
Fifteen years after DSC and WLSS2
What parallel computations I do today*

[Invited Lecture at PASCO 2010]

Erich L. Kaltofen
Dept. of Mathematics, North Carolina State University

Raleigh, North Carolina 27695-8205,USA

kaltofen@math.ncsu.edu
http://www.kaltofen.us

ABSTRACT
A second wave of parallel and distributed computing re-
search is rolling in. Today’s multicore/multiprocessor
computers facilitate everyone’s parallel execution. In
the mid 1990s, manufactures of expensive main-frame
parallel computers faltered and computer science focused
on the Internet and the computing grid. After a ten year
hiatus, the Parallel Symbolic Computation Conference
(PASCO) is awakening with new vigor.

I shall look back on the highlights of my own research
on theoretical and practical aspects of parallel and dis-
tributed symbolic computation, and forward to what is
to come by example of several current projects. An im-
portant technique in symbolic computation is the eval-
uation/interpolation paradigm, and multivariate sparse
polynomial parallel interpolation constitutes a keystone
operation, for which we present a new algorithm. Sev-
eral embarrassingly parallel searches for special polyno-
mials and exact sum-of-squares certificates have exposed
issues in even today’s multiprocessor architectures. So-
lutions are in both software and hardware. Finally, we
propose the paradigm of interactive symbolic supercom-
puting, a symbolic computation environment analog of
the STAR-P Matlab platform.

Categories and Subject Descriptors: I.1.2 [Sym-
bolic and Algebraic Manipulation]: Algorithms; D.1.3
[Programming Techniques]: Parallel Programming

General Terms: algorithms, experimentation

Keywords: multiprocessor, multicore, memory bus con-
tention, sparse interpolation, supersparse interpolation,
parallel search, Lehmer’s problem, single factor coeffi-
cient bound, interactive supercomputing

∗
This material is based on work supported in part by the Na-

tional Science Foundation under Grants CCF-0830347 and DMS-
0532140.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$5.00.

1. INTRODUCTION

1.1 A brief history of my research in
parallel symbolic computation

In Fall 1982 as a newly minted Ph.D. hired by the
theoretical computer science group at the University of
Toronto, I was drawn into parallel computation. I shall
briefly give an account of my research in parallel and dis-
tributed symbolic computation. The new parallel com-
plexity class NC had been described by Stephen Cook
(see [7]) and exact linear algebra problems were shown
within it [5], in fact within uniform log-squared circuit
depth. Since I worked on the problem of multivariate
polynomial factorization, my first parallel result was on
factoring polynomials over the complex numbers [24].
Because the integer GCD problem and the more general
lattice basis reduction problem were (and are today) not
known to be within NC, the factorization of the defin-
ing polynomial for the field of definition of the complex
factor coefficients had to be delayed until zero divisors
appeared. Absolute irreducibility testing, however, was
placed cleanly in NC.∗ Independently, at the same time
delayed factorization was used in sequential polynomial
computation and called the D5 principle [12].

Work on polynomial matrix canonical forms with M.
S. Krishnamoorthy and B. D. Saunders followed [29,
30], introducing random scalar matrix preconditioners
for Smith form computation. Our general purpose algo-
rithm for parallelizing straight-line programs for polyno-
mials [47] and rational functions [25, Section 8] also in-
creases the amount of total work of the parallel algebraic
circuit, but our randomized algorithm for exact parallel
linear system solving [37, 38], based on Wiedemann’s
algorithm [53], at last was processor-efficient, i.e., had
only a poly-log factor more total work. No such solution
is known today for Toeplitz systems or other structured
systems (cf. [39]—a PASCO 1994 paper).

What was already apparent in the early 1990s, NC
or even processor-efficient poly-logarithmic time algo-
rithms are unrealizable on parallel computers: one does
not have O(n3) processors for symbolic computation

∗
My paper [24] in its conclusion poses the problem of approx-

imate polynomial factorization, which we only could solve 19
years later [17, 36].

10

http://www.kaltofen.us

tasks, and that without communication latency, for large
n. Our 1991 implementation of a systolic polynomial
GCD algorithm [6] on our own MasPar (“Massively Par-
allel”) computer was slower then the sequential code on
a top end workstation. The Thinking Machines Corpo-
ration filed for bankruptcy in 1994 and bit-wise paral-
lelism disappeared. As far as I can judge, circuits of
poly-logarithmic depth are only realized, on chip, for
basic arithmetic operations such as look-ahead addition
or Wallace-tree multiplication, which can be exploited
for packed modular arithmetic with small moduli [15].
However, I still read today, in papers on exponential
sequential algorithms in real algebraic geometry, for ex-
ample, of “parallel polynomial-time” solutions. Those
algorithms are not realizable.

The black box model for polynomials [40] and the par-
allel reconstruction algorithm via sparse interpolation
seemed much more practicable—embarrassingly paral-
lel. Thus in 1990 we began developing a run-time sup-
port tool, DSC (Distributed Symbolic Computation) [10,
8]. Several features in DSC seem unsupported in com-
monly used distributed run-time support tools, such as
MPI/PVM. DSC could automatically distribute source
code, produced possibly by the black box polynomial
algorithms, to be compiled remotely before execution.
There was a (weak) encryption protocol implemented to
prevent malicious compilation requests on the remote
computers. In today’s world-wide hacker-attack envi-
ronment our protocol no longer can meet required secu-
rity standards. A second feature tried to model proces-
sor loads via time-series models and selectively choose
computers with predicted short process queues [49]. We
worked with the assumption that DSC was the only dae-
mon process making such predictions on the LAN, as
multiple such forecasters would possible select the same
target computer. It appears to me that some of the in-
stabilities in today’s stock markets may be the result of
similarly interfering prediction programs.

In the end, even my own Ph.D. students switched
from our home made DSC to MPI, and our sparse mul-
tivariate polynomial interpolation algorithm in FoxBox
is implemented with MPI [9, Section 2.8]. MPI was
supported on a parallel computer available to us, the
IBM SP-2. Our second application is the block Wiede-
mann algorithm [27] and Austin Lobo’s implementa-
tion for entries in Z2 [45, 34, 35]. Lobo called his li-
brary WLSS (pronounced WiLiSyS—Wiedemann’s Lin-
ear System Solver) and the SP-2 implementation WLSS2,
on which systems arising from the RSA factoring chal-
lenged could be solved. Parallel symbolic computation
had finally become reality. Those papers with Lobo
should become, quite unpredictably, my last ones on the
subject for 15 years, until this paper.

The second PASCO conference [21], for which I chaired
the program committee, was held in Maui, Hawaii, be-
fore ISSAC 1997. Hoon Hong, the general chair, had
broadened the subject to parallel automatic theorem
proving. There were still several (strong) NC papers.
Laurent Bernardin reported on a “massively” parallel
implementation of Maple [4]. In contrast, Gaston Gonnet
in his 2010 talk at Jo60, the conference in honor of
Joachim von zur Gathen’s 60th birthday, speculated that

Maple’s success was due in part that parallelism was not
pursued in the early years.

On the other hand, Jean-Louis Roch, who attended
our workshop “Parallel Algebraic Computation” at Cor-
nell University in 1990 [55], with Thierry Gautier and
others fully embraced parallelism and built several gen-
eral purpose APIs and run-time systems: Athapascan-1
and Kaapi. The multicore multithreaded architectures
of today make data parallel programming far beyond
vector processing a reality. In 2007 Marc Moreno Maza
single-handedly has revived the PASCO conference se-
ries. In his own symbolic computation research Moreno
Maza systematically deploys parallel APIs, he also uses
Cilk. A renaissance has begun. One paper at PASCO
2007 started at exactly the same place where we had left
off: a parallel block Wiedemann algorithm [14].

1.2 Overview of results
We describe three separate topics. In Section 2 we

investigate the important problem of sparse polynomial
interpolation. Interpolation constitutes the reconstruc-
tion phase when computing by homomorphic images.
The Ben-Or/Tiwari [3] breaks the sequentiality of Zip-
pel’s algorithm [54], but term exponent vectors need to
be recovered from modular images. We give a method
based on the discrete logarithm algorithm modulo primes
p with smooth multiplicative orders p − 1. Our algo-
rithm can handle very large degrees, i.e., supersparse
inputs [28], and thus allows for Kronecker substitution
from many to a single variable.

In Section 3, we report on our year-long computer
search for polynomials with large single factor coeffi-
cient bounds and small Mahler measure. Our search
was successfully executed on multiprocessor MacPros.
A second search, for sum-of-squares lower bound cer-
tificates in Rump’s model problem [33, 43], for which
each process requires several GBs of memory, was less
successful on the older multiprocessor MacPros due to
memory bus contention. Intel’s new “Nehalem” archi-
tecture somewhat mitigates those issues.

In Section 4 we introduce the paradigm of interactive
symbolic supercomputing.

2. SUPERSPARSE POLYNOMIAL
INTERPOLATION

2.1 Term recovery by discrete logarithms
In [9, Section 4.1], as stated above, we implemented a

modification of Zippel’s [54] variable-by-variable multi-
variate sparse polynomial interpolation algorithm with
modular coefficient arithmetic. The individual black
box evaluation in each iteration are carried out in paral-
lel, but the algorithm increases sequentially the number
of variables in the interpolants. The algorithm works
with relatively small moduli, and our subsequent hy-
bridization [32] of the Zippel and Ben-Or/Tiwari [3] has
further reduced the size of the required moduli.

An alternative that interpolates all variables in a sin-
gle pass but requires a large modulus is already de-
scribed in [26]. First, the multivariate interpolation
problem for a black box polynomial f(x1, . . . , xn) ∈

11

Q[x1, . . . , xn] is reduced to a univariate problem by Kro-

necker substitution F (y) = f(y, yd1+1, y(d1+1)(d2+1), . . .),
where dj is an upper bound on the degree of the black
box polynomial in the variable xj , which either is in-
put or determined by a Monte Carlo method [40, Sec-
tion 2, Step 1]. Each non-zero term x

ei,1

1 · · ·x
ei,n
n in f is

mapped to yEi in F , where

Ei =
X

j

“

ei,j

Y

1≤k≤j−1

(dk + 1)
”

.

One interpolates F (y) and recovers from the terms yEi

and the bounds dj all ei,j .
The modulus p is then selected as a prime such that

p− 1 > maxi Ei and that p− 1 is a smooth integer, i.e.,
has a factorization into small primes q1 · · · ql = p − 1,
where q1 = 2. The prime p also must not divide any
denominator in the rational coefficients of f , for which
the black box call modulo p will throw an exception.
For primes with smooth p − 1 there is a fast discrete
logarithm algorithm [48] and primitive roots g ∈ Zp are
quickly constructed, for example by random sampling
and testing. Such primes are quite numerous and easy to
compute due to a conjectured effective version of Dirich-
let’s theorem: µ Q+1 is prime for µ = O((log Q)2) [20].
For instance,

37084 = max
m≤12800

(argmin
µ≥1

(µ2m + 1 is prime)).

The values ak = F (gk), k = 0, 1, 2, . . . are linearly
generated by the minimal polynomial

Λ(z) =
“

t
Y

i=1

(z − gEi) mod p
”

,

where t is the number of non-zero terms [3]. First, the
ak mod p are computed in parallel via the black box for
f for the needed k, and then the generator is deter-
mined (see Section 2.2 below). With the early termina-
tion strategy the number of terms t and Λ can be com-
puted from 2t+1 sequence elements ak by a Monte Carlo
algorithm that uses a random g [32]. Second, the poly-
nomial Λ(z) is factored into linear factors over Zp. The
factorization is a simple variant of Zassenhaus’s method:
The GCD(Λ(z + r), z(p−1)/2 − 1) for a random residue
r splits off about half of the factors. The first division
(z(p−1)/2 − 1) mod Λ(z + r) can utilize the factorization
of p − 1 or simply use repeated squaring, all modulo
Λ(z + r). The two factors of approximately degree t/2
are handled recursively and in parallel. Third, from
the linear factors z − gEi mod p the Ei are computed
in parallel with Pohlig’s and Hellman’s discrete loga-
rithm algorithm. Fourth, the term coefficients are com-
puted from the ak by solving a transposed Vandermonde
system [31, Section 5], which essentially constitutes the
fine-grain parallel operations of univariate polynomial
(tree) multiplication and multipoint evaluation. Fifth,
the rational coefficients are determined from the modu-
lar images by rational vector recovery [41, Section 4].

A drawback of the above algorithm is the need for a
large prime modulus, and this was our reason for imple-
menting Zippel’s interpolation algorithm in FoxBox in
1996. Recently, discrete logs modulo word-sized primes

could be utilized to recover the term exponents ei,j [23].
We briefly mentioned our idea in an unpublished manu-
script on sparse rational function interpolation in 1988
[26], without realizing that the algorithm was actually
polynomial in log(deg f) under Heath-Brown’s conjec-
ture. Algorithms for such supersparse (lacunary) inputs
are today a rich research subject, and an unconditional
polynomial-time supersparse interpolation algorithm is
given in [18]. Supersparse interpolation of shifted uni-
variate polynomials is described in [19], and the difficult
problem of supersparse rational function interpolation
is solved for a fixed number of terms in [44]. All al-
gorithms have highly speeded parallel variants, which
hopefully will become commonly available in symbolic
computation systems in the near future.

2.2 Scalar generators via block generators
In Section 2.1, a scalar linear generator was needed

for a linearly generated sequence ak. The classical solu-
tion is to deploy the Berlekamp/Massey algorithm [46].
As the new values ak trickle in, the algorithm can in a
concurrent thread iteratively update the current gener-
ator candidate. As a specialization of the extended Eu-
clidean algorithm [13] or a specialization of the σ-basis
algorithm [2, 32], the classical algorithm seems hard to
parallelize, even in a fine-grain shared memory model.

An alternative is to employ the matrix Berlekamp/
Massey algorithm [11, 42] for purpose of computing a
scalar linear generator. We shall describe the idea by ex-
ample. Suppose the degree of the scalar linear recursion
is t = 18. The scalar Berlekamp/Massey algorithm de-
termines the minimal linear generator Λ(z) from the 2t
sequence elements a0, . . . , a35. Instead, we use a block-
ing factor of b = 2 and consider the sequence of 2 × 2
matrices

»

ai a9+i

a9+i a18+i

–

, i = 0, 1, . . . , 18. (1)

Each entry in (1) is linearly generated by Λ, so the scalar
generator of the matrix sequence is also Λ. Instead,
we compute the minimal right matrix generator. The
(infinite) block Hankel matrix

2

6

6

6

6

6

6

6

4

a0 a9 a1 a10 . . .
a9 a18 a10 a19 . . .

a1 a10 a2 a11 . . .
a10 a19 a11 a20 . . .
...

...
...

...
. . .

3

7

7

7

7

7

7

7

5

(2)

has rank t = 18, which is achieved at the (t/b)× (t/b) =
9×9 blocks (dimensions 18×18), because a row and col-
umn permutation transforms the block Hankel matrix
into the scalar Hankel matrix which has exactly rank t
(cf. [27, Proof of Proposition 3]). Therefore the 2×2 ma-
trix generator polynomial Γ(z) has degree 9, whose de-
terminant is Λ(z). The latter follows because the highest
degree invariant factor of Γ(z) is the scalar linear gen-
erator [42, Theorem 2] and the degree deg(det Γ) = t
because the determinantal degree equals the rank of (2).

The method uses b−1 more scalar sequence elements,
but Γ(z) is found after 2 t/b + 1 matrix sequence ele-

12

ments. The block algorithm seems to have greater local-
ity as the polynomials are of lower degree. It requires,
however, the computation of det(Γ) via interpolation,
and therefore may not be competitive with the classical
scalar Berlekamp/algorithm for parallel supersparse in-
terpolation, unlike the block Wiedemann linear system
solver, where the computation of ak depends on ak−1.
But one could think of a black box polynomial where
F (gk) is derived with the help of F (gk−1).

3. MULTIPLE PROCESSORS/CORES–
SINGLE MEMORY BUS

In Summer and Fall 2007 we acquired 2 newly Intel-
based Apple MacPros with multiple CPUs and mul-
tiple cores, on which we installed Ubuntu Linux. At
that time we pursued two large computations: first the
search for polynomials with large single factor coeffi-
cient bounds [33, Remark 4] and the related search for
polynomials with small Mahler measure (Lehmer’s prob-
lem), and second the search for exact SOS certificates in
Rump’s model problem [33, Section 3.2]. Both searches
are embarrassingly parallel and we launched multiple
command-line Maple 11 and later Maple 12 processes
in Linux detachable “screen”s to achieve full processor
utilization.

Our search throughout the year of 2008 for pseudo-
cyclotomic polynomials, for which we also used an older
Apple G5, yielded no new polynomials. For the record,
our own largest single factor bound is given by the irre-
ducible integer polynomial

F (z) = a37z
37 +

36
X

i=0

ai(z
74−i + zi) with

a0 = 137244374035256035, a1 = 6484943836830415168,
a2 = 153193531709959141908,
a3 = 2411607507200802424907,
a4 = 28452979385641079841504,
a5 = 268288753013473830301366,
a6 = 2105372123573295644409420,
a7 = 14138714883963898462151808,
a8 = 82921677184320004630302040,
a9 = 431329478501438585427465254,

a10 = 2014156747639672791329597498,
a11 = 8526069501131479222465282376,
a12 = 32979342592280651952625919221,
a13 = 117343525840400678593760923162,
a14 = 386220797646892832924725343578,
a15 = 1181540655003118732221772208453,
a16 = 3373539469466421210816098963801,
a17 = 9021882900472427122636284167235,
a18 = 22669166923589015905675502095077,
a19 = 53664552516356435243212903922539,
a20 = 119977087506448109730882947309906,
a21 = 253858560921214782055361032381920,
a22 = 509315086548136054993905167906615,
a23 = 970529828476535410874212141091985,
a24 = 1759154390161310454823643987118589,
a25 = 3036998343927337089144845248619604,
a26 = 4999639546259331050695892101743471,
a27 = 7856622081008872596932525992122154,
a28 = 11795932815522505668032581481982119,

a29 = 16934616571889545324916521185499766,
a30 = 23263087926382581409159452491840837,
a31 = 30596272432934117736562047551265003,
a32 = 38547804638104808779028751533424518,
a33 = 46541915513845439185592821100345340,
a34 = 53870405856198473740160765586055008,
a35 = 59790381075274084971155248471629182,
a36 = 63645538749721902787135528353527656,
a37 = 64984262804935950161468248039123157,

where ‖F (z)‖∞ = ‖F (−z)‖∞ = a37 and ‖F (z)·F (−z)‖∞
= 18920209630100132696430504439191918. Thus the
single factor coefficient growth is

‖F (z)‖∞
‖F (z) F (−z)‖∞

> 3.43464813.

The polynomial was constructed from the minimizers
in Rump’s model problem and we believed it to be the
largest single factor bound known as David Boyd’s con-
struction only yielded ratios below 3. When presenting
our bounds in Summer 2008, John Abbott showed us
polynomials with much lower degree and coefficient size.
His subsequent paper [1] contains an irreducible F with
deg(F) = 20, ‖F‖∞ = 495, and ‖F (z) F (−z)‖∞ = 36.
Differences between nearby polynomials with large sin-
gle (reducible) factor coefficient bounds yield pseudo-
cyclic polynomials. Michael Mossinghoff’s web site lists
the top 100 non-cyclotomic irreducible polynomials with
a small Mahler measure, the first being Lehmer’s [http://
www.cecm.sfu.ca/∼mjm/Lehmer/]. In Figure 1 we list
how many times we have discovered each of the top 50
polynomials, mostly those of high sparsity. Unfortu-
nately, the search yielded no new polynomials, perhaps
because we used relatively low degree minimizing poly-
nomials.

In terms of parallel execution, in our Lehmer polyno-
mials search we achieved a very good utilization of all
available 16 cores. The same, surprisingly, was not true
for our second search for sum-of-squares certificates for
lower bounds in Rump’s model problem [43, Section 3].
The main difference is that each SOS search required
a substantial amount of memory, about 5GB, due to
the size of the arising matrices in the Newton optimiz-
ers. As Table 2 in [43] indicates, for n = 17 one com-
mand line Maple process required almost twice the time
per iteration for a lesser lower bound, that because we
executed it concurrently with second such independent
command line Maple process since we had sufficient real
memory for both. Reminiscent to parallel computing 15
years ago, the slowdown was caused by contention on
the memory bus, which may be considered a hardware
logic fault. Figure 2 depicts the 2007 MacPro, 4 cores
with each L1 I cache: 32K, L1 D cache: 32K, L2 cache:
4096K, with one of the memory cards pulled out. In con-
trast, Figure 3 shows our new Intel “Nehalem” MacPro,
16 cores with each L1 I cache: 32K, L1 D cache: 32K,
L2 cache: 256K, L3 cache: 8192K, and with the 32GB
memory card and its massive dual controllers pulled out.
Both cabinets have the same size. Note the large gray
multipin interface at the bottom of the Nehalem card,
which lies sideways on the cabinet. We could verify that
for at least 2 processes the memory contention problem
was solved.

13

http://www.cecm.sfu.ca/~mjm/Lehmer/
http://www.cecm.sfu.ca/~mjm/Lehmer/

Figure 1: Michael Mossinghoff’s Top 50 pseudo-cyclotomic polynomials

MM’s deg Mahler measure count
1. 10 1.176280818260 2248
2. 18 1.188368147508 —
3. 14 1.200026523987 1
4. 18 1.201396186235 8804
5. 14 1.202616743689 105
6. 22 1.205019854225 10
7. 28 1.207950028412 —
8. 20 1.212824180989 4
9. 20 1.214995700776 —

10. 10 1.216391661138 198
11. 20 1.218396362520 1598
12. 24 1.218855150304 —
13. 24 1.219057507826 —
14. 18 1.219446875941 —
15. 18 1.219720859040 —
16. 34 1.220287441693 —
17. 38 1.223447381419 —
18. 26 1.223777454948 —
19. 16 1.224278907222 1779
20. 18 1.225503424104 35
21. 30 1.225619851977 —
22. 30 1.225810532354 —
23. 26 1.226092894512 17
24. 36 1.226493301473 —
25. 20 1.226993758166 194

MM’s deg Mahler measure count
26. 12 1.227785558695 77
27. 30 1.228140772740 —
28. 36 1.229482810173 —
29. 22 1.229566456617 1
30. 34 1.229999039697 —
31. 38 1.230263271363 —
32. 42 1.230295468643 —
33. 10 1.230391434407 27995
34. 46 1.230743009076 —
35. 18 1.231342769993 —
36. 48 1.232202952743 —
37. 20 1.232613548593 133
38. 28 1.232628775929 —
39. 38 1.233672001767 —
40. 52 1.234348374876 —
41. 24 1.234443834873 —
42. 26 1.234500336789 —
43. 16 1.235256705642 72
44. 46 1.235496042193 —
45. 22 1.235664580390 —
46. 42 1.235761099712 —
47. 32 1.236083368052 —
48. 32 1.236198469859 —
49. 32 1.236227922245 —
50. 40 1.236249557349 —

Figure 2: Dual processor dual core Xeon 3.0GH/7GB
2007 MacPro

In addition, the authors of [16] report avoidance of
bus contention by using Google’s cached heap alloca-
tion scheme TCmalloc. Perhaps symbolic computation
system vendors should also offer software compiled with
such malloc schemes. We shall add that we also tried to
tune the Maple garbage collection parameters.

Marc Moreno Maza has inquired with Maplesoft in
response to our remarks, and a problem area seems to
be the memory management strategy of Maple’s garbage
collector in a setting of parallel independent processes.

Figure 3: Quad processor quad core Xeon 2.67GH/
32GB 2009 Intel Nehalem MacPro

4. INTERACTIVE SYMBOLIC
SUPERCOMPUTING

During my sabbatical at MIT in Spring 2006, with
Alan Edelman we have investigated the use of generic-
ity to create interfaces from symbolic computation plat-
forms to Star-P servers [22] and other parallel imple-
mentations.

Laptops and desktops do not have hundreds of pro-
cessors and large clusters of computers are housed in
labs. The Internet makes it possible to access such high
performance computers and networks from almost ev-
erywhere. The idea of interactive supercomputing is to

14

place the data and computations of a Matlab or Math-
ematica/Maple/SAGE [52] session remotely on such a
compute server and control the session from the local
GUI interactively in such a way that the supercomputing
session is indistinguishable from what would be a locally
run session.

Alan Edelman’s solution in Matlab is to overload the
“*” operator and pseudo-postmultiply any value by a
global variable p of a special type so that the resulting
type is a reference to the remote storage. The relevant
Matlab functions are then overloaded so that any ar-
guments of the Star-P type delegate execution of the
function to the remote supercomputer on the remote
data.

In Figure 4 we give a code fragment how Maple’s
LinearAlgebra package could be overloaded for a spe-
cial Star-P type. We anticipate to experiment with links
to parallel implementations of the LinBox exact linear
algebra library as soon as they are available. We add
that the INTER*CTIVE supercomputing company was
recently acquired by Microsoft. Note that SAGE’s phi-
losophy is to place its user interface above the symbolic
computation system, while Star-P places the interface
underneath it.

Acknowledgments: I thank Jean-Guillaume Dumas
for sharing with me his experience with the memory bus
contention problem and TCmalloc, and Marc Moreno
Maza for his reviewing comments.

5. REFERENCES
[1] Abbott, J. Bounds on factors in Z[x].

Mathematics Research Repository abs/0904.3057
(2009). URL: http://arxiv.org/abs/0904.3057.

[2] Beckermann, B., and Labahn, G. A uniform
approach for fast computation of matrix-type
Padé approximants. SIAM J. Matrix Anal. Applic.
15, 3 (July 1994), 804–823.

[3] Ben-Or, M., and Tiwari, P. A deterministic
algorithm for sparse multivariate polynomial
interpolation. In Proc. Twentieth Annual ACM
Symp. Theory Comput. (New York, N.Y., 1988),
ACM Press, pp. 301–309.

[4] Bernardin, L. Maple on a massively parallel,
distributed memory machine. In Hitz and
Kaltofen [21], pp. 217–222.

[5] Borodin, A., von zur Gathen, J., and
Hopcroft, J. E. Fast parallel matrix and GCD
computations. Inf. Control 52 (1982), 241–256.

[6] Brent, R. P., and Kung, H. T. Systolic VLSI
arrays for linear-time GCD computation. In Proc.
VLSI ’83 (1983), pp. 145–154.

[7] Cook, S. A. A taxonomy of problems with fast
parallel algorithms. Inf. Control 64 (1985), 2–22.

[8] D́ıaz, A., Hitz, M., Kaltofen, E., Lobo, A.,
and Valente, T. Process scheduling in DSC and
the large sparse linear systems challenge. J.
Symbolic Comput. 19, 1–3 (1995), 269–282. URL:
EKbib/95/DHKLV95.pdf.

[9] D́ıaz, A., and Kaltofen, E. FoxBox a system
for manipulating symbolic objects in black box

representation. In Proc. 1998 Internat. Symp.
Symbolic Algebraic Comput. (ISSAC’98) (New
York, N. Y., 1998), O. Gloor, Ed., ACM Press,
pp. 30–37. URL: EKbib/98/DiKa98.pdf.

[10] D́ıaz, A., Kaltofen, E., Schmitz, K., and
Valente, T. DSC A system for distributed
symbolic computation. In Proc. 1991 Internat.
Symp. Symbolic Algebraic Comput. (ISSAC’91)
(New York, N. Y., 1991), S. M. Watt, Ed., ACM
Press, pp. 323–332. URL:
EKbib/91/DKSV91.ps.gz.

[11] Dickinson, B. W., Morf, M., and Kailath, T.
A minimal realization algorithm for matrix
sequences. IEEE Trans. Automatic Control
AC-19, 1 (Feb. 1974), 31–38.

[12] Dicrescenzo, C., and Duval, D. Le système D5
de calcul formel avec des nombres algébriques.
Univ. Grenoble, 1987, Doctoral Thesis by
Dominique Duval, Chapter 1. Jean Della-Dora
(Thesis Adisor).

[13] Dornstetter, J. L. On the equivalence between
Berlekamp’s and Euclid’s algorithms. IEEE Trans.
Inf. Theory it-33, 3 (1987), 428–431.

[14] Dumas, J.-G., Elbaz-Vincent, P., Giorgi, P.,
and Urbanska, A. Parallel computation of the
rank of large sparse matrices from algebraic
K-theory. In PASCO’07 Proc. 2007 Internat.
Workshop on Parallel Symbolic Comput. (2007),
pp. 43–52.

[15] Dumas, J.-G., Fousse, L., and Salvy, B.
Simultaneous modular reduction and Kronecker
substitution for small finite fields. J. Symbolic
Comput. to appear (2010).

[16] Dumas, J.-G., Gautier, T., and Roch, J.-L.
Generic design of Chinese remaindering schemes.
In PASCO’10 Proc. 2010 Internat. Workshop on
Parallel Symbolic Comput. (New York, N. Y.,
2010), M. Moreno Maza and J.-L. Roch, Eds.,
ACM.

[17] Gao, S., Kaltofen, E., May, J. P., Yang, Z.,
and Zhi, L. Approximate factorization of
multivariate polynomials via differential equations.
In ISSAC 2004 Proc. 2004 Internat. Symp.
Symbolic Algebraic Comput. (New York, N. Y.,
2004), J. Gutierrez, Ed., ACM Press, pp. 167–174.
ACM SIGSAM’s ISSAC 2004 Distinguished
Student Author Award (May and Yang). URL:
EKbib/04/GKMYZ04.pdf.

[18] Garg, S., and Schost, Éric. Interpolation of
polynomials given by straight-line programs.
Theoretical Computer Science 410, 27-29 (2009),
2659 – 2662.

[19] Giesbrecht, M., and Roche, D. S.
Interpolation of shifted-lacunary polynomials.
Computing Research Repository abs/0810.5685
(2008). URL: http://arxiv.org/abs/0810.5685.

[20] Heath-Brown, D. R. Almost-primes in
arithmetic progressions and short intervals. Math.
Proc. Camb. Phil. Soc. 83 (1978), 357–375.

15

http://arxiv.org/abs/0904.3057
http://www.math.ncsu.edu/~kaltofen/bibliography/95/DHKLV95.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/98/DiKa98.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/91/DKSV91.ps.gz
http://www.math.ncsu.edu/~kaltofen/bibliography/04/GKMYZ04.pdf
http://arxiv.org/abs/0810.5685

Figure 4: Overloading a Maple package procedure

> LAstarp:=module()

> export RandomMatrix;

> local __RandomMatrix;

> unprotect(LinearAlgebra:-RandomMatrix);

> __RandomMatrix := eval(LinearAlgebra:-RandomMatrix);

> LinearAlgebra:-RandomMatrix:=proc()

> if type(args[1],string) then RETURN("Calling starp with " || args);

> else RETURN(__RandomMatrix(args));

> fi;

> end; # RandomMatrix

> end; # LAstarp

LAstarp := module() local __RandomMatrix; export RandomMatrix; end module

> LinearAlgebra:-RandomMatrix(2,2,generator=0..1.0);

[0.913375856139019393 0.905791937075619225]

[]

[0.126986816293506055 0.814723686393178936]

> LinearAlgebra:-RandomMatrix("overloading");

"Calling starp with overloading"

[21] Hitz, M., and Kaltofen, E., Eds. Proc. Second
Internat. Symp. Parallel Symbolic Comput.
PASCO ’97 (New York, N. Y., 1997), ACM Press.

[22] INTER*CTIVE supercomputing. Star-P
overview. Web page, 2008. URL http://www.
interactivesupercomputing.com/.

[23] Javadi, S. M. M., and Monagan, M. On sparse
polynomial interpolation over finite fields.
Manuscript, 2010.

[24] Kaltofen, E. Fast parallel absolute irreducibility
testing. J. Symbolic Comput. 1, 1 (1985), 57–67.
Misprint corrections: J. Symbolic Comput. vol. 9,
p. 320 (1989). URL: EKbib/85/Ka85 jsc.pdf.

[25] Kaltofen, E. Greatest common divisors of
polynomials given by straight-line programs. J.
ACM 35, 1 (1988), 231–264. URL:
EKbib/88/Ka88 jacm.pdf.

[26] Kaltofen, E. Unpublished article fragment,
1988. URL http://www.math.ncsu.edu/∼kaltofen/
bibliography/88/Ka88 ratint.pdf.

[27] Kaltofen, E. Analysis of Coppersmith’s block
Wiedemann algorithm for the parallel solution of
sparse linear systems. Math. Comput. 64, 210
(1995), 777–806. URL:
EKbib/95/Ka95 mathcomp.pdf.

[28] Kaltofen, E., and Koiran, P. Finding small
degree factors of multivariate supersparse
(lacunary) polynomials over algebraic number
fields. In ISSAC MMVI Proc. 2006 Internat.
Symp. Symbolic Algebraic Comput. (New York, N.
Y., 2006), J.-G. Dumas, Ed., ACM Press,
pp. 162–168. URL: EKbib/06/KaKoi06.pdf.

[29] Kaltofen, E., Krishnamoorthy, M. S., and
Saunders, B. D. Fast parallel computation of
Hermite and Smith forms of polynomial matrices.
SIAM J. Alg. Discrete Math. 8 (1987), 683–690.
URL: EKbib/87/KKS87.pdf.

[30] Kaltofen, E., Krishnamoorthy, M. S., and
Saunders, B. D. Parallel algorithms for matrix

normal forms. Linear Algebra and Applications
136 (1990), 189–208. URL: EKbib/90/KKS90.pdf.

[31] Kaltofen, E., and Lakshman Yagati.
Improved sparse multivariate polynomial
interpolation algorithms. In Symbolic Algebraic
Comput. Internat. Symp. ISSAC ’88 Proc.
(Heidelberg, Germany, 1988), P. Gianni, Ed.,
vol. 358 of Lect. Notes Comput. Sci., Springer
Verlag, pp. 467–474. URL: EKbib/88/KaLa88.pdf.

[32] Kaltofen, E., and Lee, W. Early termination
in sparse interpolation algorithms. J. Symbolic
Comput. 36, 3–4 (2003), 365–400. Special issue
Internat. Symp. Symbolic Algebraic Comput.
(ISSAC 2002). Guest editors: M. Giusti & L. M.
Pardo. URL: EKbib/03/KL03.pdf.

[33] Kaltofen, E., Li, B., Yang, Z., and Zhi, L.
Exact certification of global optimality of
approximate factorizations via rationalizing
sums-of-squares with floating point scalars. In
ISSAC 2008 (New York, N. Y., 2008), D. Jeffrey,
Ed., ACM Press, pp. 155–163. URL:
EKbib/08/KLYZ08.pdf.

[34] Kaltofen, E., and Lobo, A. Distributed
matrix-free solution of large sparse linear systems
over finite fields. In Proc. High Performance
Computing ’96 (San Diego, CA, 1996), A. M.
Tentner, Ed., Society for Computer Simulation,
Simulation Councils, Inc., pp. 244–247. Journal
version in [35]. URL: EKbib/96/KaLo96 hpc.pdf.

[35] Kaltofen, E., and Lobo, A. Distributed
matrix-free solution of large sparse linear systems
over finite fields. Algorithmica 24, 3–4 (July–Aug.
1999), 331–348. Special Issue on “Coarse Grained
Parallel Algorithms”. URL:
EKbib/99/KaLo99.pdf.

[36] Kaltofen, E., May, J., Yang, Z., and Zhi, L.
Approximate factorization of multivariate
polynomials using singular value decomposition. J.
Symbolic Comput. 43, 5 (2008), 359–376. URL:

16

http://www.interactivesupercomputing.com/
http://www.interactivesupercomputing.com/
http://www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_jsc.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_jacm.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_ratint.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_ratint.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/95/Ka95_mathcomp.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/06/KaKoi06.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/87/KKS87.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/90/KKS90.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/88/KaLa88.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/08/KLYZ08.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/96/KaLo96_hpc.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/99/KaLo99.pdf

EKbib/07/KMYZ07.pdf.

[37] Kaltofen, E., and Pan, V. Processor efficient
parallel solution of linear systems over an abstract
field. In Proc. SPAA ’91 3rd Ann. ACM Symp.
Parallel Algor. Architecture (New York, N.Y.,
1991), ACM Press, pp. 180–191. URL:
EKbib/91/KaPa91.pdf.

[38] Kaltofen, E., and Pan, V. Processor-efficient
parallel solution of linear systems II: the positive
characteristic and singular cases. In Proc. 33rd
Annual Symp. Foundations of Comp. Sci. (Los
Alamitos, California, 1992), IEEE Computer
Society Press, pp. 714–723. URL:
EKbib/92/KaPa92.pdf.

[39] Kaltofen, E., and Pan, V. Parallel solution of
Toeplitz and Toeplitz-like linear systems over
fields of small positive characteristic. In Proc.
First Internat. Symp. Parallel Symbolic Comput.
PASCO ’94 (Singapore, 1994), H. Hong, Ed.,
World Scientific Publishing Co., pp. 225–233.
URL: EKbib/94/KaPa94.pdf.

[40] Kaltofen, E., and Trager, B. Computing with
polynomials given by black boxes for their
evaluations: Greatest common divisors,
factorization, separation of numerators and
denominators. J. Symbolic Comput. 9, 3 (1990),
301–320. URL: EKbib/90/KaTr90.pdf.

[41] Kaltofen, E., and Yang, Z. On exact and
approximate interpolation of sparse rational
functions. In ISSAC 2007 Proc. 2007 Internat.
Symp. Symbolic Algebraic Comput. (New York, N.
Y., 2007), C. W. Brown, Ed., ACM Press,
pp. 203–210. URL: EKbib/07/KaYa07.pdf.

[42] Kaltofen, E., and Yuhasz, G. On the matrix
Berlekamp-Massey algorithm, Dec. 2006.
Manuscript, 29 pages. Submitted.

[43] Kaltofen, E. L., Li, B., Yang, Z., and Zhi, L.
Exact certification in global polynomial
optimization via sums-of-squares of rational
functions with rational coefficients, Jan. 2009.
Accepted for publication in J. Symbolic Comput.
URL: EKbib/09/KLYZ09.pdf.

[44] Kaltofen, E. L., and Nehring, M. Supersparse
black box rational function interpolation, Jan.

2010. Manuscript, 23 pages.

[45] Lobo, A. A. Matrix-Free Linear System Solving
and Applications to Symbolic Computation. PhD
thesis, Rensselaer Polytechnic Instit., Troy, New
York, Dec. 1995.

[46] Massey, J. L. Shift-register synthesis and BCH
decoding. IEEE Trans. Inf. Theory it-15 (1969),
122–127.

[47] Miller, G. L., Ramachandran, V., and
Kaltofen, E. Efficient parallel evaluation of
straight-line code and arithmetic circuits. SIAM J.
Comput. 17, 4 (1988), 687–695. URL:
EKbib/88/MRK88.pdf.

[48] Pohlig, C. P., and Hellman, M. E. An
improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE
Trans. Inf. Theory it-24 (1978), 106–110.

[49] Samadani, M., and Kaltofen, E. Prediction
based task scheduling in distributed computing. In
Proc. 14th Annual ACM Symp. Principles Distrib.
Comput. (New York, N. Y., 1995), ACM Press,
p. 261. Brief announcement of [51, 50].

[50] Samadani, M., and Kaltofen, E. On
distributed scheduling using load prediction from
past information. Unpublished paper, 1996.

[51] Samadani, M., and Kaltofen, E. Prediction
based task scheduling in distributed computing. In
Languages, Compilers and Run-Time Systems for
Scalable Computers (Boston, 1996), B. K.
Szymanski and B. Sinharoy, Eds., Kluwer
Academic Publ., pp. 317–320. Poster session paper
of [50]. URL: EKbib/95/SaKa95 poster.ps.gz.

[52] Stein, W., et al. SAGE: Open Source
mathematics software. Web page, Feb. 2008. URL
http://www.sagemath.org.

[53] Wiedemann, D. Solving sparse linear equations
over finite fields. IEEE Trans. Inf. Theory it-32
(1986), 54–62.

[54] Zippel, R. Interpolating polynomials from their
values. J. Symbolic Comput. 9, 3 (1990), 375–403.

[55] Zippel, R. E., Ed. Proc. 2nd Internat. Workshop
on Computer Algebra and Parallelism (Heidelberg,
Germany, 1992), vol. 584 of Lect. Notes Comput.
Sci., Springer Verlag.

17

http://www.math.ncsu.edu/~kaltofen/bibliography/07/KMYZ07.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/91/KaPa91.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/92/KaPa92.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/94/KaPa94.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/90/KaTr90.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/07/KaYa07.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/09/KLYZ09.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/88/MRK88.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/95/SaKa95_poster.ps.gz
http://www.sagemath.org

