could possibly be exploitable to find
sparse vectors in that null space.

If we change the model to one where the black box can be
evaluated at complex roots of unity, say modulo cyclotomic
polynomials of small degree over the rational numbers, as
would be the case if the black box is a straight-line program
[5], then the recovery of an initial sparse null space vector
with rational entries could be attempted using techniques
from compressed sensing, which started with [1]. There are
many approaches known today that would recover a sparse
vector. The lifting could then still be done modulo larger
and larger primes.

Acknowledgments: We thank Éric Schost for many discussions on
the supersparse rational function recovery problem, and Carl Pomer-
ance for his references on conjectures related to the effective Dirichlet
theorem. The referees have provided many useful comments which
we would like to acknowledge.

9. REFERENCES
[1] Candes, E., and Tao, T. Decoding by linear programming.

IEEE Trans. Inf. Theory it-51, 12 (2005), 4203–4215.

[2] Coleman, T., and Pothen, A. The null space problem I.
complexity. SIAM. J. on Algebraic and Discrete Methods 7
(1986), 527–537.

[3] Cucker, F., Koiran, P., and Smale, S. A polynomial time
algorithm for diophantine equations in one variable. J.
Symbolic Comput. 27, 1 (1999), 21–29.

[4] Filaseta, M., Granville, A., and Schinzel, A. Irreducibility
and greatest common divisor algorithms for sparse
polynomials, 2007. Manuscript submitted.

[5] Garg, S., and Schost, Éric. Interpolation of polynomials given
by straight-line programs. Theoretical Computer Science 410,
27-29 (2009), 2659 – 2662.

[6] Giesbrecht, M., Kaltofen, E., and Lee, W. Algorithms for
computing sparsest shifts of polynomials in power, Chebychev,

and Pochhammer bases. J. Symbolic Comput. 36, 3–4 (2003),
401–424.

[7] Giesbrecht, M., and Roche, D. S. Interpolation of
shifted-lacunary polynomials. Computing Research Repository
abs/0810.5685 (2008). URL: http://arxiv.org/abs/0810.5685.

[8] Giesbrecht, M., and Roche, D. S. On lacunary polynomial
perfect powers. In ISSAC 2008 (New York, N. Y., 2008),
D. Jeffrey, Ed., ACM Press, pp. 103–110.

[9] Giesbrecht, M., and Roche, D. S. Detecting lacunary perfect
powers and computing their roots. Computing Research
Repository abs/0901.1848 (2009).

[10] Giesbrecht, M., Roche, D. S., and Tilak, H. Computing sparse
multiples of polynomials. In Proc. Internat. Symp. on
Algorithms and Computation (ISAAC 2010) (2010), p. to
appear.

[11] Heath-Brown, D. R. Almost-primes in arithmetic progressions
and short intervals. Math. Proc. Camb. Phil. Soc. 83 (1978),
357–375.

[12] Heath-Brown, D. R. Zero-free regions for Dirichlet
L-functions, and the least prime in an arithmetic progression.
Proc. London Math. Soc 3 (1992), 265–338.

[13] Kaltofen, E. Greatest common divisors of polynomials given
by straight-line programs. J. ACM 35, 1 (1988), 231–264.

[14] Kaltofen, E. Unpublished article fragment, 1988. URL http://
www.math.ncsu.edu/˜kaltofen/bibliography/88/Ka88 ratint.
pdf.

[15] Kaltofen, E. Fifteen years after DSC and WLSS2 What
parallel computations I do today [Invited lecture at PASCO
2010]. In PASCO’10 Proc. 2010 Internat. Workshop on
Parallel Symbolic Comput. (New York, N. Y., July 2010),
M. Moreno Maza and J.-L. Roch, Eds., ACM, pp. 10–17.

[16] Kaltofen, E., and Koiran, P. Finding small degree factors of
multivariate supersparse (lacunary) polynomials over algebraic
number fields. In ISSAC MMVI Proc. 2006 Internat. Symp.
Symbolic Algebraic Comput. (New York, N. Y., 2006), J.-G.
Dumas, Ed., ACM Press, pp. 162–168.

[17] Kaltofen, E., and Lee, W. Early termination in sparse
interpolation algorithms. J. Symbolic Comput. 36, 3–4 (2003),
365–400. Special issue Internat. Symp. Symbolic Algebraic
Comput. (ISSAC 2002). Guest editors: M. Giusti & L. M.
Pardo.

[18] Kaltofen, E., and Trager, B. Computing with polynomials
given by black boxes for their evaluations: Greatest common
divisors, factorization, separation of numerators and
denominators. J. Symbolic Comput. 9, 3 (1990), 301–320.

[19] Kaltofen, E., and Villard, G. On the complexity of
computing determinants. Computational Complexity 13, 3-4
(2004), 91–130.

[20] Kaltofen, E., and Yang, Z. On exact and approximate
interpolation of sparse rational functions. In ISSAC 2007
Proc. 2007 Internat. Symp. Symbolic Algebraic Comput.
(New York, N. Y., 2007), C. W. Brown, Ed., ACM Press,
pp. 203–210.

[21] Kaltofen, E., Yang, Z., and Zhi, L. On probabilistic analysis
of randomization in hybrid symbolic-numeric algorithms. In
SNC’07 Proc. 2007 Internat. Workshop on
Symbolic-Numeric Comput. (New York, N. Y., 2007),
J. Verschelde and S. M. Watt, Eds., ACM Press, pp. 11–17.

[22] Kipnis, A., and Shamir, A. Cryptanalysis of the HFE public
key cryptosystem by relinearization. In Proc. CRYPTO ’99
(1999), M. J. Wiener, Ed., vol. 1666 of Lecture Notes in
Computer Science, Springer, pp. 19–30.

[23] Lenstra, Jr., H. W. Finding small degree factors of lacunary
polynomials. In Number Theory in Progress (1999), K. Győry,
H. Iwaniec, and J. Urbanowicz, Eds., vol. 1 Diophantine
Problems and Polynomials, Stefan Banach Internat. Center,
Walter de Gruyter Berlin/New York, pp. 267–276.

[24] Mikawa, H. On primes in arithmetic progressions. Tsukuba J.
Mathematics 25, 1 (2001), 121–153.

[25] Olesh, Z., and Storjohann, A. The vector rational function
reconstruction problems. In Proc. Waterloo Workshop on
Computer Algebra: devoted to the 60th birthday of Sergei
Abramov (WWCA) (2007), pp. 137–149.

[26] Plaisted, D. A. New NP-hard and NP-complete polynomial
and integer divisibility problems. Theoretical Comput. Sci. 13
(1984), 125–138.

[27] Pohlig, C. P., and Hellman, M. E. An improved algorithm for
computing logarithms over GF(p) and its cryptographic
significance. IEEE Trans. Inf. Theory it-24 (1978), 106–110.

185

http://arxiv.org/abs/0810.5685
http://www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_ratint.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_ratint.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_ratint.pdf

