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Abstract

We present the Seven Dwarfs of Symbolic Computation, which are sequential and
parallel algorithmic methods that today carry a great majority of all exact and hybrid
symbolic compute cycles.

SymDwf 1. Exact linear algebra, integer lattices
SymDwf 2. Exact polynomial and differential algebra, Gröbner bases
SymDwf 3. Inverse symbolic problems, e.g., interpolation and parameterization
SymDwf 4. Tarski’s algebraic theory of real geometry
SymDwf 5. Hybrid symbolic-numeric computation
SymDwf 6. Computation of closed form solutions
SymDwf 7. Rewrite rule systems and computational group theory

We will elaborate on each dwarf and compare with Colella’s seven and the Berkeley
team’s thirteen dwarfs of scientific computing.

Introduction

Phillip Colella [2004] in his 2004 presentation “Defining Software Requirements for Scientific
Computing” about DARPA’s High Productivity Computing Systems (HPCS) program gave
his list of the now-famous “Seven Dwarfs” of algorithms for high-end simulation in the
physical sciences.

hpcs 1. Structured Grids hpcs 4. Dense Linear Algebra hpcs 7. Monte Carlo
hpcs 2. Unstructured Grids hpcs 5. Sparse Linear Algebra
hpcs 3. Fast Fourier Transform hpcs 6. Particles

The dwarfs, in allusion to the fairy tale, mine compute cycles for golden results. Recently,
the term “killer kernels” has been used to replace the notion of dwarf, but the dwarfs seem

∗This material is based on work supported in part by the National Science Foundation under Grants
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more like library procedures than operating system kernels. Following Colella, researches in
parallel computation at the University of California at Berkeley, who include David Patterson
and Katherine Yelick, have modified and upgraded to 13 dwarfs, where “A dwarf is an
algorithmic method that captures a pattern of computation and communication [URL http://
view.eecs.berkeley.edu/wiki/Dwarf Mine]:”

Berkeley 1. Dense Linear Algebra Berkeley 8. Combinational Logic
Berkeley 2. Sparse Linear Algebra Berkeley 9. Graph Traversal
Berkeley 3. Spectral Methods Berkeley 10. Dynamic Programming
Berkeley 4. N-Body Methods Berkeley 11. Backtrack and Branch-and-Bound
Berkeley 5. Structured Grids Berkeley 12. Graphical Models
Berkeley 6. Unstructured Grids Berkeley 13. Finite State Machines
Berkeley 7. MapReduce

Both lists are notably numerical computing oriented. They exclude symbolic compu-
tation, i.e., methods with exact arithmetic, or logic programming, say rewriting via rules,
altogether. However, they inspire to make a corresponding list, and here we will do so for
symbolic computation. Bruno Buchberger [1985] in his 1985 editorial in the first issue of
the Journal of Symbolic Computation makes an attempt to define the discipline of symbolic
computation. We adopt his breadth and view symbolic computation to include all of com-
puter algebra [Kaltofen 1987; Grabmeier et al. 2003] and also algebraic methods for analysis,
statistics and combinatorics, logic programming, computational geometry and program syn-
thesis. The report [Boyle and Caviness 1989] offers a then glimpse into the future of symbolic
computation and has made several accurate predictions (see, e.g., Section 5 below).

Here we add to this taxonomy via our seven dwarfs of symbolic computation. Our meth-
ods are oriented to mid-level and high performance computation tasks, and should not be
considered comprehensive. A subject on the boundary not included is computational number
theory. The important application of symbolic computation to mathematics education is not
discussed. Education tasks can be compute intensive. For example, the automatic grading
of the Maple homework worksheets of our calculus classes by NCSU’s egrader software con-
sumes an entire night. On the low performance side, micro symbolic computation systems
for compact devices such as cell phones constitute an important educational application of
the discipline: vastly more people world-wide own cell phones than computers.

We presented the list in the talk “The Seven Dwarfs of Symbolic Computation and
the Discovery of Reduced Symbolic Models” [URL http://www.math.ncsu.edu/∼kaltofen/
bibliography/07/SNSC07.pdf] at 4th International Conference on Symbolic and Numerical
Scientific Computing SNSC ’08 at RISC Linz, Hagenberg, Austria, on July 24, 2008. In
the following, we briefly discuss each dwarf and give selected references, which are meant
to highlight some past and current results and not as a complete survey as other important
work could not be included.

1. Exact linear algebra, integer lattices

Important breakthroughs in exact linear algebra actually happened later than those in poly-
nomial algebra, notably after Buchberger’s Gröbner basis algorithm. One is the discovery
of exact sparse iterative algorithms based on the numeric Krylov and Lanczos algorithms
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[Wiedemann 1986; Kaltofen and Saunders 1991] and their block versions [Coppersmith 1994;
Kaltofen 1995; Villard 1997] whose probabilistic analysis for small coefficient fields is being
completed today [Eberly 2010]. The algorithms are available in the open source LinBox
library [URL www.linalg.org], callable from the SAGE and Maple platforms, and put to
important use. A second breakthrough are the lattice basis reduction algorithms [Ferguson
and Forcade 1982; Lenstra et al. 1982] that today have greatly improved implementations
[Novocin et al. 2011] and are used extensively for discovery of exact identities from numeric
approximations ([H̊astad et al. 1989], “the inverse symbolic calculator” [URL http://oldweb.
cecm.sfu.ca/projects/ISC/ISCmain.html]).

We observe additional trends today: Strassen’s fast matrix multiplication algorithm and
cache-efficient BLAS libraries improve performance of exact linear algebra [Dumas et al.
2008]; characteristic polynomials and integer Smith normal forms of sparse integer matrices
[Dumas et al. 2001; Giesbrecht 2001] are important invariants, for instance in computing
the so-called bar code of a persistent topology of data; and structured exact linear problem
solvers such as the matrix Berlekamp/Massey algorithm [Kaltofen and Yuhasz 2013] form a
fundamental ingredient in sparse solvers.

Exact linear algebra algorithms are easily underestimated. Great progress has been made
in the past ten years, and the software has a wide range of applications. Exact solutions are
not only needed for finite field entries, but also for diophantine problems and when the exact
input forms an ill-conditioned matrix.

2. Exact polynomial and differential algebra, Gröbner

bases

Polynomial arithmetic including the computation of multivariate polynomial greatest com-
mon divisors, factorizations, and triangular and other canonical forms for polynomial systems
constitute the heart of computer algebra. Classical tools include resultant computation and
Hensel lifting and modern tools Buchberger’s Gröbner basis algorithm. Truncated power
series are represented by polynomials and thus included in this dwarf.

The calculus of differentiation and differential ideals allows manipulation of differential
equations as polynomials with a derivative operator. In addition, one can interpret the
derivative (or difference) operator as a new symbol and construct composed operators as
polynomials with variables and derivative (difference) symbols. Those operator rings are
generalized to Ore extensions and have an additional, special, non-commutative multiplica-
tion. Two references are [Rosenkranz and Regensburger 2008; Gao et al. 2009]. See also
Section 6.

Efficient implementations of polynomial factoring and Gröbner basis algorithms, for in-
stance Jean-Charles Faugere’s FGb which is also callable from within Maple, make a serious
use of the methods as easy as, say, Matlab gives access to numerical linear algebra. Today’s
applications are abundant, e.g., cryptosystems have be broken with them.

Basic polynomial arithmetic of multivariate polynomials forms the core infrastructure of
any symbolic manipulation system, and efficiency improvements can still being made: any
speedup will speed many application algorithms. This is the more true with the arrival of
multicore and multiprocessor workstations.
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3. Inverse symbolic problems, e.g., interpolation and pa-

rameterization

Interpolation and curve fitting are basic and important operations to build mathematical
models from data. Zippel’s [1990] and Ben-Or and Tiwari’s [1988] sparse multivariate pol-
ynomial algorithms are a fundamental contribution from symbolic computation to the task
of function/model recovery. The paradigm of early termination via randomization has suc-
cessfully been exploited [Kaltofen and Lee 2003]. In Section 5 we point to new numerical
methods that were derived from the exact symbolic algorithms. More recently polynomial
and rational function recovery with very high degree terms have been achieved [Garg and
Schost 2009; Giesbrecht and Roche 2010; Kaltofen and Nehring 2011]. There the values are
determined at roots of unity to prevent size explosion. Beyond polynomial and rational func-
tion recovery is, for instance, recovery of algebraic functions and differential equations from
series solutions.

The circle as an implicitly represented curve x2 + y2 = 1 can be rationally parameterized
as x = cos(α) = (1 − t2)/(t2 + 1), y = sin(α) = 2t/(t2 + 1) with −∞ ≤ t = tan(α/2) ≤ ∞.
Not all real curves can be so parameterized, for instance elliptic curves. A reference is the
book [Sendra et al. 2007]. Parametric curves form basic objects in geometric rendering.

Interpolation and Chinese remaindering forms the recovery step in computing with ho-
momorphic images, where a computation is split by first computing the solution for various
values of a symbolic parameter and then the symbolic solution is interpolated from those val-
ues. Because each value can be processed separately and no intermediate degree/size growth
occurs, the paradigm constitutes a powerful and parallel/distributed approach.

4. Tarski’s algebraic theory of real geometry

Tarksi’s algorithm for eliminating quantifiers in sentences formed on semi-algebraic sets makes
most of Euclidean geometry and real polynomial optimization decidable. Unfortunately, the
general method solves problems in a high complexity class (super-exponential). Nonetheless,
George Collins’s cylindrical algebraic decomposition algorithm is implemented and has solved
non-trivial problems. References are the collection [Caviness and Johnson 1998] and [Brown
2009], which has references to newer work.

A fundamental quantifier elimination problem is to determine whether a multivariate
polynomial f(x1, . . . , xn) has a real root, which we shall call Seidenberg’s problem. For
instance, deciding if a polynomial can attain negative values, i.e., is not positive semidefinite,
is equivalent to deciding if f(x1, . . . , xn)x

2
n+1 + 1 has a real root. Thus all (unconstrained)

polynomial inequalities are reduced to Seidenberg’s problem. A more general fundamental
problem is to compute a sample point in each connected component of the real solution set
of a system of polynomial equations.

Modern software, such as RAGlib [Safey El Din 2008], analyzes the real critical values
via Gröbner basis computation. A variant of Tarski’s quantifier elimination problem that
weakens the pre- and post conditions and thus lowers the intrinsic complexity can be based
on such real polynomial software [Hong and Safey El Din 2009].
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Hilbert’s Problem on polynomial sums-of-squares and Artin’s Theorem offers an addi-
tional approach to real polynomial optimization, which is made possible by numerical non-
linear optimization and discussed in Section 5.

5. Hybrid symbolic-numeric computation

The use of approximate, floating point, arithmetic and approximations of irrational functions
by polynomials and rational functions is as old as logarithm tables and Taylor series and
Padé fractions. Section 2.12.3 in [Grabmeier et al. 2003] describes what constitutes hybrid
symbolic-numeric computation. Our description already contains the fundamental concept of
computing a nearest polynomial, measured in some distance norm, that satisfies a property
which the input polynomial does not. Classical properties are having non-trivial polynomial
greatest common divisors and factors, or common solutions (the nearest consistent system)
or solutions that have real components (the nearest polynomial with a real root) or higher
multiplicities (contracting clusters of zeros to a single common point). The inputs are not
exact, because of physical measurement or because the scalars come from a floating point
computation, and therefore lack the needed property. The sought property may have to
be avoided, and a lower bound on the distance yields a condition number. New work and
references are found in the proceedings [Wang and Zhi 2007; Verschelde and Watt 2007; Kai
and Sekigawa 2009].

Because there is a gradual transition to mostly numerical solution of, say, algebraic geom-
etry problems, e.g., via programs like Bertini [URL http://www.nd.edu/∼sommese/bertini/]
and PHCpack [URL http://www.math.uic.edu/∼jan/PHCpack/phcpack.html], the symbolic
computation component in the hybrid approach is sometimes dismissed. Clearly, the algo-
rithms for sparse approximate interpolation [Giesbrecht et al. 2009; Kaltofen et al. 2007]
are based on the exact sparse polynomial interpolation algorithms by Zippel and by Ben-Or
and Tiwari. Those hybrid algorithms have applications to sparse signal processing and com-
pressive sensing. The approximate Buchberger-Möller algorithm has found an application in
analyzing data from oil wells [URL http://www.algebraic-oil.uni-passau.de/].

Any positive semidefinite polynomial f with real (rational) coefficients (see Section 4)
can be written as a finite sum

f(x1, . . . , xn) =
1

g0(x1, . . . , xn)2

k∑

i=1

gi(x1, . . . , xn)
2, (1)

where gi are polynomials with real (rational) coefficients. If there exist gi with g0 = 1, f is
said to be SOS, but not all f are, e.g., Motzkin’s polynomial. Any polynomial inequality
f ≥ h is equivalent to f − h being positive semidefinite; h in global optimization is the real
infimum (or a rational lower bound) of all values of f . Therefore, any gi satisfying f − h =
1/g20

∑
i
g2
i
constitute a proof (exact certificate) for the inequality/optimum. Two recent

developments have made it possible to compute such certificates. The first are the numerical
optimization algorithms for semidefinite programming. The second is a symbolic technique
for converting an imprecise SOS with floating point coefficients to an exact identity over the
rational numbers [Peyrl and Parrilo 2008; Kaltofen et al. 2008, 2012]. Among the recent
successes are the proof of the Monotone Column Permanent Conjecture for n = 4 [Kaltofen
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et al. 2009], which was completed shortly before the general conjecture could be established,
the Bessis-Moussa-Villani (BMV) conjecture for m ≤ 13 [Klep and Schweighofer 2008], new
SOS proofs for many known inequalities, and a deformation analysis approach to Seidenberg’s
problem of Section 4 [Hutton et al. 2010]. Optimization with additional polynomial inequality
constraints are handled by various so-called Positivstellensätze [Marshall 2008].

6. Computation of closed form solutions

Robert Risch’s 1970 solution of Hardy’s problem to determine if an indefinite integral can
be expressed in closed form as an expression in elementary functions is a hallmark of early
symbolic computation. Closed form solutions to differential equations and the inclusion of
special functions, possibly defined by lower order differential equations constitutes an active
area of research. References are the book [van der Put and Singer 2003] and [Yuan and van
Hoeij 2010], which has references to newer work. A connection to differential elimination
theory of Section 2 should be noted.

Algorithms for closed form solutions for discrete summations, difference equations, and
combinatorial counts form an active subarea of symbolic computation which could be named
“symbolic combinatorics” (Michael F. Singer). The members of Peter Paule’s research group,
some of who are part of the Austrian DK research grant “Numerical and Symbolic Scien-
tific Computing,” have made significant recent contributions to the area of symbolic com-
binatorics: URL http://www.risc.uni-linz.ac.at/research/combinat/risc/publications/. An
example is the closed form solution for the generating function for counting so-called Gessel
walks, which turned out to be an algebraic function in three variables [Bostan and Kauers
2010], which was discovered in collaboration with the Algorithms Project at INRIA [URL
http://algo.inria.fr/index.html].

7. Rewrite rule systems and computational group the-

ory

Computational group and representation theory is a traditional subject lying in the intersec-
tion of symbolic computation and combinatorics. Famous popular examples are to compute
the minimum number of moves necessary for solving Rubik’s cube puzzle from any con-
figuration [Kunkle and Cooperman 2009], which was recently completed on a Google data
center http://cube20.org. Group decomposition plays a major role in the synthesis of high
performance FFT library [Püschel et al. 2005].

Bruno Buchberger included rewrite rule systems as a subject of symbolic computa-
tion, motivated perhaps by the interpretation of his Gröbner basis algorithm as a critical-
pair/completion method (Knuth-Bendix completion). Rewrite techniques are often deployed
for expression simplification in symbolic computation. The RTA conference series [URL
http://rewriting.loria.fr/rta/] covers the many applications beyond symbolic computation
(see also the Coq proof assistant http://www.lix.polytechnique.fr/coq/). Algebraic tech-
niques are also be applied to algorithm synthesis, such as automatic differentiation [Griewank
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2008] and the transposition principle for matrix-times-vector products or elimination of di-
visions from algebraic algorithms.

Acknowledgments: I thank Bruno Salvy for his thoughtful comments.
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