Fifteen years after DSC and WLSS2 What parallel computations I do today

Erich L. Kaltofen North Carolina State University google->kaltofen

The PASCO/Computer Algebra and Parallelism (CAP) Conference Series

- 1. 1988 CAP, Grenoble, France
- 2. 1990 CAP, Ithaca, USA
- 3. 1994 Hagenberg, Austria
- 4. 1997 Wailea, USA
- 5. 2007 London, Canada
- 6. 2010 Grenoble, France

Who attended all 6?

The PASCO/Computer Algebra and Parallelism (CAP) Conference Series

- 1. 1988 CAP, Grenoble, France
- 2. 1990 CAP, Ithaca, USA
- 3. 1994 Hagenberg, Austria
- 4. 1997 Wailea, USA
- 5. 2007 London, Canada
- 6. 2010 Grenoble, France

Who attended all 6?

Seattle-Tacoma Departure to Pasco

Outline

- Reminiscences
- Supersparse interpolation
- Today's parallel hardware
- Interactive symbolic supercomputing

- ABSOLUTELY IRREDUCIBILITY $\in \mathscr{NC}$ [Kaltofen '85 JSC vol. 1, nr. 1]

- ABSOLUTELY IRREDUCIBILITY $\in \mathscr{NC}$ [Kaltofen '85 JSC vol. 1, nr. 1]
- $K[x]^{n \times n}$ -SMITH FORM $\in \mathscr{RNC}$ [Kaltofen, Krishnamoorthy, Saunders SYMSAC'86 and EUROCAL'87]: Mr. Smith goes to Las Vegas

- ABSOLUTELY IRREDUCIBILITY $\in \mathscr{NC}$ [Kaltofen '85 JSC vol. 1, nr. 1]
- $K[x]^{n \times n}$ -SMITH FORM $\in \mathscr{RNC}$ [Kaltofen, Krishnamoorthy, Saunders SYMSAC'86 and EUROCAL'87]: Mr. Smith goes to Las Vegas
- Parallelization of straight-line polynomials [Miller, Ramachandran, Kaltofen AWOC'86] and straight-line rational functions [Kaltofen STOC'86]

- ABSOLUTELY IRREDUCIBILITY $\in \mathscr{NC}$ [Kaltofen '85 JSC vol. 1, nr. 1]
- $K[x]^{n \times n}$ -SMITH FORM $\in \mathscr{RNC}$ [Kaltofen, Krishnamoorthy, Saunders SYMSAC'86 and EUROCAL'87]: Mr. Smith goes to Las Vegas
- Parallelization of straight-line polynomials [Miller, Ramachandran, Kaltofen AWOC'86] and straight-line rational functions [Kaltofen STOC'86]
- Processor-efficient parallel linear system solving [Kaltofen and Pan SPAA'91 and FOCS'92] Includes parallelization of automatic differentiation

An Old Email To Ph.D. Student John F. Canny

From kaltofen Mon May 4 15:15:18 1987
Received: by csv.rpi.edu (5.54/1.14)
To: jfc@oz.ai.mit.edu
Subject: Your question
Dear John:

Several articles have been written since my remark. First, if the roots are all real, they can be isolated and approximated in $O(\log(n)^2)$ parallel depth [Proc. STOC 1986, 340-349].

... I was told by David and Gregory Chudnovsky (8/86) that the homotopy methods [Math. Programming 16, 159-176 (1979)] accomplish the same for the complex root problem. ...

Your ideas on using parallel computation to get the Tarski problem into polynomial time have been persued as well. There is a paper by Ben-Or, Kozen, and Reif in a recent issue of J. Comput. System Sci.; also one in [Proc. FOCS 1985, 515-521] covers that area.

A promising line of research, I think, is to investigate parallel homotopy methods as mentioned above. ...

Erich

Distributed Symbolic Computation (DSC) Tool [Diaz, Kaltofen, Schmitz, Valente, ISSAC 1991]

DSC Predictive (ARIMA) Scheduler [Hitz et al. DISCO'93, Kaltofen and Samadani PODC'95]

DSC Predictive (ARIMA) Scheduler [Hitz et al. DISCO'93, Kaltofen and Samadani PODC'95]

DJIA May 6, 2010: Multiple prediction programs?

Goldwasser-Kilian-Atkin Primality Prover in DSC

	# parallel subtasks					
Digits	1	2	4	8	16	
22	0:52(2)	0:54(5)	0:36(3)	1:22(5)	1:18(2)	
	0:45(2)	0:54(5)	0:44(3)	1:00(3)	2:17(3)	
	0:50(2)	0:54(5)	0:46(3)	1:08(3)	1:12(3)	
	0:52(2)	0:54(5)	0:47(3)	0:51(3)	3:08(5)	
43	31:37(7)*	7:43(6)	1:27(5)	3:07(9)	7:09(7)	
	31:08(7)*	7:21(7)	2:40(8)	3:31(6)	7:47(9)	
	33:39(7) [*]	7:20(7)	2:39(8)	2:25(7)	6:03(11)	
		7:34(7)	2:46(8)	2:55(8)	4:13(5)	
99			38:28(18)	43:53(19)	25:21(19)	
			44:38(21)	31:51(16)	27:27(21)	
			68:14(17)	32:15(19)	23:31(21)	
			46:19(21)	30:58(15)	27:22(21)	

Timings for GKA (first stage, first decent strategy). Times shown are minutes:seconds (# of descents).

* First descent with 110th discriminant on list.

Wiedemann Linear System Solver for the IBM SP-2 (WLSS2) [Kaltofen and Lobo HPC'96]

N	Grain	Sequence	Minpoly	Evaluation	Total
52,250	32	0 ^h 10'	0 ^h 42'	0 ^h 04'	0 ^h 57′
252,222	32	7 ^h 15′	15 ^h 24′	3 ^h 51'	26 ^h 30'

Parallel CPU Time (hours^hminutes') for finding 128 solutions with optimized WLSS2 package on 4 nodes of an SP-2 multiprocessor.

Ben-Or/Tiwari '88 Interpolation

Main idea: Let
$$f(y) = c_1 y^{e_1} + \dots + c_t y^{e_t} \in \mathsf{K}[y]$$

 $g \in \mathsf{K}$ with $g^{e_i} \neq g^{e_j}$ for $i \neq j$

Then $a_k = f(g^k)$, k = 0, 1, ... is minimally linearly generated by

$$\Lambda(z) = (z - g^{e_1}) \cdots (x - g^{e_t})$$

Ben-Or/Tiwari '88 Interpolation

Main idea: Let
$$f(y) = c_1 y^{e_1} + \dots + c_t y^{e_t} \in \mathsf{K}[y]$$

 $g \in \mathsf{K}$ with $g^{e_i} \neq g^{e_j}$ for $i \neq j$

Then $a_k = f(g^k)$, k = 0, 1, ... is minimally linearly generated by

$$\Lambda(z) = (z - g^{e_1}) \cdots (x - g^{e_t})$$

My 1988 manuscript fragment on deterministic rational function recovery:

"In order to avoid large intermediate integral results one can work modulo a sufficiently large prime \bar{p} such that $\bar{p} - 1$ is smooth. Then discrete logarithms can be found efficiently and ..." 1988 Remark cont.: Kronecker substitution For $F(x_1,...,x_n) \in K[x_1,...,x_n]$ interpolate

 $f(y) = F(y, y^{d_1+1}, y^{(d_1+1)(d_2+1)}, \ldots), d_j \ge \deg_{x_j}(F)$

1988 Remark cont.: Kronecker substitution For $F(x_1,...,x_n) \in K[x_1,...,x_n]$ interpolate $f(y) = F(y, y^{d_1+1}, y^{(d_1+1)(d_2+1)},...), d_j \ge \deg_{x_j}(F)$

$$p \ge (d_{\max} + 1)^n \implies \log(p) = n \log(d_{\max})$$

$$\implies \text{algorithm is polynomial in } \log(\deg F)$$

$$\implies \text{term degrees of, e.g., } 2^{500} \text{ allowed}$$

Supersparse (lacunary) interpolation in 1988!

Pohlig-Hellman 1978 Primes Via Dirichlet

- $p = \mu Q + 1$ is prime for:
 - $\mu < \infty$ [Dirichlet 1837]

 $\mu = O(Q^{L-1}), L$ constant [Linnik 1944]

- $\mu = O(Q^{4.5})$ [Heath-Brown 1992]
- $\mu = O(Q (\log Q)^2)$ under GRH

 $\mu = O((\log Q)^2)$ conjectured in [Heath-Brown 1979]: L = 2 "may presumably be reduced to $[P(n)] \ll n (\log n)^2$ " Pohlig-Hellman 1978 Primes Via Dirichlet

- $p = \mu Q + 1$ is prime for:
 - $\mu < \infty$ [Dirichlet 1837]

 $\mu = O(Q^{L-1}), L$ constant [Linnik 1944]

- $\mu = O(Q^{4.5})$ [Heath-Brown 1992]
- $\mu = O(Q (\log Q)^2)$ under GRH

 $\mu = O((\log Q)^2)$ conjectured in [Heath-Brown 1979]: L = 2 "may presumably be reduced to $[P(n)] \ll n (\log n)^2$ "

Example: $37084 = \max_{m \le 12300} (\operatorname*{argmin}_{\mu \ge 1} (\mu 2^m + 1 \text{ is prime})).$

Linear Generators Via Block Generators

Example: t = 18

Compute minimal matrix generator $\Gamma(z) \in K[z]^{2 \times 2}$ of

$$\begin{bmatrix} a_i & a_{9+i} \\ a_{9+i} & a_{18+i} \end{bmatrix}, \quad i = 0, 1, \dots, 18.$$

by matrix Berlekamp/Massey algorithm. Then $\Lambda(z) = \det(\Gamma(z))$

Linear Generators Via Block Generators

Example: t = 18

Compute minimal matrix generator $\Gamma(z) \in K[z]^{2 \times 2}$ of

$$\begin{bmatrix} a_i & a_{9+i} \\ a_{9+i} & a_{18+i} \end{bmatrix}, \quad i = 0, 1, \dots, 18.$$

by matrix Berlekamp/Massey algorithm. Then $\Lambda(z) = \det(\Gamma(z))$

Why? 1. if $f(g^{k+1})$ is easier to compute with $f(g^k)$ ("giant-steps/baby steps")

2. Locality, locality, locality [Moreno Maza 2010]

Siegfried Rump's 2006 Model Problem

For n = 1, 2, 3, ... compute the global minimum μ_n :

$$\mu_{n} = \min_{P,Q} \frac{\|PQ\|_{2}^{2}}{\|P\|_{2}^{2} \|Q\|_{2}^{2}} \quad \text{(rational function)}$$

s. t. $P(Z) = \sum_{i=1}^{n} p_{i}Z^{i-1}, Q(Z) = \sum_{i=1}^{n} q_{i}Z^{i-1} \in \mathbb{R}[Z] \setminus \{0\}$

Siegfried Rump's 2006 Model Problem

For n = 1, 2, 3, ... compute the global minimum μ_n :

Local Minimum By Lagrangian Multipliers

Siegfried Rump's 2006 Model Problem

For n = 1, 2, 3, ... compute the global minimum μ_n :

$$\mu_{n} = \min_{P,Q} \frac{\|PQ\|_{2}^{2}}{\|P\|_{2}^{2} \|Q\|_{2}^{2}} \quad \text{(rational function)}$$
s. t. $P(Z) = \sum_{i=1}^{n} p_{i}Z^{i-1}, Q(Z) = \sum_{i=1}^{n} q_{i}Z^{i-1} \in \mathbb{R}[Z] \setminus \{0\}$

$$\uparrow$$

$$\frac{1}{\mu_{n}} = \max_{P,Q} B_{n-1}$$
s. t. $\|P(Z)\|_{2}^{2} \cdot \|Q(Z)\|_{2}^{2} = B_{n-1}\|P(Z) \cdot Q(Z)\|_{2}^{2}$
 $P, Q \in \mathbb{R}[Z] \setminus \{0\}, \deg(P) \le n-1, \deg(Q) \le n-1$

Mignotte's factor coefficient bound: $\frac{1}{\mu_n} \le {\binom{2n-2}{n-1}}^2$

Rational Function Detail

Minimize the rational function $\frac{f(\mathbf{X})}{g(\mathbf{X})}$ with

$$f(\mathbf{X}) = \|PQ\|_2^2 = \sum_{k=2}^{2n} (\sum_{i+j=k}^{n} p_i q_j)^2,$$
$$g(\mathbf{X}) = \|P\|_2^2 \|Q\|_2^2 = (\sum_{i=1}^{n} p_i^2) (\sum_{j=1}^{n} q_j^2)$$

where

$$\mathbf{X} = \{p_1, \ldots, p_{\lceil n/2 \rceil}\} \cup \{q_1, \ldots, q_{\lceil n/2 \rceil}\},\$$

because P, Q achieving μ_n must be symmetric or skew-symmetric [Rump and Sekigawa 2006]

Rational Function Optimization By Sparse SOS

A (positive) lower bound of $\mu_n = \min \frac{f}{g}$, *g* positive, is obtained by solving the sparse block semidefinite program:

$$\mu_n^* := \sup_{r \in \mathbb{R}, W} r$$

s. t. $f(\mathbf{X}) = m_{\mathscr{G}}(\mathbf{X})^T \cdot W \cdot m_{\mathscr{G}}(\mathbf{X}) + rg(\mathbf{X})$
 $(f(\xi_1, \dots, \xi_n) = SOS + rg(\xi_1, \dots, \xi_n) \ge rg(\xi_1, \dots, \xi_n))$
 $W \succeq 0, W^T = W, \quad r \ge 0$

where $m_{\mathscr{G}}(\mathbf{X})$ is the term vector restricted to $p_i q_j$

For n = 14: $W \in \mathbb{R}^{49 \times 49}$, 784 equality constraints

Certified Rump Model Lower Bounds [with Bin Li, Zhengfeng Yang, Lihong Zhi 2009]

n	k	#iter	prec.	secs/iter	lower bound r_n	relative Δ_n	$\Delta_n^{[ISSAC'08]}$	#sq	logH
7	1	60	10×15	0.27	3.418506980e-05	2.048e-14	2.018e-14	16	2485
8	2	80	6×15	0.24	3.905435600e-06	2.561e-15	7.681e-11	16	1563
9	1	280	10×15	1.75	4.360016539e-07	3.784e-14	6.881e-08	25	3919
10	2	280	12×15	1.89	4.783939568e-08	4.517e-13	8.361e-07	25	4660
11	1	510	13×15	9.62	5.178700000e-09	9.481e-06	1.931e-04	36	7201
12	2	210	5×15	8.79	5.545390000e-10	8.869e-05	5.439e-03	36	2881
13	1	270	5×15	41.93	5.881019273e-11	9.639e-04	1.728e-02	49	4271
14	2	440	25×15	33.68	6.10000000e-12	1.679e-02	9.368e-01	49	3121
15	1	1070	25×15	162.84	6.00000000e-13	8.239e-02		64	5751
16	2	640	25×15	153.94	6.00000000e-14	1.273e-01		64	5312
17	1	1650	10×15	504.10	1.00000000e-15	6.011e+00		81	12984
17	1	4200	10×15	380.75	6.000000000e-15	1.685e-01		81	13029
18	2	6440	10×15	344.75	1.000000000e-16	6.238e+00		81	12570
18	2	8800	10×15	352.62	3.00000000e-16	1.413e+00		81	12571
18	2	26800	10×15	330.36	7.00000000e-16	3.406e-02		81	12578

2007 MacPro: 4 Cores, 1 Memory Bus = Bus Contention

2009 MacPro: 16 Cores, "Nehalem" Bus = Less Contention

Contention Reduction By Software?

Google's TCmalloc [see paper by Dumas, Gautier, Roch]

Garbage collection vs. TCmalloc Since the Lisp Machine days, I became a sceptic of GC for large computations (one reason why no Java LinBox)

Contention Reduction By Software?

Google's TCmalloc [see paper by Dumas, Gautier, Roch]

Garbage collection vs. TCmalloc Since the Lisp Machine days, I became a sceptic of GC for large computations (one reason why no Java LinBox)

Moreno Maza: Could TCmalloc be used to deal with memory contention when several Maple sessions are to be run concurrently on a multicore?

Darin Ohashi: Interesting. When running multiple sessions, each session has its own independent kernel.

MMM: Since these Maple sessions are running the same algorithm with different input, would the Thread Package be appropriate instead?

DO: The problem could be that some library routines may not be thread safe.

Nonlinear Diophantine Optimization

• Maximization of the **single factor coefficient bound** for integer polynomials w.r.t. infinity norm.

 $c_n = \max_{F,G} \chi_n$

s. t. $\min(||F(z)||_{\infty}, ||G(z)||_{\infty}) = \chi_n ||F(z) \cdot G(z)||_{\infty}$ $F, G \in \mathbb{Z}[z]$ irreducible, $\deg(F) + \deg(G) = n$

Fact: $\forall n : c_n$ is a rational number. Conjecture $\lim_{n\to\infty} c_n = \infty$

Nonlinear Diophantine Optimization

• Maximization of the **single factor coefficient bound** for integer polynomials w.r.t. infinity norm.

 $c_n = \max_{F,G} \chi_n$ s. t. $\min(\|F(z)\|_{\infty}, \|G(z)\|_{\infty}) = \chi_n \|F(z) \cdot G(z)\|_{\infty}$ $F, G \in \mathbb{Z}[z] \text{ irreducible, } \deg(F) + \deg(G) = n$

Fact: $\forall n : c_n$ is a rational number. Conjecture $\lim_{n\to\infty} c_n = \infty$

Boyd's 1997 bound ≥ 2.7339
 Collins's 2004 bound ≥ 2.2005
 Our 2008 record ≥ 3.4334
 Abbott's 2005/'09 bound ≥ 13.7500

Lehmer's Mahler measure problem

$$f(z) = a \cdot \prod_{i=1}^{n} (z - \alpha_i) \in \mathbb{Z}[z], \ \alpha_i \in \mathbb{C},$$
$$M(f) = |a| \cdot \prod_{i=1}^{n} \max\{|\alpha_i|, 1\} \text{ (the Mahler measure)}$$

For Lehmer's 1933 polynomial we have $L(z) = z^{10} + z^9 - z^7 - z^6 - z^5 - z^4 - z^3 + z + 1$ M(L) = 1.1762808...

Is there a polynomial in $\mathbb{Z}[z]$ with 1 < M(f) < M(L)?

Michael Mossinghoff's Top 100

MM's	deg	Mahler measure	count	MM's	deg	Mahler measure	count
1.	10	1.176280818260	2248	26.	12	1.227785558695	77
2.	18	1.188368147508		27.	30	1.228140772740	
3.	14	1.200026523987	1	28.	36	1.229482810173	
4.	18	1.201396186235	8804	29.	22	1.229566456617	1
5.	14	1.202616743689	105	30.	34	1.229999039697	
6.	22	1.205019854225	10	31.	38	1.230263271363	
7.	28	1.207950028412		32.	42	1.230295468643	
8.	20	1.212824180989	4	33.	10	1.230391434407	27995
9.	20	1.214995700776		34.	46	1.230743009076	
10.	10	1.216391661138	198	35.	18	1.231342769993	
11.	20	1.218396362520	1598	36.	48	1.232202952743	
12.	24	1.218855150304		37.	20	1.232613548593	133
13.	24	1.219057507826		38.	28	1.232628775929	
14.	18	1.219446875941		39.	38	1.233672001767	
15.	18	1.219720859040		40.	52	1.234348374876	
16.	34	1.220287441693		41.	24	1.234443834873	
17.	38	1.223447381419		42.	26	1.234500336789	
18.	26	1.223777454948		43.	16	1.235256705642	72
19.	16	1.224278907222	1779	44.	46	1.235496042193	
20.	18	1.225503424104	35	45.	22	1.235664580390	
21.	30	1.225619851977		46.	42	1.235761099712	
22.	30	1.225810532354		47.	32	1.236083368052	
23.	26	1.226092894512	17	48.	32	1.236198469859	
24.	36	1.226493301473		49.	32	1.236227922245	
25.	20	1.226993758166	194	50.	40	1.236249557349	

MM's	deg	Mahler measure	count	MM's	deg	Mahler measure	count
51.	16	1.236317931803	8	76.	58	1.241902161200	
52.	54	1.236566917569		77.	50	1.241974375265	
53.	34	1.236579223637		78.	58	1.242217045566	
54.	44	1.236674812187		79.	52	1.242362139933	
55.	28	1.236808305865		80.	58	1.242610289442	
56.	26	1.237504821217		81.	76	1.242775741593	
57.	46	1.237634830280		82.	50	1.242878658278	
58.	58	1.237684127894		83.	32	1.242940115199	
59.	48	1.238040100176		84.	70	1.242979209676	
60.	56	1.238431627359		85.	60	1.243027765980	
61.	56	1.238708978554		86.	30	1.243128704866	
62.	42	1.239505770490		87.	72	1.243210037398	
63.	54	1.239747974875		88.	16	1.243477618690	38
64.	48	1.239861326360		89.	60	1.243486256656	
65.	60	1.240061859037		90.	46	1.243564793293	
66.	26	1.240254178706		91.	46	1.243682745689	
67.	50	1.240379074717		92.	28	1.243878801656	
68.	28	1.240699637594		93.	56	1.243935933206	
69.	12	1.240726423653	471	94.	60	1.244271476892	
70.	18	1.240770634960	17	95.	70	1.244273644932	
71.	54	1.240983403460		96.	40	1.244414501983	
72.	68	1.241372531335		97.	62	1.244598861428	
73.	70	1.241422024928		98.	18	1.244617058976	1
74.	58	1.241541076676		99.	76	1.244729172444	
75.	72	1.241788568356		100.	22	1.244802445450	

With Leading Coefficient 2

EK's	deg	(Mahler measure)/2	count
1.	22	1.014537415604	3
2.	22	1.023188691065	3
3.	18	1.023467897775	3
4.	22	1.025607305528	2
5.	20	1.026063881400	18
6.	18	1.027106023710	61
7.	20	1.027522935540	1
8.	18	1.028643802187	16
9.	22	1.028656563641	1
10.	18	1.029862344505	22

Interactive Symbolic Supercomputing

Idea of Edelman's *Star-P* in Matlab of Microsoft's INTER*CTIVE: Use overloading for remote supercomputer execution. Sessions are **indistinguishable** from local sessions.

Proposal: overload Maple's *LinearAlgebra* package as a supercomputer LinBox.

Merci!