
J. Symbolic Comput., 47(1):1-15, January 2012.

Exact certification in global polynomial optimization

via sums-of-squares of rational functions

with rational coefficients*

Erich L. Kaltofen1, Bin Li2, Zhengfeng Yang3 and Lihong Zhi2

1Dept. of Mathematics, North Carolina State University,

Raleigh, North Carolina 27695-8205, USA

kaltofen@math.ncsu.edu; http://www.kaltofen.us

2Key Laboratory of Mathematics Mechanization, AMSS

Beijing 100190, China

{bli,lzhi}@mmrc.iss.ac.cn; http://www.mmrc.iss.ac.cn/∼lzhi/

3Shanghai Key Laboratory of Trustworthy Computing, SEI

East China Normal University, Shanghai 200062, China

zfyang@sei.ecnu.edu.cn

In memory of Wenda Wu (1929–2009)

Abstract

We present a hybrid symbolic-numeric algorithm for certifying a polynomial or
rational function with rational coefficients to be non-negative for all real values of the
variables by computing a representation for it as a fraction of two polynomial sum-of-
squares (SOS) with rational coefficients. Our new approach turns the earlier methods
by Peyrl and Parrilo at SNC’07 and ours at ISSAC’08 both based on polynomial SOS,
which do not always exist, into a universal algorithm for all inputs via Artin’s theorem.

Furthermore, we scrutinize the all-important process of converting the numerical
SOS numerators and denominators produced by block semidefinite programming into
an exact rational identity. We improve on our own Newton iteration-based high preci-
sion refinement algorithm by compressing the initial Gram matrices and by deploying
rational vector recovery aside from orthogonal projection. We successfully demonstrate
our algorithm on 1. various exceptional SOS problems with necessary polynomial de-
nominators from the literature and on 2. very large (thousands of variables) SOS lower
bound certificates for Rump’s model problem (up to n = 18, factor degree = 17).

∗This material is based on work supported in part by the National Science Foundation under Grants
CCF-0830347 (Kaltofen) and CCF-0514585 and DMS-0532140 (Kaltofen and Yang).

This research was partially supported by NKBRPC (2004CB318000) and the Chinese National Natural
Science Foundation under Grant 10401035 (Li and Zhi).

1

http://www.kaltofen.us
http://www.mmrc.iss.ac.cn/~lzhi/


1. Introduction

1.1. Overview of Results

Semidefinite programming (SDP) and the Gram matrix representation allow the computation
of a polynomial sum-of-squares (SOS) of a positive semidefinite real polynomial. SDP has
been deployed successfully to numerically compute a global minimum or infimum in many
a polynomial or rational function optimization problem. Recently [Peyrl and Parrilo 2007;
Kaltofen et al. 2008; Peyrl and Parrilo 2008], the numerical polynomial SOSes of some have
been converted to exact (“symbolic”) polynomial identities over the rational numbers, thus
certifying rational lower bounds that are near the exact algebraic minima or infima.

This hybrid symbolic-numeric certification approach is complicated by several obstacles.
For one, neither a polynomial SOS nor one with rational coefficients may exist for the op-
timization problem at hand. For the former, counterexamples like the Motzkin polynomial
have been constructed, the latter is subject to conjecture (cf. [Hillar 2009]). However, Emil
Artin’s original solution to Hilbert’s 17th problem shows that a rational sum-of-squares of
rational functions always exists for any rational positive semidefinite rational polynomial
(cf. (1) on page 3 below). Therefore we base our new certificates on expressing any arising
positive semidefinite rational polynomial (floating point numbers are rational numbers) as a
fraction of two polynomial SOSes with rational coefficients. By Artin’s theorem such fractions
always exist, and they can be computed via a primal SDP with 2 semidefinite block matrices
provided the optimal value is known or computed by local methods. Since the degree of the
denominator SOS controls the problem size, we use variable SOS denominators rather than
Artin’s original polynomial squares or Reznick’s uniform denominators [Reznick 1995], and
we present a case that has provably fewer control variables (see Example 2 on page 7 below).

Finally, we formulate our all-important process of conversion to an exact rational identity.
Already in [Kaltofen et al. 2008] the problems with the necessary precision of the approach of
[Peyrl and Parrilo 2007, 2008] were addressed, by performing “after-the-fact” high precision
Newton iteration on the numerical SOSes from SDP. Since our rational lower bounds can be
chosen (or have to be, if the optimum is irrational, as is the case in Rump’s model problem
of Section 3) so that the SDP becomes strictly feasible, singularities in the Gram matrix
introduced by the actual real optimizers are avoided. With modification to our ISSAC’08
code, we now can certify better lower bounds for Rump’s model problem, and can go further
(n = 18, factor degree = 17). We conjecture that the arising polynomials are polynomial
SOSes for all n, hence no SOS denominators need to be computed. Those are our largest SOS
certificates with thousands of variables and thousands of decimal digits in the numerators and
denominators of the rational scalars (see Table 2 on page 15 below). It is not known if nearness
of the polynomial to a real root increases the degree of the necessary SOS denominators.

However, our conversion algorithm also yields SOS fractions if the polynomial input to
our SOS construction has a real root. For that it turns out to be crucial that the numerically
computed Gram matrices are analyzed and properly truncated before Newton refinement. If
numerator SOS’s Gram matrix is on the boundary of the cone of feasible solutions, rational
coefficient vector recovery can yield an exact SOS when orthogonal projection always fails.
We demonstrate that our method works on various exceptional SOS problems in the literature
by Motzkin, Delzell, Reznick, Leep and Starr, the IMO’71 problem by A. Lax and P. Lax, and

2



the polynomial Vor2 in [Everett et al. 2007]. In several cases, we have discovered entirely new
SOS solutions. As stated in [Kaltofen et al. 2008], even though our approach uses numerical
SDP and Newton iteration, all our certificates are exact without numerical error.

1.2. Rational Function Sum-of-squares and Semidefinite Program-
ming

We shall now give a brief introduction to sum-of-squares optimization. Let K = R or K = Q

and let f ∈ K[X1, . . . , Xn] or f ∈ K(X1, . . . , Xn). Emil Artin’s [1927] solution of Hilbert’s
17th Problem states that

∀ξ1, . . . , ξn ∈ R : f(ξ1, . . . , ξn) ≮ 0 (f is [positive semi-] definite) (1)

m

∃u0, . . . , um ∈ K[X1, . . . , Xn] : f(X1, . . . , Xn) =
l∑

i=1

(
ui

u0

)2

.

Note that if f is a rational function, in the definition (1) of definiteness all real roots of the
denominator of f , i.e., where f is undefined, are excluded by ≮ rather than ≥ (“für kein
reelles Wertsystem der xi negativ” [for no real value system of the xi negative]). If f is a
polynomial, a non-constant denominator u0 may be necessary, the first explicit such example
being given by Theodore Motzkin in 1967

motzkin(X,Y, Z) = (3 arithm. mean − 3 geom. mean)(X4Y 2, X2Y 4, Z6)

= X4Y 2 + X2Y 4 + Z6 − 3X2Y 2Z2.

Note that (X2+Z2)·motzkin(X,Y, Z) = (Z4−X2Y 2)2 + (XY Z2−X3Y )2 + (XZ3−XY 2Z)2

and that for general positive semidefinite f ∈ K[X1, . . . , Xn] a denominator u0 in any n − 1
variables suffices, that without extending the coefficient field [Artin 1927, Satz 9]. In addition,
(X2 + Y 2 + Z2) · motzkin(X,λY, λZ) is a [polynomial ] sum-of-squares (SOS ) if and only if
0 ≤ λ ≤ 2 [Reznick 2005]. For f a positive [definite] form (= homogeneous polynomial
with no non-trivial real zero, the polynomial motzkin is not) with coefficients in K = R

one can take the denominator as u0 = (X2
1 + · · · + X2

n)s for some integer exponent s (or,
obviously, 2s′ which solves Artin’s equation) [Reznick 1995]. In Example 2 we show that
(X2 + Y 2 + Z2)2 · motzkin(X, 3Y, 3Z) is a polynomial SOS. However, there are positive
semidefinite forms which admit no uniform denominator (see Example 1 below). We remark
that

motzkin(X,Y, Z) + ǫ 6=
1

(aX + bY + cZ + d)2

∑

j

vj(X,Y, Z)2 (2)

for any real ǫ ≥ 0, any non-zero aX + bY + cZ + d ∈ R[X,Y, Z] and any finite set of
vj ∈ R[X,Y, Z]. The impossibility (2) exhibits that our polynomial SOS denominators may
yield provably lower degrees than pure polynomial squares and that relaxing the lower bound
of a polynomial may never yield a polynomial SOS (a = b = c = 0).

Even if u0 = 1, there are polynomials for which the representation by squares of rational
functions has provably fewer squares [Leep and Starr 2001]. Mihai Putinar’s 1993 “Positivstel-
lensatz” produces polynomial sums-of-squares under additional polynomial constraints that

3



satisfy certain conditions [Nie and Schweighofer 2007]. Here we focus on unconstrained real
polynomial optimization problems.

Polynomial sums-of-squares are related to positive semidefinite matrices in the following
way. Let W be a real symmetric matrix. We define W � 0 (positive semidefinite) if all
its eigenvalues are non-negative. The PLDLTPT-decomposition [Golub and Van Loan 1996,
Section 4.2.9] gives the equivalent characterization

W � 0 ⇐⇒ ∃L,D, P : P T WP = L D LT , P a permut. matrix, D diagonal with Di,i ≥ 0.

Therefore,

∃ui ∈ R[X1, . . . , Xn] : f(X1, . . . , Xn) =
k∑

i=1

ui(X1, . . . , Xn)2

is equivalent to

∃A : f = md(X1, . . . , Xn)T AT A md(X1, . . . , Xn) =
k∑

i=1

(Ai md(X1, . . . , Xn))2

is equivalent to

∃W � 0: f = md(X1, . . . , Xn)T W md(X1, . . . , Xn) =
rank W∑

i=1

(
√

Di,i Li md(X1, . . . , Xn))2,

with Ai (Li) the i-th row of A (LT P T ) and md(X1, . . . , Xn) the vector of terms of degree ≤ d
in the polynomials ui.

Semidefinite Programming (SDP) [Vandenberghe and Boyd 1996; Wolkowicz et al. 2000]
generalizes linear programming by restricting the decision variables to form positive semidef-
inite matrices. Let A[i], C,W be real symmetric matrices. We define the scalar product on
Rn×n space as

C • W =
∑

i

∑

j

ci,jwi,j = Trace(CW )

Letting A[i,j], C [j],W [j] be real symmetric matrices and letting W = block diagonal(W [1], ...,
W [k]), the blocked primal semidefinite program is

min
W [1],...,W [k]

C [1] • W [1] + · · · + C [k] • W [k]

s. t.




A[1,1] • W [1] + · · · + A[1,k] • W [k]

...
A[m,1] • W [1] + · · · + A[m,k] • W [k]


 = b ∈ Rm,

W [j] � 0,W [j] = (W [j])T , j = 1, . . . , k.

We can now apply SDP to proving a polynomial f ∈ Q[X1, . . . , Xn] positive semidefinite by
computing for a chosen denominator degree e Gram matrices W [1], W [2] such that

f(X̄) =
u1(X̄)2 + · · · + ul(X̄)2

v1(X̄)2 + · · · + vl′(X̄)2
=

md(X̄)T W [1] md(X̄)

me(X̄)T W [2] me(X̄)
.

4



We show that W [1] and W [2] are solutions to a block SDP without an objective function.
First, let the term vector mT

d = [τ1, τ2, . . .]. Then

mT
d W [1] md =




...
. . . τiτj . . .

...


 • W [1] =

∑

i

(G[i] • W [1]) ti

where G[i] are scalar symmetric matrices and ti are terms in X̄. Similarly,

f(X̄) (me(X̄)T W [2] me(X̄)) =
∑

j

(H [j] • W [2]) sj

where H [j] are scalar symmetric matrices and sj are terms in X̄. Matching like terms we get
block constraints of the form G[i] • W [1] − H [j] • W [2] = 0.

The block SDP was already used for rational function optimization. Suppose g is a positive
real multivariate polynomial, and that the lower bound of µn = min f/g is non-negative. In
[Kaltofen et al. 2008] we have solved the sparse block SDP program

µ∗
n := sup

r∈R,W
r

s. t. f(X̄) = mG(X̄)T · W · mG(X̄) + rg(X̄)
(i.e., f(ξ1, . . . , ξn) = SOS + rg(ξ1, . . . , ξn) ≥ rg(ξ1, . . . , ξn))

W � 0, W T = W, r ≥ 0





(3)

where mG(X̄) is a term vector whose sparsity arises from the nature of f and g. Note that
if µn < 0 one can solve a second SDP in the decision variable r′ = −r ≥ 0 and the objective
function sup−r′, but in our cases that is not necessary.

2. Exact Rational Function Sum-Of-Squares Certificates

In the following, we focus on how to certify a rational lower bound r̃ of a polynomial
f ∈ Q[X1, . . . , Xn]. An initial floating point guess r∗ for the lower bound can be obtained by
computing local minima of f . Suppose we guess the degree of the denominator of the poly-
nomials vi, then the sizes of the W [1] and W [2] matrices are fixed and we solve the following
SOS program:

inf
W

Trace(W )

s. t. f(X̄) − r∗ =
md(X̄)T W [1] md(X̄)

me(X̄)T W [2] me(X̄)

W =

[
W [1] 0

0 W [2]

]
,W � 0,W T = W.





(4)

Here Trace(W ) acts as a dummy objective function that is commonly used in SDP for opti-
mization problem without an objective function. Unlike in (3) above, the optimum r∗ in (4)
cannot be found by SDP. However in (3) the assumption is made that f − rg is actually a
polynomial SOS.

5



The SOS program (4) can be solved efficiently by algorithms in GloptiPoly [Henrion and
Lasserre 2005], SOSTOOLS [Prajna et al. 2004], YALMIP [Löfberg 2004] and SeDuMi [Sturm
1999]. However, since we are running fixed precision SDP solvers in Matlab, we can only
obtain numerical positive semidefinite matrices W [1],W [2] which satisfy approximately

f(X̄) − r∗ ≈
md(X̄)T W [1] md(X̄)

me(X̄)T W [2] me(X̄)
,W [1] � 0 ,W [2] � 0. (5)

So r∗ is a lower bound of infξ∈Rn f(ξ), approximately! For some applications, such as Rump’s
model problem [Rump 2006; Kaltofen et al. 2008], due to the numerical error, the computed
lower bounds can even be significantly larger than upper bounds, see, e.g., Table 1 in [Kalt-
ofen et al. 2008]. These numerical problems motivate us to consider how to use symbolic
computation tools to certify the lower bounds computed by SDP.

The lower bound r̃ is certified if r̃ and W̃ [1], W̃ [2] satisfy the following conditions exactly:

f(X̄) − r̃ =
md(X̄)T W̃ [1] md(X̄)

me(X̄)T W̃ [2] me(X̄)
, W̃ [1] � 0 , W̃ [2] � 0. (6)

In the following subsections, we start with finding a rational positive semidefinite matrix
W̃ [2] near to W [2] by solving the SOS program (4), then for the fixed denominator and lower
bound, we use Gauss-Newton iterations to refine the matrix W [1]. The rational number r̃
and rational positive semidefinite symmetric matrix W̃ [1] which satisfy (6) exactly can be

computed by orthogonal projection (W̃ [1] is of full rank) or rational vector recovery (W̃ [1] is
singular).

Without SDP, one may check that (f − r̃)y2 + 1 has no real point for a fresh variable
y [Becker et al. 2000] by any of the generalizations of Seidenberg’s algorithm [Safey El Din
2001; Aubry et al. 2002].

2.1. Newton Iteration

Our first two benchmark examples deal with Reznick’s uniform denominators discussed in
Section 1.2.

Example 1. The polynomial delzell [Delzell 1980] is a positive semidefinite polynomial
which cannot be written as a polynomial SOS:

delzell(X1, X2, X3, X4) = X4
1X

2
2X

2
4 + X4

2X
2
3X

2
4 + X2

1X
4
3X

2
4 − 3 X2

1X
2
2X

2
3X

2
4 + X8

3 .

It has been shown in [Delzell 1980; Reznick 2000] that this polynomial has a “bad point” at
(X1, X2, X3, X4) = (0, 0, 0, 1), i.e., for any polynomial q which is nonzero at (0, 0, 0, 1), q2 ·
delzell will never be a polynomial SOS. Reznick’s uniform denominators do not vanish at this
point, hence do not work for this example. Letting r∗ = 0 and me(X̄) = [1, X4, X3, X2, X1]

T

6



and solving the SOS program (4), we obtain the matrix W [2]:



0.00000000171 7.54 × 10−14 −1.88 × 10−13 −1.30 × 10−17 −1.58 × 10−14

7.54 × 10−14 0.00000000186 1.13 × 10−12 −5.91 × 10−13 1.73 × 10−12

−1.88 × 10−13 1.13 × 10−12 2.08 0.00000000163 −0.0000000144

−1.30 × 10−17 −5.91 × 10−13 0.00000000163 1.92 −0.0000000322

−1.58 × 10−14 1.73 × 10−12 −0.0000000144 −0.0000000322 1.95




.

This shows clearly that the coefficient of X4 in the denominator is near to zero. We choose the
polynomial 2X2

1+2 X2
2+2 X2

3 as the denominator. The polynomial delzell ·(2 X2
1+2 X2

2+2 X2
3 )

can be written as an SOS of 8 polynomials (14). �

Moreover, even when Reznick’s uniform denominators work, a higher than necessary
degree for that denominator may result.

Example 2. As stated in Section 1.2, the polynomial motzkin(X1, 3 X2, 3 X3)·(X2
1+X2

2+X2
3 )

is not a polynomial SOS.
We show in the Appendix that s = 2 is the least integer such that motzkin(X1, 3 X2, 3 X3)·

(X2
1 + X2

2 + X2
3 )s can be written as an SOS of 5 polynomials (15). However, letting r∗ = 0

and me(X̄) = [1, X3, X2, X1]
T and solving the SOS program (4), we obtain the matrix W [2]:




0.000000151 −4.02 × 10−16 −7.96 × 10−18 −1.84 × 10−17

−4.02 × 10−16 0.237 −1.45 × 10−11 2.90 × 10−12

−7.96 × 10−18 −1.45 × 10−11 0.134 −1.38 × 10−12

−1.84 × 10−17 2.90 × 10−12 −1.38 × 10−12 0.0466


 .

A good candidate 1
21

X1
2 + 1

7
X2

2 + 1
4
X2

3 for the denominator is discovered by convert-
ing the matrix W [2] to a nearby rational matrix. Actually, we show that the polynomial
motzkin(X1, 3 X2, 3 X3) · (4X1

2 + 12X2
2 + 21X2

3 ) can be written as an SOS of 5 polynomi-
als (16). �

As we have seen from the above two examples, it helps us to discover a proper denominator
from the W [2] matrix computed by solving (4) for a chosen degree of denominator. Notice
that we only convert the matrix W [2] to a nearby rational matrix which usually gives us a
good candidate for the denominator.

Let us denote the computed denominator by g(X̄). Then we are going to certify that
(f − r∗) g = f · g − r∗g is nonnegative, where g is a polynomial SOS. By denoting f · g as f ,
and W [1] by W , we are facing the certification problem (3) which has already been addressed
in [Kaltofen et al. 2008].

Suppose we have

f(X̄) − r∗g(X̄) ≈ md(X̄)T · W · md(X̄), W � 0, W T = W.

In order to use structure-preserving Gauss-Newton iteration to refine W , we compute the
PLDLTPT-factorization of W and obtain the quadratic form:

f(X̄) − r∗g(X̄) ≈
k∑

i=1

(
∑

α

ci,αX̄α)2 ∈ R[X̄]. (7)

7



Here k is the rank of the matrix W .
We apply Gauss-Newton iteration to compute ∆ci,αX̄α such that

f(X̄) − r∗g(X̄) =
k∑

i=1

(
∑

α

ci,αX̄α + ∆ci,αX̄α)2 + O(
k∑

i=1

(
∑

α

∆ci,αX̄α)2). (8)

The matrix W is updated accordingly to W + ∆W and the iteration is stopped when θ is
less than the given tolerance τ , θ denotes the backward error:

θ = ‖f(X̄) − r∗g(X̄) − md(X̄)T · W · md(X̄)‖. (9)

If θ remains greater than the given tolerance τ after several Gauss-Newton iterations, we
may increase the precision of the SDP and Gauss-Newton iteration computations or use a
smaller r∗ and try the computations again.

The total number of X̄α in md(X̄) is
(

n+d
d

)
. So the computation of Gauss-Newton iteration

is very heavy. It is necessary to exploit the sparsity of the polynomials appearing on the
right side of the equation (7) and the SOS program (4). Fortunately, for many optimization
problems arising from approximate polynomial computation, the sparsity can be discovered
by analyzing the Newton polytope. For example, we show in [Kaltofen et al. 2008] how to
explore the sparsity for the Rump’s model problem. Furthermore, the appearance of small
entries ci,α, 1 ≤ i ≤ k also illustrates the sparsity of the SDP, see Example 3.

2.2. Rationalizing an SOS

2.2.1. Case 1: W is a full rank matrix

Wadjust

X

convert to rational

WNewton

project on hyperplane

symmetric positive semidefinite matrices
W̃

Newton iteration

WSDP

Figure 1: Rationalization of SOS

In [Peyrl and Parrilo 2007], a Macaulay 2 package is presented to compute an exact SOS
decomposition from a numerical solution for nonnegative polynomials with rational coeffi-
cients. We extend their technique to construct an exact rational SOS decomposition for the
polynomial f(X̄) − r̃g(X̄) in [Kaltofen et al. 2008].

Suppose W has been refined by Gauss-Newton iterations such that the error defined in (9)
is less than the given tolerance, i.e., θ < τ . We approximate r∗ by a nearby rational number

8



r̃ / r∗ and convert W to a rational matrix. The refined matrix W is projected to the rational

matrix W̃ on the hyperplane X defined by

X = {A | AT = A, f(X̄) − r̃g(X̄) = md(X̄)T · A · md(X̄).} (10)

The orthogonal projection is achieved by solving exactly the following least squares prob-
lems:

min
fW

‖W − W̃‖2
F

s. t. f(X̄) − r̃g(X̄) = md(X̄)T · W̃ · md(X̄)

}
(11)

which is equivalent to solve a set of smaller least squares problems:

min
fW

∑

α

∑

β+γ=α

(Wβ,γ − W̃β,γ)
2

s. t. fα − r̃gα =
∑

β+γ=α

W̃β,γ





(12)

By solving the least squares problem (12) for each α, we get the minimal rational solution,

denoted by W̃ . Then we compute the exact PLDLTPT-decomposition [Golub and Van Loan

1996, see Exercise P5.2-3(c)] to check whether W̃ is a symmetric positive semidefinite matrix.
We also could use a validated numeric method, as Siegfried Rump has suggested to us. Even
with exact PLDLTPT-decomposition, the step constitutes a small fraction of time of our
procedure. The rational number r̃ is verified as the lower bound if

f(X̄) − r̃g(X̄)= md(X̄)T · W̃ · md(X̄)

= md(X̄)T · PL · D · LT P T · md(X̄), such that ∀i : Di,i ≥ 0,

}
(13)

where Di,i is the i-th diagonal entry of the diagonal matrix D.

Suppose the minimal rational solution W̃ is in the interior of the positive semidefinite
cone, i.e., W̃ is of full rank, then the orthogonal projection will always project the refined W
matrix to W̃ if θ is small enough [Peyrl and Parrilo 2007]. The Figure 1 is similar to that
in [Kaltofen et al. 2008].

2.2.2. Case 2: W is a rank deficient matrix

In Figure 2 we show the situation when the matrix W obtained after applying Newton
iteration is not of full rank or is near to a singular matrix. The hyperplane X defined by
the linear constraints is tangent to the cone of symmetric positive semidefinite matrices, i.e.,
the W̃ is not in the interior of the cone. The orthogonal projection introduced in the above
section cannot project W on to the cone.

The rank deficiency of the matrix W can be caused by several reasons. Here we only list
some typical cases:

1. There are extra monomials used in the SOS decomposition, see Leep and Starr’s second
example [Leep and Starr 2001].

9



recover an integer or rational matrix

symmetric positive semidefinite matrices

Newton iteration

X
W̃

WNewton

WadjustWSDP

Figure 2: The Singular W Case

2. Suppose the lower bound r̃ is the global minimum of f/g and it is reached at nonzero
real point (ξ1, . . . , ξn) ∈ Rn, then the monomial vector md(X̄) evaluated at (ξ1, . . . , ξn)

is a null vector of the matrix W̃ , i.e., W̃ is singular.

(a) The global minimum is achieved at few nonzero points on Rn, such as Siegfried
Rump’s model problem [Rump 2006].

(b) The global minimum is achieved at a manifold, for example Lax and Lax prob-
lem [Lax and Lax 1978] and Vor2 [Everett et al. 2007].

The first case can be avoided by exploring the sparsity structure of the polynomials or
deleting the entire rows and columns of the W matrix with small elements, i.e., deleting the
monomials which should not appear in the SOS of polynomials.

Example 3. [Example 2 in [Leep and Starr 2001]] Leep and Starr showed that the polyno-
mial

leepstarr2 (X1, X2) = 8 +
1

2
X2

1X
4
2 + X2

1X
3
2 − 2 X3

1X3
2 + 2 X1X

2
2 + 10 X2

1X2
2

+ 4 X3
1X2

2 + 3 X4
1X2

2 + 4 X1X2 − 8 X2
1X2

is positive but cannot be written as a polynomial SOS. They showed that leepstarr2 (X1, X2) ·
(1 + X2

1 )2 can be written as an SOS of 3 polynomials.
For r∗ = 0 and the fixed degree 2 for the denominator, we solve the SOS problem (4) and

obtain the W [2] matrix: 


0.508 0.0155 −0.0553

0.0155 0.598 0.0124

−0.0553 0.0124 0.665




After converting it to a nearby rational matrix and multiplying by monomial vector me(X̄) =
[1, X2, X1]

T , we obtain the polynomial 1
2

+ 2
3
X2

1 + 3
5
X2

2 as the denominator. We show that
the polynomial 2 · leepstarr2 (X1, X2) · (15 + 20X2

1 + 18 X2
2 ) ∈ Z[X1, X1, X3] can be written

as an SOS of 9 polynomials (17).

10



The fifth and eighth rows of W corresponding to monomials X2
1 and X3

1 respectively
can be deleted since there are of order 10−5. After these two rows and two columns have
been deleted, the new matrix W is of full rank. The Gauss-Newton iteration converges very
quickly, and the backward error of the iteration θ can approach to zero as close as possible
if the digits of computation is big enough.

The extra monomials can also be found by using Newton polytope in solving the SOS
program (4). For Leep and Starr’s example, if we run the Matlab’s command solvesos and
set sos.newton to 1, we obtain a full rank W matrix with dimension 9. The polynomial
2 · leepstarr2 (X1, X2) · (15 + 20X2

1 + 18 X2
2 ) can be written as an SOS of 9 polynomials (17)

after we round the entries of W to integers and compute its exact PLDLTPT-decomposition.
�

Suppose the global minimum r̃ of f/g is attained on finitely many real points. If the
singularity is only introduced by the actual real optimizers, we can avoid the singularity by
reducing the lower bound slightly and perform Gauss-Newton iteration to refine a full rank
Gram matrix. Rump’s model problem is this case. The global optima of Rump’s model
problem are achieved by one real optimizer if the degree n is even and two real optimizers if
n is odd. We describe in [Kaltofen et al. 2008] that the numerical rank deficiency of the Gram
matrix W computed by solving SOS program is 1 if n is even; and 2 if n is odd. Therefore,
the singularity can be regarded as caused only by the global optimizers. In [Kaltofen et al.
2008], we compute the certified lower bound for Rump’s model problem by forcing the rank
deficient condition of W . Although we can compute the SOS decomposition to high precision,
it is difficult to project the Gram matrix W on to the cone defined by the symmetric positive
semidefinite matrices. From Table 2, we can see that if we ignore the rank deficient condition
of W , and apply the Gauss-Newton iteration to refine the matrix W to a full rank matrix,
then perform the orthogonal projection after the backward error θ being small enough, we
can actually certify a much tighter lower bound.

If the global minimum is attained on some manifolds, adding small perturbation to the
lower bound may not change the singularity of the matrix W . Hence we cannot avoid to
work with the matrix W which is “intrinsically” singular. If the singular values of W have
big jumps, we may estimate the rank deficiency of W and apply the Gauss-Newton iteration
to the truncated triangular decomposition of W . When the residue θ is small, we can try
to recover the rational entries of the matrix by a simultaneous diophantine approximation
algorithm [Lagarias 1985].

Example 4. [Lax and Lax 1978] Consider the polynomial

laxlax (X1, X2, X3, X4) = X1X2X3X4 +
4∑

i=1

(−Xi)
∏

j 6=i

(Xj − Xi)

which is positive semidefinite but cannot be written as a polynomial SOS. The minimum of
laxlax is zero and is achieved at a manifold defined by

{X1 = 0, X2 = X3 = X4}.

11



We compute the polynomial SOS of laxlax (X1, X2, X3, X4) · (X2
1 + X2

2 + X2
3 + X2

4 ). The
singular values of the 20 × 20 matrix W computed by the SDP solver are

12.999, 5.999, 5.999, 5.999, 2.999, 2.999, 8.19 × 10−5, 8.19 × 10−5, 8.19 × 10−5, 1.17 × 10−9, ...

The rank of W can be 7 or 10 for the given tolerance 10−4 or 10−8, respectively. The norm
of each row of W is at least 1, i.e., it is unlikely that we can eliminate the singularity by
removing extra monomials. Let us truncate the matrix W to be of rank 7, i.e., the initial
SOS consists of 7 polynomials computed from the truncated LDLT-decomposition of W .
By rational vector recovering, we obtain an exact polynomial SOS (18) which consists of 7
polynomials in all 20 monomials.

Since the last ten singular values are smaller than 10−8, we can also guess that the rank of
W could be 10. After performing Gauss-Newton iterations twice to the truncated W matrix,
we can recover the same rational SOS (18)! �

There are also cases where the singularity caused by both extra monomials and the
minimizers.

Example 5. [Everett et al. 2007; Safey El Din 2008] Let us look at the polynomial voronoi2
which has 253 monomials and is of degree 18:

voronoi2 (a, α, β,X, Y ) =

a12α6 + a12α4 − 4 a11α3Y − 4 a11α5Y + 10 a11α4β X + · · ·︸︷︷︸
246 terms

+6 a10α2Y 2 + 20 a10α2X2.

As claimed in [Everett et al. 2007], the polynomial voronoi2 is nonnegative and the global
minimum zero is reached on two manifolds defined by

{Y + aα, 2 aβX + 4 a3βX + 4 a4α2 + 4 a4 + 4 a2α2 + 4 a2 − a2X2 − β2}

and
{aX + β,−4 β2 − 4 − 2 a3αY − 4 aαY + a4α2 + a2Y 2 − 4 a2β2 − 4 a2}.

The singular values of the computed W matrix have no big jumps:

196, 152.78, 152.29, 107.36, 68.64, 61.48, 43.05, 42.58, 25.06, 0.022, 0.02, · · ·

For different tolerances, we could get an exact polynomial SOS with the number of polyno-
mials being 5, 7 or 8. Setting the tolerance being 43, we compute the truncated triangular
decomposition of W with dimension 118 × 7. There are 42 rows with entries of order 10−5.
After eliminating 42 extra monomials, we round the product of the triangular matrix and it’s
transpose to an integer matrix. This gives us an exact polynomial SOS of the voronoi2 (19).
The number of polynomials in the SOS is 5. The actual number of monomials in the SOS is
76 instead of 118. For this example, if we choose different tolerances, for reasons unknown
to us it is more difficult to obtain the exact SOS. �

The following table is presented to show the details of computation of all examples in this
section. The exact sums of squares of these polynomials have been shown in the Appendix and
http://www4.ncsu.edu/∼kaltofen/software/certif and http://www.mmrc.iss.ac.cn/∼lzhi/Research/

hybrid/certif.

12

http://www4.ncsu.edu/~kaltofen/software/certif
http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/certif
http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/certif


Table 1: SOSes for some well-known examples

Example The Denominator #iter prec. #sq secs
delzell 2X2

1 + 2X2
2 + 2X2

3 Null 2 × 15 8 0.02
motzkin(X1, 3X2, 3X3) 4X2

1 + 12X2
2 + 21X2

3 19 1 × 15 5 0.304
motzkin(X1, 3X2, 3X3) (X2

1 + X2
2 + X2

3 )2 96 10 × 15 7 17.217
leepstarr2 15 + 20X2

1 + 18X2
2 Null 1 × 15 9 0.344

laxlax X2
1 + X2

2 + X2
3 + X2

4 Null 2 × 15 7 0.52
voronoi2 1 78 4 × 15 5 15.893

2.2.3. Algorithm

Algorithm Lower Bound Verification

Input: ◮ f(X̄1, . . . , X̄n) ∈ Q[X̄1, . . . , X̄n]: a multivariate polynomial.
◮ r∗: the exact or approximate optimum of the minimization problem.
◮ τ ∈ R>0: the given tolerance.

Output: ◮ r̃: the verified lower bound and its SOS certificate

1. Obtain the denominator

(a) If f − r∗ can be written as an approximate SOS, then set the denominator be 1.

(b) Otherwise, choose a degree for the denominator and solve the SDP system (4) and
obtain W [1] and W [2] which satisfy (5).

2. Gauss-Newton refinement

(a) Compute the numerical rank k of W [1] and exploit the sparsity structure of poly-
nomials in the computed polynomial SOS.

(b) Apply Gauss-Newton method to refine (7) and compute θ.

(c) If θ < τ , then get the refined matrix W .
Otherwise, decrease r∗ and go back to step 2a.

3. Compute the exact SOS

(a) Lower r∗ to a rational number r̃ or let r̃ = r∗ and convert W as a rational matrix.

Check whether W̃ satisfies (13). If so, return r̃. Otherwise, go to step 3b.

(b) Compute the rational matrix W̃ by solving (11) if W is of full rank or by rational
vector recovering if W is singular.

(c) Check whether W̃ is positive semidefinite. If so, return r̃. Otherwise, decrease r∗

and go back to step 2a.

Remark 1. In step 1b, the power can also be chosen as the denominator instead. For
s = 1, 2, . . . , we try to find the least integer s such that (f − r∗) · (X2

1 + · · · + X2
n)s can be

written as an approximate SOS.

Remark 2. Our projection method tries to achieve positive semidefiniteness for a rational r̃
and W̃ such that r̃ is as close as possible to r∗. We apply Gauss-Newton refinement to W for

13



r∗ (or a lowered r∗) and project using the even smaller r̃. Refinement with the actual target
r̃ seems to bring W too close to the boundary of the cone of positive semidefinite matrices,
and orthogonal projection fails to preserve that property.

3. Siegfried Rump’s Model Problem

Rump’s [2006; 2009] model problem, related to structured condition numbers of Toeplitz
matrices and polynomial factor coefficient bounds, asks for n = 1, 2, 3, . . . to compute the
global minima

µn = min
P, Q

‖PQ‖2
2

‖P‖2
2‖Q‖2

2

s. t. P (z) =
n∑

i=1

piz
i−1, Q(z) =

n∑

i=1

qiz
i−1 ∈ R[z] \ {0}.

It has been shown in [Rump and Sekigawa 2006] that polynomials P,Q realizing the polyno-
mials achieving µn must be symmetric (self-reciprocal) or skew-symmetric. Thus the problem
can be rewritten into three optimization problems with three different constraints

k = 1: pn+1−i = pi, qn+1−i = qi, 1 ≤ i ≤ n,
k = 2: pn+1−i = pi, qn+1−i = −qi, 1 ≤ i ≤ n,
k = 3: pn+1−i = −pi, qn+1−i = −qi, 1 ≤ i ≤ n,

and the smallest of three minima is equal to µn. For all three cases, we minimize the rational
function f(X̄)/g(X̄) with

f(X̄) = ‖PQ‖2
2 =

2n∑

k=2

(
∑

i+j=k

piqj)
2, g(X̄) = ‖P‖2

2‖Q‖2
2 = (

n∑

i=1

p2
i )(

n∑

j=1

q2
j )

and the variables X̄ = {p1, . . . , pn(P )} ∪ {q1, . . . , qn(Q)}, where n(P ) = n(Q) = ⌈n/2⌉.
In [Kaltofen et al. 2008] we use Lagrangian multipliers with the polynomial constraints

‖P‖2
2 = ‖Q‖2

2 = 1 to compute local minima (upper bounds), which since then have been
extended to n = 95: µ95 = 4.059969097152178e–93 (Maple 12 with 12× 15 decimal mantissa
digits). They could be easily extended to even larger n. Furthermore, we certified in [Kaltofen
et al. 2008] certain rational lower bounds via the sparse SOS-SDPs (3).

Having the upper bounds µn, the lower bounds r∗ can be chosen by decreasing the upper
bounds µn by a small amount. In [Kaltofen et al. 2008], after the Gauss-Newton refinement,
the lower bound rn was chosen by decreasing r∗ by a tiny number, which is related to the
backward error θ, and then we could certify that rn is the lower bound. In this paper,
we use higher precision and preserve the full rank of the matrix W [1] during Gauss-Newton
iterations. As said before, the backward error of the iteration θ can be as arbitrarily small
if the precision is big enough, that at least for the smaller n. Therefore, without decreasing
r∗, we directly convert r∗ to the exact rational number rn and then certify successfully that
rn is the lower bound.

14



Table 2: The certified lower bounds

n k #iter prec. secs/iter lower bound rn relative ∆n ∆
[ISSAC’08]
n #sq logH

4 2 20 5 × 15 0.01 1.742917332e−02 5.738e−21 1.079e−16 4 219
5 1 30 7 × 15 0.04 2.339595548e−03 2.137e−20 5.309e−17 9 975
6 2 50 6 × 15 0.04 2.897318752e−04 4.934e−21 6.644e−15 9 881
7 1 60 10 × 15 0.27 3.418506980e−05 2.048e−14 2.018e−14 16 2485
8 2 80 6 × 15 0.24 3.905435600e−06 2.561e−15 7.681e−11 16 1563
9 1 280 10 × 15 1.75 4.360016539e−07 3.784e−14 6.881e−08 25 3919

10 2 280 12 × 15 1.89 4.783939568e−08 4.517e−13 8.361e−07 25 4660
11 1 510 13 × 15 9.62 5.178700000e−09 9.481e−06 1.931e−04 36 7201
12 2 210 5 × 15 8.79 5.545390000e−10 8.869e−05 5.439e−03 36 2881
13 1 270 5 × 15 41.93 5.881019273e−11 9.639e−04 1.728e−02 49 4271
14 2 440 25 × 15 33.68 6.100000000e−12 1.679e−02 9.368e−01 49 3121
15 1 1070 25 × 15 162.84 6.000000000e−13 8.239e−02 — 64 5751
16 2 640 25 × 15 153.94 6.000000000e−14 1.273e−01 — 64 5312
17 1 1650 10 × 15 504.10 1.000000000e−15 6.011e+00 — 81 12984
17 1 4200 10 × 15 380.75 6.000000000e−15 1.685e−01 — 81 13029
18 2 6440 10 × 15 344.75 1.000000000e−16 6.238e+00 — 81 12570
18 2 8800 10 × 15 352.62 3.000000000e−16 1.413e+00 — 81 12571
18 2 26800 10 × 15 330.36 7.000000000e−16 3.406e−02 — 81 12578

In Table 2 we report our currently achieved lower bounds for the Rump model problem.
As stated above, for each n there are 3 cases to consider. In column 2 we give the case k
which is the most costly to certify. This is the situation when the lower bound is near to
the upper bound. In column 3, #iter denotes the number of Newton iterations performed in
that case before the orthogonal projection yields a positive semidefinite Gram matrix. In our
experiments, we try to project after each 10–200 iterations until we obtain the rational SOS
identity. We perform our Newton iteration to the precision given in column 4, and report
the timing as seconds per iteration in column 5. The total time is approximately the product
of both, e.g., about 102.47 application CPU days for n = 18 and k = 2 and the sharpest
bound 7.0e−16 (7.238394480e−16 being our upper bound) and about 18.51 application CPU
days for n = 17 and k = 1 and the sharpest bound 6.0e−15 (7.011263198e−16 being our upper
bound). Note that the smaller lower bounds for n = 17 and n = 18 required fewer iterations
before rational positive semidefinite matrices were found. The same is true for the “easier
cases:” for n = 18 and k = 1 we needed about 500 iterations (1.88 CPU days) and for n = 18
and k = 3 again about 500 iterations (1.87 CPU days) to prove the lower bound 7.3e−16 for
both those cases, which is larger than the upper bound for n = 18, k = 2. The dimension of

the matrix in our Newton iterations is
(
⌈n/2⌉+1

2

)2
×⌈n/2⌉4, which is for n = 18 a 2025× 6561

matrix. We ran our computation on several computers, including several MacPro’s with 4,
8 and 16 cores (Intel Xeon 2.67GHz) with 4GB–32GB of real memory, respectively, running
Linux version 2.6.22-16 (Ubuntu). We used Matlab 7.5.0.338, SeDuMi 1.2 and Maple 12. We
noticed that running 2 processes with about 6GB memory allocation each on an older 4 core
MacPro with 11GB real memory increased the process time by about 45% (11 CPU days),

15



possibly due to memory bus contention (the Apple/Intel companies claim to have improved
the memory bus on the new “Nehalem” quad-core processors). Table 2 exhibits the slowdown
by the larger per iteration time for n = 17 for the smaller bound 1.0e−15.

The certified lower bound rn is given in column 6, truncated as a floating point number to
11 mantissa digits. The actually computed lower bound is a rational number, and following a
suggestion by Siegfried Rump, all digits are guaranteed in the stated floating point number,
meaning that the rational lower bound may be slightly larger. Comparing to Mignotte’s
factor coefficient bound, we have

n = 17: 1/µ17 ≤ 1.66 · 1014 (ours above) <
(
32
16

)2
/ 3.62 · 1017 (Mignotte’s),

n = 18: 1/µ18 ≤ 1.43 · 1015 (ours above) <
(
34
17

)2
/ 5.45 · 1018 (Mignotte’s).

In column 7 we give the relative distance to our computed upper bound. We believe that our
upper bounds are the true (approximate) values, namely µn ≈ rn + rn × ∆n. The given ∆n

use our more accurate rational lower bounds. In column 8 we compare to our earlier lower
bounds in [Kaltofen et al. 2008], Table 2, again relative to the lower bounds given there:

∆
[ISSAC’08]
n ≈ (µn − r

[ISSAC’08]
n )/r

[ISSAC’08]
n . The number of squares in our certificate is given in

column 9, and in column 10 we give the logarithmic height of the rational coefficients in the
polynomials, i.e., the maximal number of decimal digits in any numerator or denominator.

In light of the immense size of our SOS certificates for the larger n in Table 2 we conclude
with a brief discussion of our notion of what constitutes a certificate.

Definition 1. A certificate for a problem that is given by input/output specifications is an
input-dependent data structure and an algorithm that computes from that input and its cer-
tificate the specified output, and that has lower computational complexity than any known
algorithm that does the same when only receiving the input. Correctness of the data structure
is not assumed but valdidated by the algorithm (adversary-verifier model).

We allow for Monte-Carlo randomization in our certification algorithm. Well-known ex-
amples are the (deterministic) Goldwasser-Kilian/Atkin certificates for the primality of an
integer or Freivalds’s randomized certification algorithm for a matrix product A × B = C,
where the output C also constitutes the data structure which the certification algorithm
proves probabilistically in quadratic time by matrix-times-vector products A(Bv) = Cv for
vectors vT = [1 y y2 . . .] with random y [Kimbrel and Sinha 1993].

A univariate integer polynomial can be certified positive definite by Sturm sequences. If
one presents as the certificate the leading coefficients in the subresultant Sturm sequence,
the certifying algorithm picks a small random prime and verifies those leading coefficients
probabilistically in about quadratic bit complexity in the degree. If a polynomial sum-of-
squares has small coefficients, better bit complexity is possible via that certificate.

Our certificates for the Rump model problem have large rational coefficients. Good certifi-
cates are the rational Gram matrix W̃ and the diagonal matrix D in the LDLT-factorization
of W̃ . Again the certifier picks a small random prime number and verifies both the identity
f(X̄) ≡ mG(X̄)T ·W̃ ·mG(X̄)+ r̃g(X̄) mod p and D mod p in the modular LDLT-factorization

of W̃ mod p.

16



Acknowledgments: We thank Chris Hillar, Vicki Powers and Bruce Reznick for numerous
comments on sums of squares, and Siegfried Rump for numerous comments on the model
problem (Section 3).

References

Artin, Emil. Über die Zerlegung definiter Funktionen in Quadrate. Abhandlungen Math.
Seminar Univ. Hamburg, 5(1):100–115, 1927.

Aubry, P., Rouillier, F., and Safey El Din, M. Real solving for positive dimensional systems.
J. Symbolic Comput., 34(6):543–560, December 2002. URL: http://www-spiral.lip6.fr/
∼safey/Articles/RR-3992.ps.gz.

Becker, E., Powers, V., and Wörmann, T. Deciding positivity of real polynomials. In [Delzell
and Madden 2000], pages 251–272. URL: http://www.mathcs.emory.edu/∼vicki/pub/psd.
pdf.

Delzell, C. N. A constructive, continuous solution to Hilbert’s 17th problem, and other results
in semi-algebraic geometry. Ph.D. Thesis, Stanford University, 1980.

Delzell, Charles N. and Madden, James J., editors. Real Algebraic Geometry and Ordered
Structures, volume 253 of Contemporary Math. AMS, 2000. ISBN 978-0-8218-0804-7.

Everett, Hazel, Lazard, Daniel, Lazard, Sylvain, and Safey El Din, Mohab. The Voronoi
diagram of three lines in R3. In SoCG ’07: Proceedings of the 23-rd Annual Symposium on
Computational Geometry, pages 255–264. ACM, New York, USA, 2007. ISBN 9781-595-
9370-5-6.

Golub, G. H. and Van Loan, C. F. Matrix Computations. Johns Hopkins University Press,
Baltimore, Maryland, third edition, 1996.

Henrion, Didier and Lasserre, Jean-Bernard. Detecting global optimality and extracting
solutions in GloptiPoly. In Henrion, Didier and Garulli, Andrea, editors, Positive polyno-
mials in control, volume 312 of Lecture Notes on Control and Information Sciences, pages
293–310. Springer Verlag, Heidelberg, Germany, 2005. URL: http://homepages.laas.fr/
henrion/Papers/extract.pdf.

Hillar, Christopher. Sums of polynomial squares over totally real fields are rational sums of
squares. Proc. American Math. Society, 137:921–930, 2009. URL: http://www.math.tamu.
edu/∼chillar/files/totallyrealsos.pdf.

Jeffrey, David, editor. ISSAC 2008, 2008. ACM Press. ISBN 978-1-59593-904-3.

Kaltofen, Erich, Li, Bin, Yang, Zhengfeng, and Zhi, Lihong. Exact certification of global
optimality of approximate factorizations via rationalizing sums-of-squares with floating
point scalars. In [Jeffrey 2008], pages 155–163, 2008. URL: EKbib/08/KLYZ08.pdf.

17

http://www-spiral.lip6.fr/~safey/Articles/RR-3992.ps.gz
http://www-spiral.lip6.fr/~safey/Articles/RR-3992.ps.gz
http://www.mathcs.emory.edu/~vicki/pub/psd.pdf
http://www.mathcs.emory.edu/~vicki/pub/psd.pdf
http://homepages.laas.fr/henrion/Papers/extract.pdf
http://homepages.laas.fr/henrion/Papers/extract.pdf
http://www.math.tamu.edu/~chillar/files/totallyrealsos.pdf
http://www.math.tamu.edu/~chillar/files/totallyrealsos.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/08/KLYZ08.pdf


Kimbrel, Tracy and Sinha, Rakesh K. A probabilistic algorithm for verifying matrix products
using O(n2) time and log2 n + O(1) random bits. Inf. Process. Lett., 45(2):107–110, 1993.

Lagarias, J. C. The computational complexity of simultaneous diophantine approximation
problems. SIAM J. Comp., 14:196–209, 1985.

Lax, A. and Lax, P. D. On sums of squares. Linear Algebra and Applications, 20:71–75,
1978.

Leep, David B. and Starr, Colin L. Polynomials in R[x, y] that are sums of squares in R(x, y).
Proc. AMS, 129(11):3133–3141, 2001.

Löfberg, J. YALMIP : A toolbox for modeling and optimization in MATLAB. In Proc. IEEE
CCA/ISIC/CACSD Conf., Taipei, Taiwan, 2004. URL: http://control.ee.ethz.ch/∼joloef/
yalmip.php.

Nie, Jiawang and Schweighofer, Markus. On the complexity of Putinar’s Positivstellensatz.
J. Complexity, 23:135–70, 2007.

Peyrl, Helfried and Parrilo, Pablo A. A Macaulay 2 package for computing sum of squares
decompositions of polynomials with rational coefficients. In Verschelde, Jan and Watt,
Stephen M., editors, SNC’07 Proc. 2007 Internat. Workshop on Symbolic-Numeric Com-
put., pages 207–208, New York, N. Y., 2007. ACM Press. ISBN 978-1-59593-744-5.

Peyrl, H. and Parrilo, P. A. Computing sum of squares decompositions with rational coeffi-
cients. Theoretical Computer Science, 409:269–281, 2008.

Prajna, S., Papachristodoulou, A., Seiler, P., and Parrilo, P. A. SOSTOOLS: Sum of squares
optimization toolbox for MATLAB. Available from http://www.cds.caltech.edu/sostools
and http://www.mit.edu/∼parrilo/sostools, 2004.

Reznick, Bruce. Uniform denominators in Hilbert’s seventeenth problem. Math. Z., 220:
75–97, 1995.

Reznick, Bruce. Some concrete aspects of Hilbert’s 17th problem. In [Delzell and Madden
2000], pages 251–272. Also in Seminaire de Structures Algébriques Ordonnées (F. Delon,
M. A. Dickmann, D. Gondard eds.), Publ. Équipe de Logique, Univ. Paris VII, Jan. 1996.
URL: http://www.math.uiuc.edu/∼reznick/hil17.pdf.

Reznick, Bruce. On the absence of uniform denominators in Hilbert’s 17th problem. Proc.
Amer. Math. Soc., 133:2829–2834, 2005.

Rump, Siegfried M. Global optimization: a model problem, 2006. URL: http://www.ti3.
tu-harburg.de/rump/Research/ModelProblem.pdf.

Rump, Siegfried M. A model problem for global optimization, 2009. Manuscript, 6 pages.

Rump, Siegfried M. and Sekigawa, H. The ratio between the Toeplitz and the unstructured
condition number, 2006. To appear. URL: http://www.ti3.tu-harburg.de/paper/rump/
RuSe06.pdf.

18

http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://www.cds.caltech.edu/sostools
http://www.mit.edu/~{}parrilo/sostools
http://www.math.uiuc.edu/~reznick/hil17.pdf
http://www.ti3.tu-harburg.de/rump/Research/ModelProblem.pdf
http://www.ti3.tu-harburg.de/rump/Research/ModelProblem.pdf
http://www.ti3.tu-harburg.de/paper/rump/RuSe06.pdf
http://www.ti3.tu-harburg.de/paper/rump/RuSe06.pdf


Safey El Din, Mohab. Résolution réelle des systèmes polynomiaux en dimension positive.
Thèse de doctorat, Univ. Paris VI (Univ. Pierre et Marie Curie), Paris, France, 2001.
URL: http://www-spiral.lip6.fr/∼safey/these safey.ps.gz.

Safey El Din, Mohab. Computing the global optimum of a multivariate polynomial over the
reals. In [Jeffrey 2008], 2008.

Sturm, Jos F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11/12:625–653, 1999. ISSN 1055-6788.

Vandenberghe, L. and Boyd, S. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

Wolkowicz, Henry, Saigal, Romesh, and Vandenberghe, Lieven (Eds.). Handbook of Semidef-
inite Programming. Kluwer Academic, Boston, 2000. ISBN 0-7923-7771-0.

4. Appendix

The polynomials here can be copied and pasted into an ASCII file for computer processing.

Solution to Example 1:

delzell(X1, X2, X3, X4)*(2*X1^2+2*X2^2+2*X3^2) = 1/2*f1^2+1/2*f2^2+1/2*f3^2

+1/2*f4^2+1/2*f5^2+1/2*f6^2+1/2*f7^2+2/3*f8^2 (14)

where

f1 = 2 * X3^5

f2 = 2 * X2 * X3^4

f3 = - X1^2 * X2^2 * X4 - X1^2 * X3^2 * X4 + 2 * X2^2 * X3^2 * X4

f4 = - 2 * X1^2 * X2 * X3 * X4 + 2 * X2^3 * X3 * X4

f5 = - 2 * X1 * X2^2 * X3 * X4 + 2 * X1 * X3^3 * X4

f6 = 2 * X1 * X3^4

f7 = - 2 * X1^3 * X2 * X4 + 2 * X1 * X2 * X3^2 * X4

f8 = - 3 / 2 * X1^2 * X2^2 * X4 + 3 / 2 * X1^2 * X3^2 * X4

Solution to Example 2, Case 1:

motzkin(X1, 3*X2, 3*X3)*(4*X1^2+12*X2^2+21*X3^2) =

1/15309*f1^2+1/8748*f2^2+1/2916*f3^2+1/6075*f4^2+100/26973*f5^2 (15)

where

f1 = - 1701 * X1^2 * X2^2 + 15309 * X3^4

f2 = - 972 * X1^2 * X2 * X3 + 8748 * X2 * X3^3

19

http://www-spiral.lip6.fr/~safey/these_safey.ps.gz


f3 = - 2916 * X1 * X2^2 * X3 + 2916 * X1 * X3^3

f4 = - 891 / 2 * X1^3 * X2 - 4131 / 2 * X1 * X2^3 + 6075 * X1 * X2 * X3^2

f5 = - 2997 / 100 * X1^3 * X2 + 26973 / 100 * X1 * X2^3

Case 2:

motzkin(X1, 3*X2, 3*X3)*(X1^2+X2^2+X3^2)^2 = 1/324*f1^2+2182758400/284650799*f2^2

+831180333080/3308566689*f3^2+1/324*f4^2+2182758400/388911398639*f5^2

+1135621284025880/4397949999*f6^2+1/81*f7^2 (16)

where

f1 = - 687563 / 23360 * X1^3 * X2^2 + 256329 / 11680 * X1 * X2^4 - 1893231 / 23360 *

X1 * X2^2 * X3^2 + 324 * X1 * X3^4

f2 = - 2444707357 / 19644825600 * X1^3 * X2^2 + 1080028279 / 1091379200 * X1 * X2^4
+ 284650799 / 2182758400 * X1 * X2^2 * X3^2

f3 = - 367618521 / 831180333080 * X1^3 * X2^2 + 3308566689 / 831180333080 * X1 *

X2^4

f4 = - 63459 / 11680 * X1^4 * X2 + 615591 / 23360 * X1^2 * X2^3 - 314289 / 23360 *

X1^2 * X2 * X3^2 + 324 * X2 * X3^4

f5 = - 13888467971 / 1091379200 * X1^4 * X2 - 138918975161 / 2182758400 * X1^2 *

X2^3 + 388911398639 / 2182758400 * X1^2 * X2 * X3^2

f6 = - 488661111 / 1135621284025880 * X1^4 * X2 + 4397949999 / 1135621284025880 *

X1^2 * X2^3

f7 = 81 * X1^2 * X2^2 * X3 - 81 * X1^2 * X3^3 - 81 * X2^2 * X3^3 + 81 * X3^5

Solution of Example 3:

2*leepstarr2 (X1, X2)*(15+20*X1^2+18*X2^2) = 1/240*f1^2+1/320*f2^2+80/22991*f3^2

+22531180/8104721423*f4^2+1191394049181/90484770084871*f5^2

+5700540515346873/1409913578018234572*f6^2

+829029183874721928336/309045199847959266240713*f7^2

+3708542398175511194888556/16196636485001877244354939*f8^2

+48589909455005631733064817/20043043325362746556948178*f9^2 (17)

where

f1 = 31 * X1^3 * X2 - 114 / 7 * X1^2 * X2^2 + 2 * X1 * X2^3 - 24 * X1^2 * X2 + 26 *

X1 * X2^2 + 46 * X1 * X2 + 240

f2 = - 160 * X1^3 * X2 + 76 * X1^2 * X2^2 + 5 * X1 * X2^3 + 49 * X1^2 * X2 + 68 / 7 *

X1 * X2^2 - 96 * X1 * X2 + 320 * X1 + 14 * X2

f3 = 2 * X1^3 * X2 - 2573 / 40 * X1^2 * X2^2 + 1145 / 32 * X1 * X2^3 + 3999 / 1120 *

X1^2 * X2 + 2783 / 40 * X1 * X2^2 + 41 / 5 * X1 * X2 + 22991 / 80 * X2

20



f4 = 174094309 / 19312440 * X1^3 * X2 + 3219899 / 38780 * X1^2 * X2^2 + 86607559 /

9656220 * X1 * X2^3 + 13879281 / 804685 * X1^2 * X2 + 8104721423 / 22531180 *

X1 * X2^2 - 744052543 / 9656220 * X1 * X2

f5 = - 520660500937 / 340398299766 * X1^3 * X2 + 90484770084871 / 1191394049181 *

X1^2 * X2^2 - 10590902628287 / 340398299766 * X1 * X2^3 - 504715094021 /

113466099922 * X1^2 * X2 - 248023668923 / 170199149883 * X1 * X2

f6 = - 7215876065759977 / 1628725861527678 * X1^3 * X2 - 1487532334547597 /

1628725861527678 * X1 * X2^3 + 65629067980123895 / 1266786781188194 * X1^2 *

X2 + 1409913578018234572 / 5700540515346873 * X1 * X2

f7 = 4262841971110918127267 / 39477580184510568016 * X1^3 * X2 +

36667815464017918127 / 39477580184510568016 * X1 * X2^3 +

309045199847959266240713 / 829029183874721928336 * X1^2 * X2

f8 = 16196636485001877244354939 / 3708542398175511194888556 * X1^3 * X2 +

484464299588342701863274 / 927135599543877798722139 * X1 * X2^3

f9 = 20043043325362746556948178 / 48589909455005631733064817 * X1 * X2^3

Solution to Example 4:

laxlax (X1, X2, X3, X4)*(X1^2+X2^2+X3^2+X4^2) = f1^2+4/7*f2^2

+7/6*f3^2+8/11*f4^2+11/9*f5^2+f6^2+4*f7^2 (18)

where

f1 = - 1 / 2 * X1^2 * X4 + X1 * X2 * X4 + X1 * X3 * X4 - 1 / 2 * X1 * X4^2 - 1 / 2 *

X2^2 * X4 + X2 * X3 * X4 - 1 / 2 * X2 * X4^2 - 1 / 2 * X3^2 * X4 - 1 / 2 * X3 *

X4^2 + X4^3

f2 = - 1 / 2 * X1^2 * X3 + 3 / 4 * X1^2 * X4 - 1 / 2 * X1 * X2 * X3 + X1 * X3^2 - 1 / 2
* X1 * X3 * X4 - 3 / 4 * X1 * X4^2 - 1 / 2 * X2^2 * X3 + 3 / 4 * X2^2 * X4 + X2 *

X3^2 - 1 / 2 * X2 * X3 * X4 - 3 / 4 * X2 * X4^2 - 1 / 2 * X3^3 - 5 / 4 * X3^2 * X4

+ 7 / 4 * X3 * X4^2

f3 = 9 / 14 * X1^2 * X3 - 3 / 14 * X1^2 * X4 - 6 / 7 * X1 * X2 * X3 + 3 / 14 * X1 *

X3^2 - 6 / 7 * X1 * X3 * X4 + 3 / 14 * X1 * X4^2 + 9 / 14 * X2^2 * X3 - 3 / 14 *

X2^2 * X4 + 3 / 14 * X2 * X3^2 - 6 / 7 * X2 * X3 * X4 + 3 / 14 * X2 * X4^2 - 6 / 7
* X3^3 + 6 / 7 * X3^2 * X4

f4 = - 1 / 2 * X1^2 * X2 - 3 / 8 * X1^2 * X3 + 9 / 8 * X1^2 * X4 + X1 * X2^2 - 1 / 2 *

X1 * X2 * X3 - 1 / 2 * X1 * X2 * X4 + 3 / 8 * X1 * X3^2 - 9 / 8 * X1 * X4^2 - 1 /

2 * X2^3 + 5 / 8 * X2^2 * X3 - 7 / 8 * X2^2 * X4 - 1 / 8 * X2 * X3^2 - 1 / 2 * X2 *

X3 * X4 + 11 / 8 * X2 * X4^2

f5 = - 15 / 22 * X1^2 * X2 - 3 / 22 * X1^2 * X3 + 9 / 22 * X1^2 * X4 - 3 / 22 * X1 *

X2^2 + 9 / 11 * X1 * X2 * X3 + 9 / 11 * X1 * X2 * X4 + 3 / 22 * X1 * X3^2 - 9 / 22
* X1 * X4^2 + 9 / 11 * X2^3 - 3 / 11 * X2^2 * X3 - 9 / 11 * X2^2 * X4 - 6 / 11 *

X2 * X3^2 + 9 / 11 * X2 * X3 * X4

f6 = - X1^2 * X2 + X1^2 * X3 + X1 * X2^2 - X1 * X3^2 - X2^2 * X3 + X2 * X3^2

21



f7 = - 1 / 2 * X1^3 + 1 / 4 * X1^2 * X2 + 1 / 4 * X1^2 * X3 + 1 / 4 * X1^2 * X4 + 1 / 4
* X1 * X2^2 - 1 / 2 * X1 * X2 * X3 - 1 / 2 * X1 * X2 * X4 + 1 / 4 * X1 * X3^2 - 1
/ 2 * X1 * X3 * X4 + 1 / 4 * X1 * X4^2

Solution to Example 5:

voronoi2 (a, alph, beta, X, Y ) = f1^2+1/16*f2^2+f3^2+1/28*f4^2+7/27*f5^2 (19)

where

f1 = - a^5 * alph^3 * Y + a^5 * alph^2 * beta * X + a^6 * alph^2 + 2 * a^4 * alph^2 *

Y ^2 - 6 * a^4 * alph * beta * X * Y + 4 * a^4 * beta^2 * X^2 - 2 * a^5 * alph * Y +

4 * a^5 * beta * X + a^3 * alph * X^2 * Y - a^3 * alph * Y ^3 - a^3 * beta * X^3 +

a^3 * beta * X * Y ^2 + a^4 * Y ^2 + 4 * a^2 * alph^2 * Y ^2 - 6 * a^2 * alph * beta *

X * Y + 2 * a^2 * beta^2 * X^2 + a * alph * beta^2 * Y - a * beta^3 * X - 4 * a^4 +

a^2 * X^2 + 4 * a * alph * Y - 2 * a * beta * X - 4 * a^2 + beta^2

f2 = - 4 * a^6 * alph^3 + 4 * a^5 * alph^2 * Y - 16 * a^5 * alph * beta * X - 4 * a^4 *

alph * X^2 + 4 * a^4 * alph * Y ^2 - 16 * a^4 * beta * X * Y + 16 * a^3 * alph^2 * Y
- 24 * a^3 * alph * beta * X - 4 * a^3 * X^2 * Y - 4 * a^3 * Y ^3 + 16 * a^4 * alph -

4 * a^2 * alph * beta^2 + 16 * a^2 * alph * Y ^2 - 24 * a^2 * beta * X * Y + 16 * a^3
* Y - 4 * a * beta^2 * Y + 16 * a^2 * alph + 16 * a * Y

f3 = a^5 * alph^2 * X + a^4 * alph^2 * beta + 6 * a^4 * alph * X * Y - 4 * a^4 * beta *

X^2 - 4 * a^5 * X + 6 * a^3 * alph * beta * Y - 4 * a^3 * beta^2 * X + a^3 * X^3 +

a^3 * X * Y ^2 - 4 * a^4 * beta + 4 * a^2 * alph * X * Y - a^2 * beta * X^2 + a^2 *

beta * Y ^2 - 4 * a^3 * X + 4 * a * alph * beta * Y - a * beta^2 * X - 4 * a^2 * beta +

beta^3

f4 = 2 * a^4 * alph^2 * X * Y - 2 * a^4 * alph * beta * X^2 + 26 * a^5 * alph * X + 2 *

a^3 * alph^2 * beta * Y - 2 * a^3 * alph * beta^2 * X + 2 * a^3 * alph * X * Y ^2 - 2
* a^3 * beta * X^2 * Y + 26 * a^4 * alph * beta + 26 * a^4 * X * Y + 2 * a^2 * alph
* beta * Y ^2 - 2 * a^2 * beta^2 * X * Y + 28 * a^3 * alph * X + 26 * a^3 * beta * Y
+ 28 * a^2 * alph * beta + 28 * a^2 * X * Y + 28 * a * beta * Y

f5 = - 27 / 7 * a^4 * alph^2 * X * Y + 27 / 7 * a^4 * alph * beta * X^2 + 27 / 7 * a^5 *

alph * X - 27 / 7 * a^3 * alph^2 * beta * Y + 27 / 7 * a^3 * alph * beta^2 * X - 27 /

7 * a^3 * alph * X * Y ^2 + 27 / 7 * a^3 * beta * X^2 * Y + 27 / 7 * a^4 * alph *

beta + 27 / 7 * a^4 * X * Y - 27 / 7 * a^2 * alph * beta * Y ^2 + 27 / 7 * a^2 *

beta^2 * X * Y + 27 / 7 * a^3 * beta * Y

22


