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ABSTRACT
We investigate our early termination criterion for sparse pol-
ynomial interpolation when substantial noise is present in
the values of the polynomial. Our criterion in the exact case
uses Monte Carlo randomization which introduces a second
source of error. We harness the Gohberg-Semencul formula
for the inverse of a Hankel matrix to compute estimates for
the structured condition numbers of all arising Hankel ma-
trices in quadratic arithmetic time overall, and explain how
false ill-conditionedness can arise from our randomizations.
Finally, we demonstrate by experiments that our condition
number estimates lead to a viable termination criterion for
polynomials with about 20 non-zero terms and of degree
about 100, even in the presence of noise of relative magni-
tude 10−5.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices, Computations on polynomials; G.1.1
[Interpolation]; I.1.2 [Algorithms]: Algebraic algorithms,
Analysis of algorithms

General Terms
Algorithm, Theory
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1. INTRODUCTION
The fast solution of Toeplitz- and Hankel-like linear sys-

tems is based on the classical 1947 Levinson-Durbin prob-
lem of computing linear generators of the sequence of en-
tries. When with exact arithmetic on the entries a singu-
lar leading principal submatrix is encountered, look-ahead
can be performed: this is the genesis of the 1968 Berle-
kamp/Massey algorithm. In the numeric setting, the no-
tion of ill-conditionedness substitutes for exact singularity,
and the algorithms need to estimate the condition num-
bers of the arising submatrices. By a result of Siegfried
Rump [22], the structured condition number of an n × n
Toeplitz/Hankel matrix H is equal to its unstructured con-
dition number κ2(H): we have a Hankel perturbation matrix
∆H with spectral (matrix-2) norm ‖∆H‖2 = 1/‖H−1‖2 =
‖H‖2/κ2(H) such thatH+∆H is singular [22, Theorem 12.1].
Thus Trench’s [23] (exact) inverse algorithm can produce up-
per and lower bounds for those distances from the Frobenius
(Euclidean-vector-2) norm estimates for 1/

√
n ‖H−1‖F ≤

‖H−1‖2 ≤ ‖H−1‖F . The look-ahead algorithms, such as the
Berlekamp/Massey solver, however, need such estimates for

all k×k leading principal submatrices H [k] for k = 1, 2, . . . of
an unbounded Hankel matrix. Here we show how the 1972
Gohberg-Semencul “off-diagonal” (JL)U-representations [17,

7] can give estimates for all κ2(H
[k]) in quadratic arithmetic

overall time. Although our estimates are quite accurate (see
Figures 1 and 2), the computation of the actual condition
numbers of all leading principal submatrices in quadratic
arithmetic time remains an intriguing open problem. We
note that fraction-free implementations [2, 21] of the Berle-
kamp/Massey algorithms and inverse generators only pro-
duce values of polynomials in the entries, and our numeric
Schwartz/Zippel lemma [20, Lemma 3.1] is applicable. In
Section 3 we will discuss the numeric sensitivity of the ex-
pected values in that Lemma.

Our investigations are motivated by numeric sparse pol-
ynomial interpolation algorithms [11, 12, 20, 13]. In the
Ben-Or/Tiwari version of this algorithm, one first computes
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for a sparse polynomial f(x) ∈ C[x] the linear generator
for hl = f(ωl+1) for l = 0, 1, 2, . . . In some exact as well
as numeric algorithms, ω is selected as a random p-th root
of unity. Then by the theory of early termination of that
algorithm [18], the first (t + 1) × (t + 1) leading principle

submatrix H [t+1] in the (infinite) Hankel matrix H with en-
tries in row i and column j, (H)i,j = hi+j−2 where k =
1, 2, . . . , t, t+ 1, . . .,

H [k] =

2

6
6
6
6
6
6
6
6
6
6
4

h0 h1 h2 h3 . . . hk−1

h1 h2 h3 h4 . .
.

hk

h2 h3 h4 h5 . .
.

hk+1

h3 h4 h5 h6 . .
. ...

... . .
.

. .
.

. .
.

. .
.

hk−1 hk hk+1 . . . h2k−2

3

7
7
7
7
7
7
7
7
7
7
5

(1)

that is singular has with high probability dimension t+ 1 =
1 + the number of non-zero terms in f . For technical rea-
sons in proof of the probabilistic analysis, we must skip over
the value f(ω0) = f(1). Hence, by the previously described
algorithm for lower and upper bounds of the condition num-
bers of H [k], we can determine the number of terms t.

The Berlekamp/Massey algorithm solves the problem of
computing Padé forms along a diagonal of the Padé table.
Cabay and Meleshko gave an algorithm to bound from above
the condition numbers of all the principal submatrices of
the associated Hankel system in the well-conditioned case
[8], which has been further refined and extended, for exam-
ple, see [1, 6]. Here we focus less on stably computing the
Gohberg-Semencul updates (see those cited papers—we re-
quire no look-ahead), but on fast and accurate lower and
upper bounds of the condition numbers, which constitute
the early termination criterion. We add that our approach
here, namely testing submatrices for ill-conditionedness, is
problematic for the approximate GCD problem (cf. [5, 4]):
we know now that Rump’s property is false for Sylvester
matrices: the unstructured condition number of a Sylvester
matrix can be large while the structured condition number
is small (see [19, Example 4.2]).

We approach the problem of incrementally estimating Han-
kel submatrices through a numerical interpretation of the
Berlekamp/Massey algorithm [21] that combines with an ap-
plication of the numerical Schwartz/Zippel lemma [20]. We
report some experimental results of our implementation in
Section 4. For a 20 term polynomial of degree 100 the algo-
rithm correctly computes t = 20 in quadratic time (given the
polynomial evaluations hl) (see Table 1). There are several
issues to scrutinize. First, we only have bounds on the con-
dition numbers and must verify that our estimates are suf-
ficiently accurate. One would expect since for hl = f(ωl+1)

the Hankel matrix H [k] in (1) has additional structure that
the upper bound estimates for the Rump condition num-
bers are good indicators of numeric non-singularity. Sec-
ond, early termination is achieved by randomization, whose
probabilistic analysis, namely the separation of the decision
quantities, i.e., determinants or condition numbers, from
very small values (in terms of absolute values), applies to
exact computation. We can relate the numeric sensitivity of
those decision quantities via a factorization of H [t] to clus-
tering of term values on the unite circle, which is partially
overcome by evaluation at several random ω simultaneously.

Throughout the paper, we will use the boldfaced letters x

and y to denote the vectors [x1, . . . , xn]T , [y1, . . . , yn]T , re-

spectively; H [k] denotes the k × k leading principle subma-
trix; κ(H) = ‖H‖ · ‖H−1‖ denotes the unstructured condi-
tion number of H.

2. CONDITION NUMBER ESTIMATE
Suppose a n×n Hankel matrix H is strongly regular, i.e.,

all the leading principle submatrices of H are nonsingular.
Following an efficient algorithm for solving Hankel systems
[14], we present a recursive method to estimate the condi-
tion numbers of all leading principal Hankel submatrices in
quadratic time.

For simplicity, in this section we only consider the condi-
tion number of the Hankel matrix with respect to 1 norm,
i.e., κ1(H) = ‖H‖1 · ‖H−1‖1, since all other operator norms
can be bounded by the corresponding 1 norm.

In order to estimate the condition numbers of all lead-
ing principal submatrices, we need to estimate the norms
of all leading principal submatrices as well as their inverses.
Since a Hankel matrix H has recursive structure, the norm
of H [i+1] can be obtained in O(i) flops if the norm of H [i] is
given, which implies that computing the norms of all leading
principal submatrices can be done in O(n2) flops. There-
fore, our task is to demonstrate how to estimate the norm
of (H [i+1])−1 in linear time if one has the estimate of the

norm of (H [i])−1.
As restated in Theorem 1, the Gohberg-Semencul formula

for inverting a Hankel matrix plays an important role in our
method. Note that for a given Hankel matrix H, J H is a
Toeplitz matrix, where J is an anti-diagonal matrix with 1
as its nonzero entries.

Theorem 1 Given a Hankel matrix H, suppose x and y are
the solution vectors of the systems of the equations Hx = e1,
Hy = en, where e1 = [1, 0, 0, . . . , 0]T and en = [0, . . . , 0, 1]T .
Then if xn 6= 0 the inverse H−1 satisfies the identity

H−1 =

1

xn

2

6
6
6
4

x1 x2 · xn−1 xn

x2 x3 · xn 0
· · · · ·

xn−1 xn · 0 0
xn 0 · 0 0

3

7
7
7
5

| {z }

JL1

2

6
6
6
4

y1 y2 · yn−1 yn

0 y1 · yn−2 yn−1

· · · · ·
0 0 · y1 y2
0 0 · 0 y1

3

7
7
7
5

| {z }

R1

− 1

xn

2

6
6
6
4

y2 y3 · yn 0
y3 y4 · 0 0
· · · · ·
yn 0 · 0 0
0 0 · 0 0

3

7
7
7
5

| {z }

JL2

2

6
6
6
4

0 x1 · xn−2 xn−1

0 0 · xn−3 xn−2

· · · · ·
0 0 · 0 x1

0 0 · 0 0

3

7
7
7
5

| {z }

R2

(2)

The inversion formula of a Hankel matrix leads to a pol-
ynomial form, whose coefficients involve vectors x and y.

Theorem 2 Under the assumptions of Theorem 1, suppose
H−1 = [γ1, γ2, . . . , γn], where γk denotes the k-th column of
H−1. Then we have

γk = [vn−1,vn−2, . . . ,v0]
T ,

131



where vi denotes the coefficient of the polynomial (1/xn) ·
(φ · gk − uk · v) with respect to Zi, where

φ =
nX

i=1

xiZ
n−i, gk =

kX

i=1

yiZ
k−i,

v =

nX

i=2

yiZ
n−i, u1 = 0, uk =

k−1X

i=1

xiZ
k−i, k = 2, . . . , n.

Proof. Considering the polynomial product φ · gk, we
obtain the coefficient subvector

µ = [ψn−1, ψn−2, . . . , ψ0]
T ,

where ψj is the coefficient of φ · gk with respect to Zj . Ex-
panding φ · gk, we get

ψj =

 Pj
i=0 xn−iyk+i−j , if 0 ≤ j ≤ k,

Pk−1
i=0 xn+i−jyk−i, if k < j < n.

Observing the formula of H−1 in Theorem 1, We find that
the coefficient subvector

µ = JL1.[yk, yk−1, . . . , 0, 0]T , (3)

where [yk, yk−1, . . . , 0, 0] is the k-th column of R1. Since
u1 = 0, it is obvious that the coefficient vector of u1 · v is a
zero vector. Considering the polynomial product uk · v, 2 ≤
k ≤ n, we obtain the coefficient subvector

ν = [χn−1, χn−2, . . . , χ0]
T ,

where χj is the coefficient of uk · v with respect to Zj . Ex-
panding uk · v, we get

χj =

8

<

:

0 if j = 0
Pj

i=0 yn−ixk−j+i, if j ≤ k − 1,
Pk−1

i=1 yn+1−jxk−i, if k ≤ j < n.

The coefficient subvector

ν = JL2.[xk−1, xk−2, . . . , 0, 0]T , (4)

where [xk−1, xk−2, . . . , 0, 0]T is the k-th column of R2. Ac-
cording to (3) and (4), it can be verified that the column γk

is able to be represented by the coefficients of (1/xn) · (φ ·
gk − uk · v).

Corollary 1 Given a nonsingular Hankel matrix H, sup-
pose x and y are the solutions of the equations of Hx = e1
and Hy = en, then

‖x‖1 ≤ ‖H−1‖1 ≤ 2‖x‖1 · ‖y‖1

|xn|
. (5)

Proof. Since xn = y1, (5) can be concluded from Theo-
rem 2.

Given a strongly regular matrix H, we discuss how to use
the bound in (5) to estimate ‖(H [i])−1‖1 for all the lead-
ing principal submatrices in quadratic time. A linear time
recursive algorithm is presented in [14] to obtain the solu-

tion vector of H [i+1]xi+1 = ei+1 from the solution vector
of H [i]yi = ei, where H [i] and H [i+1] are the i × i and
(i + 1) × (i + 1) leading principal submatrices of H respec-

tively, and ei = [0, . . . , 0, 1]T , ei+1 =
ˆ
0, ei

˜T
. Moreover,

according to the Lemma in [14], for an i × i strongly reg-
ular Hankel matrix H, the solution x of the linear system

Hx = e1 can be obtained in O(i) flops if one has the solu-
tion Hy = ei. In other words, for a given strongly regular
k × k Hankel matrix H, all of the solution vectors x and y

of H [i]x = e1, H
[i]y = ei, i = 1, 2, . . . , k can be obtained in

O(k2) flops. Hence the recursive algorithm presented in [14]

is applicable to obtain the bounds (5) of all ‖(H [i])−1‖1 in
quadratic time.

Theorem 3 Under the same assumptions as above, given a
strongly regular n× n Hankel matrix H, we have

‖x[i]‖1‖H [i]‖1 ≤ κ1(H
[i]) ≤ 2‖x[i]‖1‖y[i]‖1

|x[i]
i |

‖H [i]‖1, (6)

where x[i] and y[i] are the solution vectors of H [i]x[i] =

e1 and H [i]y[i] = ei, and x
[i]
i denotes the last element of

x[i]. Furthermore, computing the lower bounds and the up-
per bounds (6) of all κ1(H

[i]), 1 ≤ i ≤ n, can be achieved in
O(n2) arithmetic operations.

Proof. We conclude (6) from Corollary 1. As discussed,

‖H [i]‖1 and the bounds of ‖(H [i])−1‖1 can be obtained in
quadratic time, which means that the computation of the
condition number bounds (6) is O(n2).

3. EARLY TERMINATION IN NUMERICAL
SPARSE INTERPOLATION

We apply our method to the problem of early termination
in numerical sparse polynomial interpolation. Consider a
black box univariate polynomial f ∈ C[x] represented as

f(x) =
tX

j=1

cjx
dj , 0 6= cj ∈ C (7)

and dj ∈ Z≥0, d1 < d2 < · · · < dt.
Suppose the evaluations of f(x) contain added noise. Let

δ be a degree upper bound of f , which means, δ ≥ deg(f) =
dt. Our aim is to determine the number of terms t in the
target polynomial f .

In exact arithmetic, the early termination strategy [18]
can determine the number of terms with high probability.
Choose a random element ω from a sufficiently large finite
set and evaluate f(x) at the powers of ω

h0 = f(ω), h1 = f(ω2), h2 = f(ω3), . . . .

Consider a (δ + 1) × (δ + 1) Hankel matrix H = (H)i,j =
hi+j−2 as in (1). The early termination algorithm makes,

with high probability, all principal minors H [j] non-singular
for 1 ≤ j ≤ t [18]. Moreover, H [j] must be singular for
all t < j ≤ δ. Hence the number of terms t is detected as
follows: for j = 1, 2, . . ., the first time H [j] becomes singular
is when j = t+ 1.

In the numerical setting, such a singular matrix is often ex-
tremely ill-conditioned. So we need to measure the singular-
ity for a given numerical Hankel matrix. In [22], it is proved
that for a Hankel matrix the structured condition number
with respect to the spectral norm is equivalent to the regular
condition number. In other words, for a given Hankel matrix
H [j], the distance measured by spectral norm to the near-
est singular Hankel matrix is equivalent to 1/‖(H [j])−1‖2.
In the following we investigate how to estimate the spectral
norm of the inverse of a Hankel matrix.
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Theorem 4 Using the same quantities as above, we have

‖x‖1√
n

≤ ‖H−1‖2 ≤ 2‖x‖1 · ‖y‖1

|xn|
. (8)

Proof. Given a n × n arbitrary matrix A, we have the
following bound of ‖A‖2 [16]

max{‖A‖1, ‖A‖∞}√
n

≤ ‖A‖2 ≤
p

‖A‖1‖A‖∞.

According to Corollary 1 and ‖H−1‖∞ = ‖H−1‖1, it can be
verified that ‖H−1‖2 satisfies (8).

We following the bound of ‖H−1‖2 in (8) and present a
recursive algorithm to detect the sparsity of the interpolat-
ing polynomial. Suppose we are given an approximate black
box polynomial of f represented as (7), its degree bound δ
and a chosen tolerance τ , our aim is to recover the number
of terms t. We proceed our recursive algorithm as the fol-
lowing. First choose a random root of unity ω with a prime
order p ≥ δ and obtain the approximate evaluations

hℓ ≈ f(ωℓ+1), ℓ = 0, 1, 2, . . . .

Then we compute iteratively for k = 1, 2, . . . and H [k] =
[hi+j−2] the vectors x[k] and y[k] as stated in [14], where x[k]

and y[k] are the solutions of H [k]x[k] = e1 and H [k]y[k] = ek.
We break out of the loop until

|x[k]
k |

2‖x[k]‖1 · ‖y[k]‖1
≤ τ,

which means that for all j = 1, 2, . . . , k − 1 the distance be-
tween H [j] and the nearest singular Hankel matrix is greater
than the given tolerance τ . This is because

1

‖(H [k])−1‖2
≥ |x[k]

k |
2‖x[k]‖1 · ‖y[k]‖1

> τ.

At this stage, we claim that H [k−1] is strongly regular and
obtain t = k − 1 as the number of the terms in f .

In sparse polynomial interpolation, the associated Hankel
matrix H [t] has additional structure that allows a factoriza-
tion

H [j] =

2

6
6
6
4

h0 h1 . . . hj−1

h1 h2 . . . hj

...
...

. . .
...

hj−1 hj . . . h2j−2

3

7
7
7
5

=

2

6
6
6
6
4

1 1 . . . 1

b1 b2 . . . bt
...

...
. . .

...

bj−1
1 bj−1

2 . . . bj−1
t

3

7
7
7
7
5

| {z }

V [j]

2

6
6
6
6
4

c1b1 0 . . . 0

0 c2b2
. . .

...
...

. . .
. . . 0

0 . . . 0 ctbt

3

7
7
7
7
5

| {z }

D

×

2

6
6
6
4

1 b1 . . . bj−1
1

1 b2 . . . bj−1
2

...
...

. . .
...

1 bt . . . bj−1
t

3

7
7
7
5

| {z }

(V [j])T

, (9)

in which bk = ωdk for 1 ≤ k ≤ t.

When j = t, the condition of the associated Hankel system
is linked to the embedded Vandermonde system [11, 12]

‖(V [t])−1‖2 · max
j

1

|cj |
≥ ‖(H [t])−1‖ ≥ ‖(V [t])−1‖2

P

1≤j≤t |cj |
(10)

(see Proposition 4.1 in [12].)
Since all bj are on the unit circle, according to [9] the

inverse of the Vandermonde matrix ‖V −1‖ can be bounded
by

‖(V [t])−1‖ ≤ max
1≤j≤t

tY

j=1,j 6=k

1 + |bj |
|bj − bk|

= max
1≤j≤t

2t−1

Q

j 6=k |bj − bk|
. (11)

As for the lower bound, ‖(V [t])−1‖∞ = 1 achieves the opti-
mal condition if bj are evenly distributed on the unit circle
(see Example 6.4 in [10].)

In [11, 12], the sparsity t is given as input. So the ran-
domization is used to improve the condition of the overall
sparse interpolation problem, where the recovery of both the
non-zero terms and the corresponding coefficients depend on
the condition of the embedded Vandermonde system. While
[11, 12] further exploit a generalized eigenvalue reformula-
tion [15] in sparse interpolation, interestingly the condition
of the associated generalized eigenvalue problem is still de-
pendent on the condition of the embedded Vandermonde
system [12, Theorem 4.2] (see [3] for further analysis and
discussion.)

Now our purpose now to detect the number of terms. In
other words, we intend to use the estimated conditions to
determine the number of terms t. (After t is determined,
for polynomial interpolation one still needs to recover the t
exponents d1, . . . dt and the associated coefficients c1, . . . , ct

in f .)

Recall that in exact arithmetic, H [j] is singular for j > t.
In a numerical setting, such H [j] is expected to be extremely
ill-conditioned. If H [t] is relatively well-conditioned, then
one can expect a surge in the condition number for H [t+1].
We apply the randomization idea in [11, 12] to obtain the

heuristic of achieving relatively well-conditioned H [t] with
high probability.

Following (11), the distribution of b1, . . . , bt on the unit
circle affects the upper bound on the condition of the Van-
dermonde system V [t]. Let bj = e2πidj/p, bk = e2πidk/p for
a prime p ≥ δ. Both bj and bk are on the unit circle. Let
∆jk = |dj − dk| ≥ 1, the distance between bj and bk is

|bj − bk| =
q

(1 − cos(2π∆jk/p))2 + sin2(2π∆jk/p)

=
p

2 − 2 cos(2π∆jk/p).

For a fixed t, an upper bound of ‖(V [t])−1‖2 is determined
by

min
1≤j≤t

Y

j 6=k

„

2 − 2 cos

„
2π∆jk

p

««

, (12)

in which p is a chosen prime order for the primitive roots of
unity.

According to (12), the corresponding Hankel systemH [t] =

V [t]D(V [t])T can be better conditioned if

1. p is smaller; and/or
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2. the most (or all) of ∆jk do not belong to smaller values.

In order to achieve a better condition, choosing a larger p
would require larger ∆jk and may require a higher precision.
Thus we prefer a smaller p. Moreover, in general a smaller p
does not affect too much on the overall random distribution
of bj on the unit circle (see Example 3 in Section 4.)

Remark: In the exact case, it may still happen that H [j]

is singular for j ≤ t, which corresponds to an ill-conditioned
H [j] for j ≤ t in a finite precision environment. There-
fore we perform our algorithm ζ times in the numerical set-
ting. Given ζ ∈ Z>0, we choose different random roots of
unity ω1, ω2, . . . , ωζ . For each j we perform our algorithm
on f(ωk

j ) for k = 1, 2, . . . and obtain the number of terms as
tj . At the end, we determine t = max{t1, t2, . . . , tζ} as the
number of the terms of f .

4. EXPERIMENTS
Our numerical early termination is tested for determining

the number of the terms. We set Digits := 15 in Maple 13.
Our test polynomials are constructed with random integer
coefficients in the range between −10 and 10, and with a
random degree and random terms in the given ranges.

For each given noise range, we test 50 random black box
polynomials and report the times of failing to correctly esti-
mate the number of the terms. In Table 1, Deg.Range and
TermRange record the range of the degree and the number
of the term in the polynomials; RandomNoise records range
of random noise added to the evaluations of the black box
polynomial; Fail reports the times of failing to estimate the
correct number of the terms in the target polynomials.

Ex. Random Noise Term Range Deg. Range Fail

1 10−6 ∼ 10−5 10 ∼ 15 100 ∼ 150 3

2 10−7 ∼ 10−6 15 ∼ 20 100 ∼ 150 1

3 10−8 ∼ 10−7 20 ∼ 25 100 ∼ 150 1

4 10−9 ∼ 10−8 20 ∼ 25 100 ∼ 150 1

Table 1: Numerical early termination: number of

failures out of 50 random polynomials.

Example 1 Given a polynomial f with deg(f) = 100 and
the number of term 20, denoted by T (f) = 20. Its coeffi-
cients are randomly generated as integers between −10 and
10. We construct the black box that evaluates f with added
random noises in the range 10−9 ∼ 10−8. From such black
box evaluations, we generated 1000 random Hankel matrices
and compare the condition number κ1(H) = ‖H‖1 · ‖H−1‖1

with their corresponding lower bounds κlow(H) and the up-
per bound κup(H), shown in (6).

Let ωj = exp(2sjπi /pj) ∈ C be random roots of unity,
where i =

√
−1, pj prime numbers in the range 100 ≤ pj ≤

1000, and sj random integers with 1 ≤ sj < pj . We compute
the evaluations of the black box for different root of unity
ωj , and construct the associated Hankel matrix H [j]. Since
T (f) = 20, we do 41 evaluations for each j to construct the

Hankel matrix with Dim(H [j]) = 21:

hj,l ≈ f(ωl
j) ∈ C, l = 1, 2, 3, . . . , 41.

We use H
[k]
j to denote the k× k leading principle subma-

trix of Hj and let

rlow =
‖H‖1 · ‖H−1‖1

κlow(H)
, rup =

κup(H)

‖H‖1 · ‖H−1‖1
.

For j = 1, 2, . . . , 1000, we obtain the ratios rlow and rup

for all k × k leading principle submatrices H
[k]
j , where k =

1, 2, . . . , 20. Therefore, rlow and rup are used to measure
whether the lower and upper bounds are close to the actual
condition number. We use the histogram to measure the
ratios rlow and rup. For instance, in Figure 1 (a) and (b)
show the distribution of the ratios rlow and rup for all 5 × 5

leading principle submatrices H
[5]
j , j = 1, 2, . . . , 1000. In

Figure 2, (a) and (b) show the distribution of the ratios rlow

and rup of all 20×20 leading principle submatrices H
[20]
j , j =

1, 2, . . . , 1000.

Example 2 We performed m = 100 random n× n Hankel
matrices for n = 4, 8, . . . , 1024 whose entries are randomly
chosen and follow uniformly probabilistic distribution over
{c | −1 ≤ c ≤ 1}. Table 2 displays the average value of
rlow and rup. Here n is the dimension of random Hankel

matrices; rlow and rup are the average ratios of ‖H‖1·‖H−1‖1

κlow(H)

and
κup(H)

‖H‖1·‖H−1‖1
; κ1 = ‖H‖1 · ‖H−1‖1 is the average value

of the actual condition number obtained for Digits := 15
in Maple 13. From the columns of rlow and rup, we observe
that the upper bound of the condition number depends on
the dimension of the Hankel matrices. But the lower bound
of the condition number does not seem to be affected much
by the increasing of the dimension.

Ex. n rlow rup κ1(H)
1 4 3.1431 17.402 523.10
2 8 4.7675 14.023 69.965
3 16 6.4865 30.349 136.59
4 32 11.154 106.35 734.55
5 64 15.691 107.19 1996.1
6 128 24.120 220.42 13218
7 256 34.496 549.59 16932
8 512 49.425 1516.1 16783
9 1024 71.394 1385.0 111375

Table 2: Algorithm performance on condition num-

ber estimate

Finally, following the discussion on (10), (11), (12) in Sec-
tion 3, we investigate the role of p in the conditioning of
H [t].

Example 3 For each try, we choose m = 10 random poly-
nomials with 50 ≤ deg(f) ≤ 100. The coefficients are ran-
domly generated as integers between −5 and 5. The num-
ber of the terms of f is t, shown in the 3-th column of
Table 3. In Table 1, TermRange records the range of ran-
dom noise added to the evaluations of the black box polyno-
mial; κ1(H1

[t]) and κ1(H2
[t]) denote the respective condition

numbers of the t × t Hankel matrices H1
[t] and H2

[t]. The
matrices H1

[t] and H2
[t] are constructed by the approximate

evaluations of the root of unity with orders corresponding
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(a) Distribution rlow =
‖H‖1 · ‖H−1‖1

κlow(H)
(b) Distribution rup =

κup(H)

‖H‖1 · ‖H−1‖1

Figure 1: Distribution of the leading principle matrix H [5]

(a) Distribution rlow =
‖H‖1 · ‖H−1‖1

κlow(H)
(b) Distribution rup =

κup(H)

‖H‖1 · ‖H−1‖1

Figure 2: Distribution of the leading principle matrix H [20]

to the randomly chosen prime numbers p1 and p2, where p1

is between 100 and 1000 and p2 between 105 and 107.
Table 3 agrees with our discussion at the end of Section 3.

When the number of terms t is fixed, the various scales of p1

and p2 do not seem to greatly affect the distribution of terms
on the unit circle. But a larger p2 may demand a higher
precision hence cause additional computation problems.

5. CONCLUSION
By example of a randomized sparse interpolation algo-

rithm, we have investigated a central question in algorithms
with floating point arithmetic and imprecise date posed in
[20]: how does one analyze the probability of success, in our

case the correct determination of the discrete polynomial
sparsity? Bad random choices may result in ill-conditioned
intermediate structured matrices at the wrong place. Even
if one can detect such ill-conditionedness, as we have via the
Gohberg-Semencul formula, the distribution of such occur-
rences must be controlled. We do so by running multiple
random execution paths next to one another, which success-
fully can weed out bad random choices, as we have observed
experimentally. The mathematical justification requires an
understanding of condition numbers of random Fourier ma-
trices, which we have presented, and of additional instabili-
ties that are caused by substantial noise in the data, which
we have demonstrated, at least by experiment, to be con-
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Ex. Random Noise t κ1(H1
[t]) κ1(H2

[t])

1 10−6 ∼ 10−5 5 1.16 × 105 1.61 × 105

2 10−6 ∼ 10−5 8 9.54 × 105 2.91 × 106

3 10−8 ∼ 10−7 10 4.14 × 107 1.02 × 108

4 10−6 ∼ 10−5 12 1.51 × 106 2.04 × 106

5 10−6 ∼ 10−5 15 1.13 × 108 3.53 × 108

6 10−7 ∼ 10−6 12 5.24 × 107 3.92 × 107

Table 3: Condition numbers for H [t] constructed

with roots of unity of different size prime orders p1

and p2.

trollable by our algorithms.
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first singular leading principle Hankel matrix in Introduction
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6. REFERENCES
[1] B. Beckermann. The stable computation of formal

orthogonal polynomials. Numerical Algorithms,
11(1):1–23, 1996.

[2] B. Beckermann, S. Cabay, and G. Labahn.
Fraction-free computation of matrix Pade systems. In
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