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11.5 Factorization of multivariate polynomials

Erich Kaltofen, North Carolina State University
Gr egoire Lecerf, CNRS & Ecole polytechnique

In this section we extend the univariate factorization techniques of the previous section to
several variables. Two major ingredients are the reduction from the bivariate case to the
univariate one, and the reduction from any number to two variables. We present most of
the known techniques according to the representation of the input polynomial.

11.5.1 Factoring dense multivariate polynomials

11.5.1 Remark In this subsection we are concerned with different kinds of factorizations
of a multivariate polynomial f € Fy[z1,...,x,] stored in dense representation:

11.5.2 Definition Let R be any ring. A dense representation of a polynomial f €
R[xy,...,xz,] is the data of the vector (dy,...,d,) of the partial degrees of f, and
the vector of the coefficients of the monomials z{* ---z& for all 0 < e; < dy,...,

0 < e, < d,, sorted in reverse lexicographical ordering on the exponents (e, .. ., ¢e,),
which means that (eq,...,e,) < (€),...,e,) if, and only if, there exists j such that
(en =e€n,.--,€j4+1 = €11, and e; < €}).

11.5.3 Remark The representation of multivariate polynomials is an important issue,
which has been discussed from the early ages of computer algebra [Czapor et al. 1992;
Davenport et al. 1987; van der Hoeven and Lecerf 2010; Johnson 1974; Monagan and
Pearce 2007, 2009, 2010; Stoutemyer 1984; Yan 1998].

11.5.1.1 Separable factorization
11.5.4 Remark Separable factorization can be seen as a preprocess to the other factorizations

(squarefree, irreducible, and absolutely irreducible, as defined below), which allows
to reduce to considering separable polynomials.

11.5.5 Definition Let R be an integral domain. A polynomial f € R[z| is primitive if the
common divisors in R of all the coefficients of f are invertible in R.

11.5.6 Definition Let R be a unique factorization domain of characteristic p, and let E,
represent {1} if p = 0 and {1, p, p?, p3,...} otherwise. If f is a primitive polynomial
in R[y| of degree d > 1, then the separable decomposition of f, written Sep(f), is
defined to be the set Sep(f) := {(f1,q1,m1),---, (fs:s.ms)} C (Rly]\ R) X E, x N,
satisfying the following properties:

fy) =TIz filys)™,

for all i # jin {1,...,s}, fi(y%) and f;(y%) are coprime,
for all i € {1,...,s}, m; (mod p) # 0,

for all i € {1,...,s}, f; is separable and primitive,

for all 4 7&.7 in {1a B -78}7 <Qz7mz) 7é (qjamj)

The process of computing the separable decomposition is the separable factorization.

S 8 =
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11.5.7 Example With R :=F3 and f := y?(y +1)3(y +2)* = y° + 28 + 2y + %, we have
that Sep(f) = {(y,1,2), (y +1,3,1), (y + 2,1,4)}.

11.5.8 Example With R := F3[z] and f := (y + 22)7(y> + 22)3(y® + ), we have that
Sep(f) = {(y +22,1,7), (y + 22°,9,1), (y* + 2,3,1)}.

11.5.9 Theorem [Mines et al. 1988, Chap. VI, Theorem 6.3] Any primitive polynomial f €
Ry] admits a unique (up to permutations and units in R) separable decomposition,
which only depends on the coefficients of f.

11.5.10 Remark Roughly speaking, the separable decomposition corresponds to sorting the
roots of the given polynomial according to their multiplicity. A constructive proof
of Theorem 11.5.9 can be found in [Mines et al. 1988, Chap. VI, Theorem 6.3], and
another proof using the irreducible factorization in [Lecerf 2008, Proposition 4].

11.5.11 Remark Since the separable decomposition only depends on the coefficients of f
it can be computed in any extension of R.

11.5.12 Theorem [Lecerf 2008, Proposition 5] If F is a field then the separable decompo-
sition of a polynomial f € Fly] of degree d can be computed with O(M(d)logd)
arithmetic operations in F. Let us recall that M(d) represents a bound for the
complexity of multiplying two polynomials of degree at most d with coefficients in
a commutative ring with unity, in terms of the number of arithmetic operations in
the latter ring.

11.5.13 Theorem [Lecerf 2008, Propositions 8 and 9] Let R = F'[z], where F' is a field, and
let f € F[z]y] be a primitive polynomial of degree d, in « and d, in y.

1. If F has cardinality at least d,(2d, +1)+1 then Sep(f) can be computed (deter-
ministically) with O(dy(d,M(d,)logd, + d,M(d,)logd,)) or O(d$d§) operations
in F.

2. If F has cardinality at least 4d,d, then Sep(f) can be computed with an ezpected
number of O(d,M(d,)logd, + d.M(d,)logd,)) or O(d,d,) operations in F.

Let us recall that f(d) € O(g(d)) means that f(d) € g(d)(logy(3 + g(d)))°™). With the
second randomized algorithm, the ouput is always correct, and the cost estimate is
the average of the number of operations in F' taken over all the possible executions.

11.5.1.2 Squarefree factorization

11.5.14 Definition If R is a unique factorization domain then the squarefree decomposition
of a € R, written Sqr(a), is the set of pairs (a,,, m), where a,, represents the product
of all the irreducible factors of a of multiplicity m. The process of computing the
squarefree decomposition is the squarefree factorization.

11.5.15 Definition For convenience, we say that a polynomial f € R[z1,. .., z,] is primitive
(resp. separable) in z; if it is so when seen in R[xq,...,%i—1,Tit1, - - -, Tn|[Ti]-

11.5.16 Algorithm Sketch of the algorithm squarefree factorization

Input: a polynomial f € Fylz1,...,x,], primitive in z1,..., z,.
Output: the squarefree decomposition Sqr(f) of f.
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1. First compute the separable decomposition of f seen in Fylz1,...,2n_1][Zx]
Then for each separable factor g of Sep(f) compute the separable de-
composition of g seen in Fylzi,...,Zn—2,2s][tn—1]. Then for each separa-
ble factor h of Sep(g) compute the separable decomposition of h seen in
Fylz1,- - Tn_3,Tn_1,Zn][Tn—2], etc. At the end rewrite f as the product of poly-
nomials of the form f;(z]"",...,z"")™ where the f; are separable in x1, ..., 2,
and where the ¢; ; are powers of p.

2. The squarefree factorization of each f;(x{"", ... z7 ™)™ is simply obtained by

qi,n).

extracting the minje(y,.. ny ¢i,5-th root of fl(xtlh’l, e, T

11.5.17 Theorem [Lecerf 2008, Proposition 12] Let f € F,[x,y] be a polynomial of degree
d, in z and dy, in y. If ¢ > 4(3d, + 1)d, then Sqr(f) can be computed with an
expected number of O(d,M(d,)logd, + d;M(d,)logd,)) or O(d,d,) operations in
F,.

11.5.18 Remark Practical multivariate squarefree factorization algorithms have been de-
signed in [Bernardin 1997] to be specifically efficient in small and medium sizes,
when M does not behave as softly linear. Algorithms for deducing the squarefree
decomposition from the separable one were proposed in [Gianni and Trager 1996]
and then improved in [Lecerf 2008] in particular cases.

11.5.1.3 Bivariate irreducible factorization

11.5.19 Definition If R is a unique factorization domain then the irreducible decomposition
of a € R, written Irr(a), is the set of pairs (a;, m;), where a; is an irreducible factor
of a of multiplicity m;. The process of computing the irreducible decomposition is
the irreducible factorization.

11.5.20 Definition If F' is a field then the absolutely irreducible decomposition of f €
Flzy,...,z,] is the irreducible decomposition of f in F[zy,...,z,], where F repre-
sents the algebraic closure of F'. The process of computing the absolutely irreducible
decomposition is the absolutely irreducible factorization, or absolute factorization.

11.5.21 Remark In this section we will not discuss specific algorithms for computing the
absolute factorization. In fact, whenever F' is a finite field, the absolutely irreducible
decomposition of f € F[zi,...,z,] can be obtained from the irreducible decom-
position over the algebraic extension of F' of degree deg f. For more details and
advanced algorithms we refer the reader to [Cheze and Lecerf 2007].

See Also Absolute factorization intervenes for testm%hf a univariate rational function gen-
erates a permutation of a finite field as in the algorithms of [Kayal 2005; Ma and von zur

Gathen 1995]. We refer the reader to Section ?7.

11.5.22 Theorem [Lecerf 2010, Theorem 2] Let ¢ = p*, and let f € F,[x, y] be a polynomial
of degree d, in « and dy in y. If ¢ > 10d,d, then Irr(f) can be computed with
factoring several polynomials in F4[y] whose degree sum does not exceed d, + dy,
plus an ezpected number of O(k(d,d,)"®) operations in F,.

11.5.23 Remark If ¢ is not sufficiently large to apply Theorem 11.5.22 then one can
compute the irreducible factorization of f over a slightly larger finite field, and
then recover the factorization over F, by computing the norm of the factors.

The algorithm underlying Theorem 11.5.22 summarizes as follows:
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11.5.24 Algorithm Sketch of the lifting and recombination technique

Input: a primitive and separable polynomial f € F,[x][y], of partial degrees d, in =
and dy in y.
Output: the irreducible decomposition Irr(f) of f.

1. Normalization. If the cardinality of F, is sufficiently large then a suitable shift of
the variable x reduces the problem to the normalized case defined as follows:

deg f(0,y) = d, and Res (f((),y)7 gjyc((),y)> # 0.

2. Univariate factorization. Compute Irr(f(0,y)) in Fyly].

3. Lifting. Use the classical Hensel lifting from the previously computed irreducible
factors f1(0,v),...,fs(0,y) of f(0,y) in order to deduce the irreducible analytic
decomposition f1,...,fs of f in F,[[z]][y] to a certain finite precision o in z.

4. Recombination. Discover how the latter analytic factors fi1,...,fs recombine into
the irreducible factors.

11.5.25 Remark Since any proper factor g of f is the product of a subset of the analytic
factors, the precision o = d, is sufficient in Algorithm 11.5.24 to discover Irr(f) by
means of exhaustive search. To be precise, it suffices to run over all the subsets S
of {1,..., s} of cardinality at most s/2 and test whether the truncated polynomial
of [],cg fi to precision d, in F,[z][y] divides f or not. This approach was originally
popularized in computer algebra by Zassenhaus in [Zassenhaus 1969] in the con-
text of factoring in Q[y] via the p-adic completion of Q. The adaptation to two
and several variables was first pioneered in [Musser 1975; Wang 1978; Wang and
Rothschild 1975]. In particular, [Musser 1975] introduced coefficient field abstrac-
tions that marked the beginning of generic programming. Von zur Gathen adopted
Musser’s approach to valuation rings [von zur Gathen 1984]. The cost of this ap-
proach is, of course, exponential in s. However, as proved in [Gao and Lauder 2002]
the cost of the recombination process behaves in softly linear time in average over
finite fields, which explains the practical efficiency of this approach.

11.5.26 Remark For details concerning Hensel lifting, we refer the reader to [von zur
Gathen and Gerhard 2003, Chap. 15], that contains a variant of the multifactor
Hensel lifting first designed by Shoup for his C++ library NTL (http://www.
shoup.net). An improvement obtained thanks to the transposition principle is
proposed in [Bostan et al. 2004]. Parallelization has been studied in [Bernardin
1998].

11.5.27 Remark The first attempt to reduce the recombination stage to linear algebra
seems to be due to Sasaki et al. [Sasaki et al. 1992; Sasaki and Sasaki 1993; Sasaki
et al. 1991], with a method called the trace recombination. But the first successes in
the design and proofs of complete algorithms are due to van Hoeij [van Hoeij 2002]
for the factorization in Z[z], and then to Belabas et al. [Belabas et al. 2009] for
F(z)[y], with the logarithmic derivative recombination method, where the precision
o = deg f(deg f —1)+1 is shown to be sufficient in general. Then a precision linear
in deg f in characteristic 0 or large enough characteristic has been shown to suffice
in [Bostan et al. 2004; Lecerf 2006].

11.5.28 Remark In [Gao 2003], Gao designed the first softly quadratic time probabilistic
reduction of the factorization problem from two to one variable whenever the char-
acteristic of the coefficient field is zero or sufficiently large. His algorithm makes use
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of the first algebraic de Rham cohomology group of F[z,y,1/f(x,y)], as previously
used by Ruppert [Ruppert 1986, 1999] for testing the absolute irreducibility. In
fact, if f factors into f; --- f, over the algebraic closure of F' then

fon  fof
(‘f}?xdz + J?y dy>

is a basis of the latter group, where f; := f/fi (see [Ruppert 1986, Satz 2]). In
consequence, this group can be obtained by searching for closed differential 1-forms
with denominators f and numerators of degrees at most deg f — 1, which can be
easily done by solving a linear system. A nice presentation of Ruppert’s results
is made in Schinzel’s book [Schinzel 2000, Chapter 3]. The algorithm underlying
Theorem 11.5.22 makes use of these ideas in order to show that a precision o =
d, + 1 of the series in the Hensel lifting suffices.

11.5.1.4 Reduction from any number to two variables

11.5.29 Remark Let f € F[zq,...,x,] continue to denote a polynomial in n variables over a

11.5.30

field F of total degree d. For any points (a1, ...,ay), (B1,...,0:) and (y1,---,Vn)
in F'", we define the bivariate polynomial f, g in the variables x and y by fa. 5, :=

floaz + iy + 71, o + By + Tn)-

Theorem (Bertini’s theorem, (e.g. [Shafarevich 1994, Chapter II, Section 6.1])
If f is irreducible, then there exists a proper Zariski open subset of (F™)3 such
that fo g4 is irreducible for any triple (a1, ..., an), (B1,.-.,Bn), (71, .., ¥n) in this
subset.

11.5.31

Definition = We say that, for any irreducible factor g of f, a triple
(a1, .y an), By Bn), (Y1, -+, m) in (F™)3 is a Bertinian good point for g if
glarx + B1y + Y1, - -, @n® + By + V) is irreducible with the same total degree
as ¢g. In other words, the irreducible factors of f are in one-to-one correspondence
with those of f, 5. The complementary set of Bertinian good points is written
B(f) and is the set of Bertinian bad points.

11.5.32

Remark For algorithmic purposes, the entries of (a1,...,an), (B1,...,8,) and
(V1,---,7n) must be taken in a finite subset S of F, so that we are naturally
interested in upper bounding the number of Bertinian bad points in (S™)3. We
refer to such a bound as a quantitative Bertini theorem. The density of Bertinian
bad points with entries in a non-empty finite subset S of F' is

B(f) N (S")°]

B(f,S) = |S|3n ,

where | S| represents the cardinality of S.

11.5.33 Theorem (Quantitative Bertini theorem [Kaltofen 1995, Corollary 2] and [Lecerf

1. B(f,9) <

2007, Corollary 8]) If F' is a perfect field of characteristic p, and according to the
above notation, we have that:

(Bd(d—=1)+1)/[S|if p = d(d - 1) +1,

2. B(f,S) < 2d*/|S| otherwise.
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11.5.35

11.5.36
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Remark What we call “Bertini’s theorem” here is a particular but central case of
more general theorems such as in [Shafarevich 1994, Chapter II, Section 6.1]. As
pointed out by Kaltofen [Kaltofen 1995], the special application of Bertini’s theo-
rem to reduce the factorization problem from several to two variables was already
known by Hilbert [Hilbert 1892, p. 117]. This is why Kaltofen and some authors
say “(effective) Hilbert Irreducibility Theorem” instead of “Bertini’s theorem”. For
more historical details about Bertini’s work, we refer the reader to [Jouanolou 1983;
Kleiman 1998].

Remark Bertini’s theorem was introduced in complexity theory by Heintz and
Sieveking [Heintz and Sieveking 1981], and Kaltofen [Kaltofen 1982a]. It quickly
became a cornerstone of many randomized factorization or reduction techniques
including [von zur Gathen 1985; von zur Gathen and Kaltofen 1985; Kaltofen
1985a,b,c]. Over the field of complex numbers, Bajaj et al. [Bajaj et al. 1993]
obtained the bound B(f,S) < (d* — 2d® + d* + d + 1)/|S| by following Mumford’s
proof [Mumford 1995, Theorem 4.17] of Bertini’s theorem. Gao [Gao 2003] proved
the bound B(f,S) < 2d3/|S| whenever F has characteristic 0 or larger than 2d2.
Then Cheze pointed out [Cheze 2004, Chapter 1] that the latter bound can be
refined to B(f,S) < d(d*> — 1)/|S| by using directly [Ruppert 1986, Satz C]. The
paper [von zur Gathen 1985] contains a version for non-perfect fields with a bound
that is exponential in d. If the cardinality |F| is too small, one can switch to an
extension (see Remark 11.5.64 below).

Corollary Let S(n,d) represent a cost function for the product of two power series
over a field F' in n variables truncated to precision d. Let f € Fylz1,...,z,] be
a polynomial of total degree d. If ¢ > 4d* then Irr(F) can be computed with an
expected number of O(1) factorizations of polynomials in Fg [z, y] of total degree d,
plus an ezpected number of O(dS(n — 1,d)) operations in F,.

11.5.37 Remark Softly optimal series products exist in particular cases [van der Hoeven

11.5.38

and Lecerf 2010], for which the factorization thus reduces to the univariate case in
expected softly linear time as soon as n > 3.

Remark The first deterministic polynomial time multivariate factorization algo-
rithms are due to Kaltofen [Kaltofen 1982a,b]. Kaltofen constructed polynomial-
time reductions to bi- (in 1981) and univariate (in 1982) factorization over an
abstract field, which were discovered independently of the 1982 univariate fac-
torization algorithm over the rationals by A. K. Lenstra, H. W. Lenstra, and
Lovédsz [Lenstra et al. 1982]. Kaltofen’s reduction to univariate factorization, how-
ever, was inspired by Zassenhaus’s algorithm [Zassenhaus 1981]. For more references
to work by others (Chistov, von zur Gathen, Grigoriev, A. K. Lenstra) that im-
mediately followed, we refer the reader to Kaltofen’s surveys [Kaltofen 1990, 1992,
2003], and to [von zur Gathen and Gerhard 2003].

11.5.39 Remark Polynomial factorization over finite fields has been implemented in

MaAPLE by Bernardin and Monagan [Bernardin and Monagan 1997]. Other prac-
tical techniques have been reported in [Noro and Yokoyama 2002]. At the present
time, the most general algorithm is due to Steel [Steel 2005]: it handles all co-
efficient fields being explicitly finitely generated over their prime field, and it has
been implemented within the MAGMA computer algebra system [Bosma et al. 1997].
Steel’s algorithm actually completes and improves a previous approach investigated
by Davenport and Trager [Davenport and Trager 1981].
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11.5.2 Deterministic algorithms

It is possible via the rank of the Petr matrix or the distinct degree factorization algorithm
to count the number of irreducible factors of a polynomial over a field F, of characteristic
p in deterministic polynomial time in log p. The same remains true for multivariate polyno-
mials [Kaltofen 1987; Gao et al. 2004], but the algorithms are not straightforward. In [Gao
et al. 2004] a multivariate deterministic distinct degree factorization is presented. There
“distinct degree” is with respect to any degree order.

11.5.3 Factoring sparse multivariate polynomials

11.5.40 Remark Let F be a field. A polynomial f in Flxi,...,z,] is made of a sum
of terms, with each term composed of a coefficient and an exponent seen as a
vector in N™. For any e = (ey,...,e,) € N” we let f. denote the coefficient of the
monomial z5* -+ -zé in f. If a polynomial has only a few of nonzero terms in its
dense representation, one prefers to use the following representation.

11.5.41 Definition A sparse representation of a multivariate polynomial stores the sequence
of the nonzero terms as pairs of monomials and coefficients, sorted for instance in
reverse lexicographical order.

11.5.42 Definition The support of f is Supp(f) := {e € N* | f. # 0}.

11.5.3.1 Ostrowski’s theorem

11.5.43 Definition The Minkowski sum of two subsets @@ and R of R", written @ + R, is
Q+R:={c+/](e.f) €Qx R}.

11.5.44 Definition A polytope in R™ is integral if all of its vertices are in Z™. An integral
polytope P is said to be integrally decomposable if there exists two integral poly-
topes @ and R such that P = Q) + R, where both ) and R have at least two points.
Otherwise, P is integrally indecomposable.

11.5.45 Definition The Newton polytope of f, written N(f), is the convex hull in R™ of
Supp(f). The integral convexr hull of f is the subset of points in Z™ lying in N(f).

11.5.46 Theorem (Ostrowski’s theorem [Ostrowski 1921], translated in [Ostrowski 1999])
If f factors into gh then we have N(f) = N(g) + N(h).

11.5.3.2 Irreducibility tests based on indecomposability of polytopes

11.5.47 Corollary (Irreducibility criterion) [Gao 2001, p. 507] If f € Flxy,...,z,] is a
nonzero polynomial not divisible by any z;, and if N(f) is integrally indecompos-
able, then f is irreducible over any algebraic extension of F.

11.5.48 Theorem [Gao 2001, Theorem 4.2] Let P be an integral polytope in R™ contained
in a hyperplane H and let e € Z™ be a point lying outside of H. If e;,..., e are
all the vertices of P, then the convex hull of P and e is integrally indecomposable
if, and only if, all the entries of e — e1, e — ea, ..., e — e are coprime.
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11.5.49 Theorem [Gao 2001, Theorem 4.11] Let P be an indecomposable integral polytope
in R™ with at least two points, that is contained in a hyperplane H, and let e € R™
be a point outside of H. Let S be any subset of points in Z" contained in the convex
hull of e and P. Then the convex hull of S and @ is integrally indecomposable.

See Also Irreducible multivariate polynomials are treated in Section ?7.

11.5.3.3 Sparse bivariate Hensel lifting driven by polytopes

11.5.50 Remark Let f € Fp[z,y] be a polynomial with ¢ nonzero terms and of total degree d
such that ¢t < d. Let r be a vector in R?, and let I' be a subset of edges of N(f)
satisfying the following properties:

1 N(f) ST+ rR3o,
2. each of the two infinite edges of I' + rR>( contains exactly one point of N(f),
3. no proper subset of I' satisfies the previous two conditions.

Assume furthermore that:

1. f factorizes into f = gh for two proper factors g and h in F,[x,y] with ¢, and
t;, terms respectively, such that max(t,,t5) < t* for some constant \ satisfying
1/72< A< 1.

2. For each edge v € I" we are given polynomials g, and h, supported by v, and
respectively, where v, and 73, are the unique vertices or edges of N(g) and N(h)
respectively such that v = v, + 5.

3. For each edge v € IT" the given polynomials g, and h, are coprime up to monomial
factors.

11.5.51 Theorem [Abu Salem 2008, Theorem 28] Under the above assumptions, there exists
an integral decomposition N(f) = N(g)+ N (h) such that N(g) is not a single point
or a line segment parallel to 7R>(. There exists at most one full factorization of f
which extends the boundary factorization defined by the given (g ) er and (h)er-
Assuming that d and p fit a machine word, this factorization can be computed, or
shown not to exist, using O(t d? + t**dlog dloglog d + t*d) bit-operations, and
O(t*d) bits of memory.

11.5.52 Remark Theorem 11.5.51 extends previous results from [Abu Salem et al. 2004].
Although it does not provide a complete factoring algorithm, it proves to be very
efficient in practice for large particular problems.

11.5.3.4 Convex-dense bivariate factorization

11.5.53 Remark In the worst case, the size of the irreducible factorization is exponential
in the sparse size of the polynomial f to be factored. However Theorem 11.5.46
ensures that the size of the output is upper bounded by the number 7, called the
convez size, of points in Z™ lying inside of N(f). The next theorem to be presented
reduces the bivariate sparse factorization to the usual dense case.

11.5.54 Definition The affine group over Z?, written Aff(Z?), is the set of the maps U

N 1 )

with a, 8, v, o/, B/, and 7/ in Z, such that o’ — o/ = £1.
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11.5.55 Definition Let S be a finite subset of Z2. The set S is said to be normalized if it
belongs to N? and if it contains at least one point in {0} x N, and also at least one
point in N x {0}.

11.5.56 Theorem [Berthomieu and Lecerf 2010, Theorem 1.2] For any normalized finite
subset S of Z?2, of cardinality o, convex size m, and included in [0,d,] x [0,d,],
one can compute an affine map U € Aff(Z?) as in (11.1), together with U(S),
with O(o log?((d, + 1)(d, + 1))) bit-operations, such that U(S) is normalized and
contained in a block [0,d}] x [0,d, ] satisfying (d;, + 1)(d], + 1) < 97.

11.5.57 Lemma For any field F, for any f € F[z,y] not divisible by x and y, for any U as
in (11.1), the polynomial

U(f) = E f(e e )xaem+ch+’yyalem+ﬁ,ey+’yl
x,€y
(ex,ey)ESupp(f)

is irreducible in F[z,y, 2z~ y~1] if, and only if, f is irreducible.

11.5.58 Remark In order to compute the irreducible factorization of F', we can compute a
reduction map U as in Theorem 11.5.56 for Supp(f), then compute the irreducible
factorization of U(f), and finally apply U~! to each factor. In this way we benefit
from complexity bounds that only depend on the convex size 7 of f instead of its
dense size (d, +1)(d, + 1).

11.5.4 Factoring straight-line programs and black boxes

11.5.59 Remark The sparse representation (see Definition 11.5.41) of a polynomial al-
lows for space efficient storage of polynomials of very high degree, since the degree
of the term 22" can be represented by a 501 bit integer. Polynomials f whose
sparse representation occupies (log(deg £))?™) bit space are called supersparse (la-
cunary) [Lenstra 1999; Kaltofen and Koiran 2006]. While computing small degree
factors of such polynomials over the rational numbers can be accomplished in bit
time that is polynomial in the input size, over finite fields such tasks are NP- or
co-NP-hard [Kipnis and Shamir 1999]. Here we have a situation where factoring
over the rational numbers is provably easier than factoring over a sufficiently large
finite field.

In [Kaltofen and Koiran 2005] it is shown, by transferring the construction in [Plaisted
1984], that several other operations on univariate and bivariate supersparse polynomials
over a sufficiently large finite field are NP- or co-NP-hard. For instance, in [Kaltofen and
Koiran 2005] the following is proven:

11.5.60 Theorem Suppose we have a Monte Carlo polynomial-time irreducibility test for
supersparse polynomials in Fom [X, Y] for sufficiently large m. Then large integers
can be factored in Las Vegas polynomial-time.

11.5.61 Remark A polynomial in n variables of (total) degree d can have ("Zd) terms, i.e.,
exponentially many terms in the number of variables. Sparse polynomials are those
that have (n + d)°() non-zero terms. Note that, as in all asymptotic analysis, one
considers not a single polynomial but an infinite set of sparse input polynomials that
a given algorithm processes, now in polynomial time in the sparse size. By using the
factorization #%—1 = (z—1)(x9~1+---+1) one can easily generate examples where
the sparse size of one irreducible factor is super-polynomially larger than the input
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size [von zur Gather and Kaltofen 1985, Example 5.1]. Motivated by algebraic com-
putation models, straight-line programs were adopted as an alternate polynomial
representation, first only for inputs [von zur Gathen 1985], but ultimately and im-
portantly as a representation of the irreducible factors themselves [Kaltofen 1986,
1989]. Here is an example of a division-free straight-line program (single assign-
ment program), where F is the field generated by those operands ¢y, ¢a, ... which
are constants, while x1, xo, ... are input variables:

V1 < C1 X I1;
Vg = T2 — C2;
V3 <« Uy X V2,
Vg = U3 + V1

Vs «— Ug X T3;

V101 <= V100 + Us1;

The variable v191 represents a polynomial in Flz, xo,...], which can be evaluated
by use of the straight-line program. For instance, the determinant of an n x n ma-
trix whose entries are n? variables can be represented, via Gaussian elimination, by
a straight-line program with divisions of length O(n?). Because those divisions can
cause divisions by zero on evaluation at certain points, it is desirable to remove them
from such programs [Strassen 1973]: the shortest division-free straight-line program
for the determinant that is known today has length O(n?7) and uses no constants
other than 1 and —1 in F [Kaltofen and Villard 2004]. In any case, divisions can be
removed by increasing the length by a factor O((deg f)**€) for any € > 0. The 1986
algorithm in [Kaltofen 1986, 1989] produces from a straight-line program of length
[ for a polynomial of degree d in Monte Carlo random polynomial-time straight-line
programs for the irreducible factors (and their multiplicities). The factor programs
themselves have length O(d?l + d37¢). Over finite fields of characteristic p, for an
irreducible factor g of multiplicity p”™m/, where ged(p, m’) = 1, a straight-line pro-
gram for gP"" is returned (see Remark 11.5.65 below). The algorithm is implemented
in the Dagwood system [Freeman et al. 1988] and can factor matrix determinants.
A shortcoming of the straight-line representations, which later were adopted by the
TERA project, was exposed by the Dagwood program: the lengths, while polyno-
mial in the input lengths, become quite large (over a million assignments). The
construction, however, plays a key role in complexity theory [Kabanets and Im-
pagliazzo 2004].

Remark Since polynomials represented by straight-line programs can be converted
to sparse polynomials in polynomial-time in their sparse size by the algorithm
in [Zippel 1979], the straight-line factorization algorithm brought to a successful
conclusion the search for polynomial-time sparse factorizers. Previous attempts
based on sparse Hensel lifting [von zur Gathen 1983; von zur Gather and Kaltofen
1985; Kaltofen 1985¢; Zippel 1979, 1981], retained an exponential substep for many
factors, namely the computation of the so-called right-side Hensel correction coeffi-
cients. The problem of computing the coefficient of a given term in a sparse product
is in general #P-hard. Nonetheless, if a polynomial has only a few sparse factors,
such sparse lifting can be quite efficient, in practice.

Remark Instead of straight-line programs, one can use a full-fledged programmed
procedure that evaluates the input polynomial. The irreducible factors are then
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evaluated at values for the variables by another procedure that makes (“oracle”)
calls to the input evaluation procedure. Thus is the genesis of algorithms for black
box polynomials [Kaltofen and Trager 1988, 1990].

The idea is the following: Suppose one can call a black evaluation box for the polynomial
f(z1,...,x,) € Flay,...,x,]. First, uniformly randomly select from a sufficiently large finite
set field elements a;,¢; (2 < i < n) and b; (1 < j < n) and interpolate and factor the
bivariate image

T

FX,Y) = (X +b1,62Y + 02X + b, enY +anX +by) = [ ] (X, V)
k=1

By the effective Hilbert Irreducibility Theorems 11.5.33 above, the irreducible polynomials
Jr are with high probability bivariate images of the irreducible factors hy(x1,...,2,) of f.
For small coefficient fields we shall assume that the black box can evaluate f at elements
in a finite algebraic extension E of F. Already the bivariate interpolation algorithm may
require such an extension in order to have sufficiently many distinct points.

11.5.64 Remark If one selects an extension E of degree [E : F] > deg(f) that is a
prime number, all hj remain irreducible over that extension. Indeed, the Frobe-

nius norm Normpg,r(h) € Flzy,...,7,] of a possible non-trivial irreducible factor
h e E[zy,...,x,] of an hy must be a power of an irreducible polynomial over F,

hence a power of hy itself. For otherwise ged(hx, Normpg r(h)) would constitute a

non-trivial factor of hy over F. But then deg(h) - [E : F] = deg(hg) - m, where m
is the exponent of that power, and because [E : F] is a prime > deg(f) > deg(h),
we obtain the contradiction deg(h) = deg(hx) - (m/[E : F]) > deg(hy).
Remark 11.5.63 continued. Now the black box for evaluating all hy (&1, ..., &,) at field
elements & € F stores (“hard-wires”) the a;,b; and the factors gi(X) = gr(X,0) in its
constant pool. We note that g are not necessarily irreducible, but with high probability
they are pairwise relatively prime [Kaltofen and Trager 1990, Section 2, Step 3], and their
leading terms only depend on the variable X. The black box first interpolates

FX,Y) = f(X +b1,Y (& — az2(& — by) — ba) + as X + by,
"vY(gn_an(fl _bl) _bn)+anX+bn) (11.2)

and then factors f such that

FX,Y) =[] (X, V) with  Ri(X,0) = gi(X). (11.3)
k=1

We note that again the hj are not necessarily irreducible. One may Hensel-lift the factor-
ization

f(X+b1,a2X+b2,...,anX—|—bn) = Hgk(X)ek (114)
k=1

provided none of the multiplicities ey is divisible by p. Otherwise, one can fully
factor f(X,Y) and lump (multiply) those irreducible factors h.(X,Y) together
where h,(X,0) divide one and the same gy (X). Alternatively, if p™ divides ey one
could lift the p™-th power of g and take a p™-th root of the lifted factor. We have

f(& —=b1,1) = f(&, ..., &), and for all k we obtain hy (&1 — b1, 1) = he(é1,. .., &)
We observe that the scalar multiple of hj is fixed in all evaluations by the choice

of gk



14

Handbook of Finite Fields

11.5.65 Remark Over finite coefficient fields, there is no restriction on the multiplicities ey.

One does not obtain a pure straight-line program for the polynomial hj because a
bivariate factorization of f or a p™-th root of the lifted factor, which depend on the
evaluation points &;, are performed on each evaluation. One can obtain straight-
line polynomials that equal the irreducible factors modulo (z{ — z1,...,29 — z;,)
by powering by ¢/p™, where ¢ < oo is the cardinality of the coefficient field. Those
straight-line programs produce correct evaluations of the irreducible factors.

11.5.66 Remark The blackbox factorization algorithm is implemented in the FoxBox sys-

tem [Diaz and Kaltofen 1998]. The size blowup experienced in the straight-line
factorization algorithm does not occur. In fact, the factor evaluation black box
makes O(deg(f)?) calls to the black box for f and factors a bivariate polynomial,
either by lifting (11.4) or, if multiplicities are divisible by the characteristic, by fac-
toring f. The program is fixed except for the constants a;, b; and the polynomials
k-

11.5.67 Remark We conclude that the sparse representations of the factors can be recovered

by sparse interpolation over a finite field (see [Kaltofen and Lee 2003] and the
literature cited there). Dense factors can be identified to have more than a given
number of terms and skipped.
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