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Abstract. We describe a randomized algorithm that, given an integer
a, produces a certificate that the integer is not a pure power of an
integer in expected (log a)1+o(1) bit operations under the assumption
of the Generalized Riemann Hypothesis. The certificate can then be
verified in deterministic (log a)1+o(1) time. The certificate constitutes for
each possible prime exponent p a prime number qp, such that a mod qp
is a p-th non-residue. We use an effective version of the Chebotarev
density theorem to estimate the density of such prime numbers qp.
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1. Introduction

Recent algorithms of Agrawal, Kayal, and Saxena (AKS) and Bernstein have
brought primality certificates into deterministic polynomial time (Agrawal et al.

2004; Bernstein 2003). A necessary step in all of these new algorithms is to
check whether the number being certified is a pure power of a prime. Using
Newton iteration to find the roots is one way to check that an integer a is not
a pure prime power but it requires (log a)3+o(1) time (Caviness 1975). Other
methods have been proposed using sieving techniques which require O((log a)2)
time on average (Bach & Sorenson 1993; Balasubramanian & Nagaraj 1996).
Daniel Bernstein et al. published algorithms running in (log a)1+o(1) (Bernstein
1998; Bernstein et al. 2007). This paper gives a randomized algorithm which
can also accomplish this task quickly. Under the assumption of the General-
ized Riemann Hypothesis (GRH) our algorithm gives a certificate that a given
integer is not a pure power of an integer in (log a)1+o(1) bit operations, or fails,
that with probability no more than 1/2. The certificate can then be veri-
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fied in deterministic (log a)1+o(1) time. In all of those complexity bounds, the
addition of “+o(1)” in the exponent captures additional bit complexities of
C1(loglog a)C2(logloglog a)C3 for real constants C1, C2 and C3. The main dis-
tinguishing factor is that we accomplished this task without taking any roots.
Our algorithm is a purely modular method without Newton iteration and is
highly parallelizable with small memory requirements.

2. Main Idea

Fermat’s Little Theorem states that for every prime q and every integer a,
aq ≡ a (mod q). If q does not divide a, then we have that aq−1 ≡ 1 (mod q).
Now suppose that a = bp for some integer b and prime p. If q is another prime
that does not divide b and satisfies q ≡ 1 (mod p), then a(q−1)/p ≡ bq−1 ≡ 1
(mod q). The idea of our algorithm is to find a prime q for each prime p ≤ log2 a
such that q ≡ 1 (mod p) and a(q−1)/p 6≡ 1 (mod q). Finding such a prime q
exposes that a is not a pure pth power. The Chebotarev density theorem
provides a way to know the frequency with which these primes occur and is
stated below.

Theorem 2.1. Let L be a Galois extension of Q and let C be any conjugacy
class in G = Gal(L/Q). Then the set {q, an unramified prime in Z | FL(q) =
C} has density |C|/|G|, where FL(q) is the class of Frobenius elements of all
prime ideals in the ring of integers of L that contain q.

This is not the strongest form of this theorem, however it is strong enough
to use in this paper. For a proof of the above theorem see (Narkiewicz 1990).
While the Frobenius element depends on the ideal constructed above it, in this
case the Frobenius element will always map into the same conjugacy class in
the Galois group. The set of automorphisms in the Galois group whose root
permutations correspond to a full cycle on the roots of a polynomial is the
conjugacy class that is of interest to us. These cycles which do not fix a root
correspond to primes, q, which leave xp − a irreducible modulo q. In the next
section we will study the Galois group of the splitting field for xp − a as well
as the conjugacy class of elements that correspond to root permutations which
do not fix a root.

3. Notation and Basic Proofs

Let Q denote the set of rational numbers. The symbol Fp denotes the finite
field with prime number of elements, p. By a1/p we will denote the real pth
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root of a and ωp will denote a primitive pth root of unity. The discriminants of
the extensions Q(a1/p), Q(ωp), and Q(a1/p, ωp) will be denoted by ∆p , ∆ω, and
∆p, ω respectively. Throughout the rest of this paper log a will be understood
to have base 2 unless otherwise noted.

The rest of this section is devoted to basic proofs necessary for the analysis
of our algorithm.

Lemma 3.1. For p a prime, a ∈ Q with a 6= bp for all b ∈ Q, the pth cyclotomic
polynomial Φp(x) = xp−1 + xp−2 + · · · + x + 1 is irreducible over Q(a1/p).

Proof. A primitive pth root of unity ωp is a root of Φp. Consider the exten-
sion Q(a1/p, ωp) over Q. By the Tower Theorem, the degrees of the extensions
will satisfy the following equalities:

[Q(a1/p, ωp) : Q] =

{

[Q(a1/p, ωp) : Q(a1/p)] · [Q(a1/p) : Q],

[Q(a1/p, ωp) : Q(ωp)] · [Q(ωp) : Q].

Since Φp(x) = xp−1 +xp−2 + · · ·+x + 1 and xp − a are both irreducible over Q,
the degrees of the extensions will be [Q(ωp) : Q] = p − 1 and [Q(a1/p) : Q] = p.
So [Q(a1/p, ωp) : Q] ≥ lcm(p, p − 1) = p(p − 1) since it is divisible by both
p and p − 1 which are relatively prime. Also [Q(a1/p, ωp) : Q(a1/p)] ≤ p − 1
since ωp satisfies Φp(x) = xp−1 + xp−2 + · · · + x + 1 over Q(a1/p)[x]. Therefore
[Q(a1/p, ωp) : Q] = p(p−1) which implies [Q(a1/p, ωp) : Q(a1/p)] = p−1. Hence,
the pth cyclotomic polynomial Φp(x) = xp−1 + xp−2 + · · · + x + 1 is irreducible
over Q(a1/p). �

It is clear from this lemma that Q(a1/p, ωp) ∼= Q[y, z]/(yp−a, Φp(z)). There-
fore, any element in Q(a1/p, ωp) has a canonical representation of the form:

p−1
∑

i=0

p−2
∑

j=0

αi,j ai/p ωj
p, with αi,j ∈ Q

Theorem 3.2. Let p be a prime and let a ∈ Q, a 6= bp for all b ∈ Q. Then the
Galois group, G, of the equation xp − a over Q is isomorphic to G = {[ x y

0 1 ] |
x, y ∈ Fp, x 6= 0}.

Proof. The splitting field for xp − a is Q(a1/p, ωp). The Q-automorphisms
of this extension are well defined by simply mapping the generators a1/p and
ωp. Then the set of all Q-automorphisms is

G = {φ : a1/p 7→ ωi
pa

1/p, ωp 7→ ωj
p | 0 ≤ i ≤ p − 1, 1 ≤ j ≤ p − 1}
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Now define Ψ: G 7→ G by Ψ(a1/p 7→ ωi
pa

1/p, ωp 7→ ωj
p) = [ j i

0 1 ]. Next we will
show Ψ is an isomorphism.

Suppose that there exist σ, θ ∈ G such that Ψ(σ) = Ψ(θ). Then Ψ(σ) =
[ x y
0 1 ] = Ψ(θ) for some x, y ∈ Fp, where x 6= 0. So σ : a1/p 7→ ωy

pa
1/p, ωp 7→

ωx
p = θ. Therefore Ψ is one to one. Now suppose [ x y

0 1 ] ∈ G. Then σ ∈
G, σ : a1/p 7→ ωy

pa
1/p, ωp 7→ ωx

p then Ψ(σ) = [ x y
0 1 ]. Thus Ψ is onto. The identity

map id ∈ G, id : a1/p 7→ a1/p, ωp 7→ ωp then Ψ(id) = [ 1 0
0 1 ]. Suppose that

σ, θ ∈ G, let σ = a1/p 7→ ωx
pa1/p, ωp 7→ ωy

p and θ = a1/p 7→ ωz
pa

1/p, ωp 7→ ωw
p . We

see that (σθ)(a1/p) = ωx+zy
p a1/p and (σθ)(ωp) = ωwy

p by the composition of the
maps. So Ψ(σθ) = [ wy x+zy

0 1 ] = [ y x
0 1 ] · [ w z

0 1 ] = Ψ(σ)Ψ(θ). Therefore Ψ: G 7→ G
is isomorphism. �

Theorem 3.3. There are exactly p− 1 automorphisms in the Galois group of
xp − a over Q that map to full p-cycles on the roots of xp − a.

Proof. From the previous theorem, the Galois group is isomorphic to G =
{[ x y

0 1 ] | x, y ∈ Fp with x 6= 0}. So |G| = p(p − 1). By the Sylow theorems,
there exists a p-subgroup of G. Let t denote the number of p-subgroups. Then
t divides p − 1 and t ≡ 1 (mod p). Thus, t = 1 meaning there is only one

subgroup of order p. One element in this subgroup is the identity element
and the other p − 1 have order p. These p − 1 elements of order p correspond
to Q-automorphisms of order p. These Q-automorphisms of order p then map
to full p-cycles in the set of permutations on the roots of xp − a. �

Corollary 3.4. The set of automorphisms

{a1/p 7→ ωi
pa

1/p, ωp 7→ ωp | 1 ≤ i ≤ p − 1}

correspond to the full p-cycles and all others fix at least one root.

Proof. The automorphism σ : a1/p 7→ ωy
pa

1/p, ωp 7→ ωz
p maps the root ωx

pa1/p

to ωxz+y
p . The powers are all taken modulo p, so an automorphism will fix a

root if x ≡ xz + y (mod p). If j = 1 and i 6= 0 then there are no solutions
to this congruence, hence no root is fixed. When j = 1 and i = 0 then
σ is the identity automorphism which fixes every root. If j 6= 1 then the
root ωx

pa1/p where x ≡ y(z − 1)−1 (mod p) will be fixed by the automorphism

σ : a1/p 7→ ωy
pa

1/p, ωp 7→ ωz
p. �

The set of full cycles in the Galois group is the conjugacy class which we
need in the Chebotarev Theorem 2.1.
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Theorem 3.5. The discriminant of the field extension Q(a1/p, ωp),denoted by
∆p,ω, divides a (p−1)2 p 2p2−3p.

Proof. The discriminant of the number field Q(a1/p) divides the discrim-
inant of xp − a which equals ±ap−1p p. From Lemma 3.1 we see that this
number field has dimension p over Q. The discriminant of the number field
Q(ωp), of degree p − 1 over Q, is ±pp−2 by Theorem 2.9 in (Narkiewicz 1990).
So from Corollary 2 to Proposition 4.9 in (Narkiewicz 1990), the discriminant
of Q(a1/p, ωp) divides (ap−1pp)p−1(pp−2)p = a (p−1)2 p 2p2−3p. �

4. Algorithm and Complexity

Our algorithm takes in an integer a and with probability better than 1/2 pro-
duces a certificate proving it is not a pure integer power. If a is a pure power,
the algorithm always returns FAILURE.

Step 1. Input : Integer a > 1

Step 2. Start certificate S = {}

Step 3. For each prime p ≤ log2 a, find 3 primes qp,1, qp,2, qp,3 of a magnitude
described later such that
qp,i ≡ 1 (mod p) for i = 1, 2, 3

Step 4. For each p, test if a(qp,i−1)/p 6≡ 1 and 6≡ 0 (mod qp,i) for any of the qp,i

and if so then add the pair (p, qp,i) to the certificate

Step 5. Repeat Steps 3–4 ⌈1 + loglog a⌉ times, but skip primes that have
already been added to the certificate.

Step 6. If all the primes have been certified then output the certificate, S.
Else return FAILURE.

The highest possible power that a can be is log a. To certify that a is not a
pure power we must certify that a is not a pth power for each prime p ≤ log a.
The certificate will then contain π(⌊log a⌋) pairs, where π(x) is the number of
primes ≤ x.

Remark: If a is an odd integer that is being tested for primality, then one
needs only to check powers up to ⌊log3 a⌋, since a cannot be a power of 2 in
this case.
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Before we begin the analysis, we need to have a few bounds concerning
the distribution of certifying primes. In (Lagarias et al. 1979) Lagarias, Mont-
gomery, and Odlyzko give an effective version of the Chebotarev density and a
bound for the least prime in an arithmetic progression. However, the bounds
are given with effectively computable constants. Oesterlé (1979) gives many of
the same bounds for which he has found the constants. The one that will serve
us best is stated below.

Theorem 4.1. Assume the Generalized Riemann Hypothesis (GRH). Let L ⊃
Q be a Galois extension of degree nL with Galois group G. Let C denote any
conjugacy class in G. Let

πC(x) = |{q, an unramified prime in Z, q ≤ x | FL(q) = C}|.

Then for all x ≥ 2,

(4.2)

∣

∣

∣

∣

πC(x) − |C|
|G| Li(x)

∣

∣

∣

∣

≤ |C|
|G|

√
x

(

2 loge |∆L| + nL loge x
)

,

where ∆L denotes the discriminate of the extension L.

See (Lagarias et al. 1979; Oesterlé 1979). Here Li(x) denotes the offset
logarithmic integral of x,

Li(x) =

∫ x

2

dt

loge t
, where li(x) =

∫ x

0

dt

loge t
and Li(x) = li(x) − li(2)

with li(2) ≈ 1.045163, and we will make use of the inequalities Li(x) >
x/ loge(x) for x > 6.6 (cf. (Rosser & Schoenfeld 1962), Lemma 4: li(x) >
x/(loge(x) − 1/2) + li(

√
x) for x ≥ e5) and

(4.3) li(x) +
1

8π

√
x loge(x) > π(x) for x ≥ 3

2
,

the latter of which is equivalent to the Riemann hypothesis (Schoenfeld 1976).
Now we want to apply this theorem to our particular extension Q(a1/p, ωp),

which is of degree p(p − 1) by Lemma 3.1. We saw in Theorem 3.2 and Theo-
rem 3.3 that there were p − 1 full cycles out of the whole Galois group which
had p(p − 1) elements. These full cycles form a conjugacy class, Ccycles, in the
Galois group. The idea is that we factor the polynomial xp − a over Fq. If a is
not a pure pth power, then this polynomial will be irreducible for some q. The
density of primes q for which xp − a is irreducible corresponds to the density
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of the automorphisms in the Galois group of xp − a that do not fix any roots.
We see from Corollary 3.4 that there are p − 1 cycles which do not fix a root.
Using the Chebotarev Theorem, we see that that the primes we are looking
for have density 1/p in the set of all primes. Using these facts we are going
to estimate how big an interval we need to use to get a density within half of
what is predicted by the Chebotarev Theorem.

Theorem 4.4. Let a ≥ 275. If x ≥ 10(log2 a)10 then πCcycles
(x) ≥ 1/(2p) · π(x)

(assuming the GRH).

Proof. From Lemma 3.1, Theorem 3.5, and Corollary 3.4, the degree of
Q(a1/p, ωp) over Q is p(p − 1) and |Ccycles|/|G| = 1/p. From equation (4.2), we
have

πCcycles
(x) − 1

p
Li(x) ≥ −

√
x

p

(

2 loge |∆p,ω| + p(p − 1) loge x
)

Therefore, an x such that

πCcycles
(x) ≥ 1

p
Li(x) −

√
x

p

(

2 loge |∆p,ω|) + p(p − 1) loge x
)

≥ 1

2 p

(

Li(x) + li(2) +
1

2π

√
x loge x

)

>
1

2p
π(x)

suffices (provided x ≥ 2), the last inequality by (4.3). For the middle inequality
we can estimate, with 2 ≤ p ≤ log2 a for x ≥ 7,

1

2 p
Li(x) ≥ x

2p loge x

≥
√

x

2p

(

4 loge |∆p,ω| + 2p(p − 1) loge(x) +
li(2)√

x
+

loge x

2π

)

(4.5)

where (4.5) can be satisfied for p ≤ log2(a) and |∆p,ω| ≤ a (p−1)2 p 2p2−3p (Theo-
rem 3.5) by choosing x ≥ 10(log a)10 for a ≥ 275. �

Remark: The estimates in Theorem 4.4 are valid for smaller asymptotic
values of x. From the proof if follows that for every ǫ > 0 there is a constant c
such that for x ≥ c log2(a)6+ǫ we have πCcycles

(x) ≥ 1/(2p) · π(x).
The primes q that are congruent to 1 modulo p have density 1/φ(p) =

1/(p − 1) in the set of all primes. These primes are the only ones which could
possibly work to expose that a is not a pure power by Fermat’s Little Theorem.
So if we restrict our search within the set of primes congruent to 1 modulo p
then we expect the ones we want to have density (p − 1)/p.
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We see from the above theorem that if we pick a prime, q, below 10 (log a)10

the probability that it will satisfy q ≡ 1 (mod p) and a(q−1)/p 6≡ 1 or 0 (mod q)
is at least (p − 1)/(2p), which is at least 1/4. Since the probability that the
found prime q will certify our power p is at least 1/4, the probability that it
fails is at worst 3/4. If we collect i primes, the probability that they all fail is
at worst (3/4)i. The probability that at least one prime will certify will then be
at least 1−(3/4)i. If i ≥ 3 then the probability that at least one of the i primes
will certify a as a non-pth power will be at least 1/2. In our algorithm, we pick
3 possible certifying primes for each power, so the probability that any given
power is certified is at least 1/2. However, the probability that all π(⌊log a⌋)
powers are certified in one round is very small, approximately (1/2)log a/ loglog a.
To fix this problem Steps 3 and 4 are run in a loop up to 1 + loglog a times.
The next lemma gives us the probability that a certificate will be produced in
1 + loglog a rounds.

Lemma 4.6. The above algorithm produces a certificate with probability bet-
ter than 1/2.

Proof. If the found primes qp,1, qp,2, qp,3 are randomly taken from the interval
[1, 10 (log a)10], we see from Theorem 4.4 that the probability that qp,i satisfies
qp,i ≡ 1 (mod p) and a(qp,i−1)/p 6≡ 1 or 0 (mod qp,i) is at least (p−1)/(2p) ≥ 1/4.
Then the probability that a group of 3 primes will certify a given prime, p, is
1 − (3/4)3 > 1/2, so the probability that they fail is less than 1/2. The
probability that a given prime, p, fails to be certified in all of the ⌈1+ loglog a⌉
rounds is less than (1/2)1+loglog a, so the probability that at least one prime
certifies the prime, p, is more than 1− (1/2)1+loglog a. Then the probability that
all π(⌊log a⌋) primes are certified is more than (1−(1/2)1+loglog a)π(⌊log a⌋) ≥ (1−
(1/2)1+loglog a)log a = (1−1/(2 log a))log a = (1−1/(2 log a))(2 log a)/2 ≥ (1/4)1/2 =
1/2. �

Theorem 4.7. Under the assumption of the Generalized Riemann Hypothesis
with probability better than 1/2, the above algorithm produces a certificate in
(log a)1+o(1) time.

Proof. For each prime p less than log a we need to find another prime
q such that q ≡ 1 (mod p) and a(q−1)/p 6≡ 1 or 0 (mod q). We see from
Theorem 4.4 that the primes which will satisfy this congruence have den-
sity among the primes at least (p − 1)/(2p) on the interval [0, 10 (log a)10].
So pick a random integer q in this interval and test q ≡ 1 (mod p). This
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will take O(loglog a) time. If q passes the test for q ≡ 1 (mod p), then run
the AKS test to ensure the primality of q. It is expected that we will need
to test O(loglog a) integers before finding a prime. Testing each integer for
primality will take O((loglog a)12) time (Agrawal et al. 2004). Before test-
ing a(q−1)/p 6≡ 1 or 0 (mod q), we first collect three primes for each power,
qp,1, qp,2, qp,3. Having collected a number of possible certifying primes, we test
a(qp,i−1)/p 6≡ 1 or 0 (mod qp,i) by first computing up,i = (a mod qp,i) for each
of the collected qp,i’s using multipoint evaluation. These residues up,i can all
be computed in (log a)1+o(1) (Aho et al. 1974). To test a(qp,i−1)/p 6≡ 1 or 0
(mod qp,i), we use binary exponentiation on the computed residue up,i. Each
can be done in O((log q)3) time (Bach & Shallit 1996). There are approximately
3 log a/ loglog a of them which need to be computed since there are approxi-
mately log a/ loglog a primes less than log a. Since we have that q = O((log a)10)
, each congruence is checked in O((log q)3) which is O((loglog a)3). This gives
us that the total time for checking all of the a(qp,i−1)/p 6≡ 1 or 0 (mod qp,i)
will be O((loglog a)3 log a/(loglog a)) + (log a)1+o(1) = (log a)1+o(1). This is
Step 4 in our algorithm and it is the most costly. Steps 3 and 4 run in a
loop at most 1 + loglog a times. So we have the the running time will be
(1 + loglog a) · (log a)1+o(1) which is (log a)1+o(1). �

Remark: One could replace the AKS test with the Miller test which is
made deterministic under the GRH. Under the GRH, the Miller test can certify
the primality of q in (loglog a)4+o(1) time, which affects the overall complexity
of our algorithm in the exponent of loglog a. However, one should note that
this step is not where our algorithm requires the assumption of the GRH.

Though this is formulated as a Monte Carlo algorithm, one could easily
turn the algorithm into a Las Vegas algorithm by running it over and over
again until a certificate is produced. The expected running time of such an
algorithm would be (1/2)(log a)1+o(1) + (1/4)(log a)1+o(1) + (1/8)(log a)1+o(1) +
· · · + (1/2k)(log a)1+o(1) + · · · = (log a)1+o(1)

∑∞
i=1(1/2)i = (log a)1+o(1).

Theorem 4.8. A certificate produced by our algorithm can be verified in
(log a)1+o(1) time.

Proof. For each prime power p less than log a, the congruence q ≡ 1
(mod p) and a(q−1)/p 6≡ 1 or 0 (mod q) needs to be checked with its paired
prime, q. We can compute uq = (a mod q) for all the q’s at once using mul-
tipoint evaluation in (log a)1+o(1) time (Aho et al. 1974). Then by using bi-
nary exponentiation on uq, checking the congruence a(q−1)/p 6≡ 1 or 0 (mod q)
can be done in O((log q)3) time using classic multiplication (Bach & Shallit
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1996). From Theorem 4.4 we have that q = O((log a)10), so each congru-
ence is checked in O((log q)3) which is O((loglog a)3). There are approximately
(log a)/(loglog a) primes less than log a for which this congruence needs to be
checked. This gives us that the total time will be
(log a)1+o(1) + O((loglog a)3 log a/(loglog a)) = (log a)1+o(1). �

5. Results and Example Certificates

Using a = 43017772231855, p = 31 and checking the first 10,000 primes, we
found that 338 are congruent to 1 modulo p. Of those 338 primes, 327 of them
satisfied a(q−1)/p 6≡ 1 or 0 (mod q). So we found that 327/338 = .9674556213
is the actual value using the first 10,000 primes and the value predicted by
the cycle structure of the Galois group and the Chebotarev density theorem
is 30/31 = .9677419355. The difference between these two is .0002863141821.
In fact the first two primes that are congruent to 1 modulo 31, 311 and 373,
certify that 43017772231855 is not a pure 31st power. For a = 67, p = 5,
21 of the first 24 primes that are congruent to 1 modulo 5 certify that 67 is
not a pure 5th power. There seems to be the general trend that the first or
second prime tested that is congruent to 1 modulo p will certify that a is not
a pure pth power (the average value is p/(p − 1) primes), though as larger p’s
are checked the gaps between the first and second primes in the progression
becomes much larger. Some example certificates illustrate how small the first
prime that certifies a as a non-pth power compared to the upper bound used in
the proof of Theorem 4.7.

These example certificates were created using this small routine in Maple 7.
In this routine we simply look for the first q which exposes a as a non-pth power.

This first one is for Gauss’s lifespan 4/30/1777 – 2/23/1855.
a = 43017772231855 = 5 · 8603554446371
S = {(2, 13), (3, 19), (5, 11), (7, 29), (13, 53), (17, 103), (19, 191), (23, 47),
(29, 59), (31, 311), (37, 223), (41, 739)}

Here is one for the prime 231 − 1.
a = 231 − 1 = 2147483647
S = {(2, 5), (3, 13), (5, 61), (7, 29), (11, 23), (13, 53), (17, 103), (19, 191),
(23, 47), (29, 59)}

Since these numbers are odd, they cannot be pure powers of 2. So we do
not need to check up to the log a but only up to log3 a. This will shorten the
certificates to be :
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a = 43017772231855
S = {(2, 13), (3, 19), (5, 11), (7, 29), (13, 53), (17, 103), (19, 191), (23, 47),
(29, 59)}
a = 2147483647
S = {(2, 5), (3, 13), (5, 61), (7, 29), (11, 23), (13, 53), (17, 103), (19, 191)}

6. Future Work/Improvements

It might be advantageous to use trial divisions (cf. (Bach & Sorenson 1993)) to
ensure that the number a is not a pure power of a small prime say up to some
small prime r. This would allow us to lower the bound on the prime powers
we need to certify from log a to logr a. Also an assumption in the probabilistic
analysis is that each of the trials is independent. This assumption is fair in
that for each power we can throw away any primes we find to certify and start
all over again. However, it might be useful to analyze the probability that a
prime, that is congruent to 1 modulo two different primes, will certify both
prime powers. Or that if it does not certify one power does that increase or
decrease the chance that it will certify the other. Such an analysis could help
save time by allowing the primes found to be saved and used for other prime
powers in the certificate.
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