
Linear Algebra and Applications, 439(9):2515-2526, November 2013.

A Fraction Free Matrix Berlekamp/Massey Algorithm*

Erich Kaltofen and George Yuhasz
Dept. of Mathematics, North Carolina State University,

Raleigh, North Carolina 27695-8205 USA

kaltofen@math.ncsu.edu; gyuhasz@math.ncsu.edu; http://www.kaltofen.us

Abstract

We describe a fraction free version of the Matrix Berlekamp/Massey algorithm. The
algorithm computes a minimal matrix generator of linearly generated square matrix
sequences over an integral domain. The algorithm performs all operations in the integral
domain, so all divisions performed are exact. For scalar sequences, the matrix algorithm
specializes to a more efficient algorithm than the algorithm currently in the literature.
The proof of integrality of the matrix algorithm gives a new proof of integrality for the
scalar specialization.

1 Introduction

We present a fraction free Matrix Berlekamp/Massey algorithm to compute a integral minimal
matrix generator of a linearly generated square matrix sequence over an integral domain.
The algorithm performs exact divisions so that all intermediate values remain in the integral
domain. The exact divisions control the coefficient growth of the intermediate values. The
scalar specialization of the matrix algorithm (square matrix sequences of dimension 1) is a
different scalar algorithm than other algorithms in previous literature. This scalar algorithm
uses a more efficient implementation polynomial pseudo-division. As a result, the algorithm
maintains smaller intermediate values.

There has been much work done on translating algorithms designed with field arithmetic
into fraction free algorithms that work over integral domains. A well known algorithm is
fraction free Gaussian elimination [Bareiss 1968]. In [Nakos et al. 1997; Corless et al. 2006;
Zhou and Jeffrey 2008], the authors describe extensions of the fraction free Gaussian elimi-
nation into other common linear algebra algorithms such LU decomposition, diagonalization,
etc. Fraction free forms of the Euclidean algorithm for polynomials has been explored by
[Collins 1967; Brown 1971; Brown and Traub 1971; Brown 1978]. An important result in
[Brown and Traub 1971] is the Fundamental Theorem of Subresultants.

The Berlekamp/Massey algorithm ([Berlekamp 1968; Massey 1969]) computes a minimal
generator of a linearly generated scalar sequence. The algorithm is equivalent to the ex-
tended Euclidean algorithm [Dornstetter 1987]. In [Dickinson et al. 1974; Coppersmith 1994;

∗This research was supported in part by the National Science Foundation of the USA under Grants CCR-0305314 and
CCF-0514585.

1

http://www.kaltofen.us

Kaltofen and Yuhasz 2013] the authors describe generalizations of the Berlekamp/Massey
algorithm to compute minimal matrix generators of linearly generated matrix sequences. A
fraction free variant of the Berlekamp/Massey algorithm is given in [Giesbrecht et al. 2002].
The method is an application of the Fundamental Theorem of Subresultants to the Dorn-
stetter transformation of the algorithm.

A fraction free version of the Matrix Berlekamp/Massey algorithm seems to be missing
from the literature. We describe a fraction free version of of the Matrix Berlekamp/Massey
algorithm for square matrix sequences. The algorithm requires that the matrix sequence be
a normalizable remainder sequence. These normalizable remainder sequences are similar to
the sequences in [Kaltofen and Villard 2004]. Normalizable here requires the non-singularity
of the matrix leading coefficients in the remainders (discrepancies), not that the degrees
of all quotient polynomials are 1 in the “normal polynomial remainder sequences” in the
literature. All scalar sequences are normalizable in our sense. Our normality requirement is
also related to the normal points used in to compute fraction free matrix padé systems in
[Beckermann et al. 1997]. A fraction free matrix Berlekamp/Massey algorithm for arbitrary
sequences has not been found. When the matrix algorithm is specialized to the scalar case,
the resulting algorithm is different than that of [Giesbrecht et al. 2002]. The latter algorithm
relies on pseudo-division as prescribed by its use of subresultants. Our algorithm builds the
pseudo-division step by step in the manner of [Hearn 1972] instead of using a large power
multiplication. Thus the intermediate values of the algorithm are smaller or equal to those
of the previous algorithm.

Section 2 describes the fraction free Matrix Berlekamp/Massey algorithm and the issues
surrounding the algorithm. Section 3 gives a proof of integrality and a discussion of the
minimality of the algorithm. Section 5 has two example scalar sequences and a theorem
describing the unique minimal generators of scalar sequences.

2 Fraction Free Matrix Berlekamp/Massey Algorithm

We begin by describing the fraction free Matrix Berlekamp/Massey algorithm. The algorithm
is given as a matrix algorithm but the scalar equivalents are given when they are simplified
by the considering the case N = 1. A discussion of normalizable remainder sequences and
their importance to Algorithm 2.1 follows.

2.1 Algorithm

Input M(z) ∈ DN×N [[z]] the power series defined by the matrix sequence where M(z) =∑
i≥0 Miz

i and Mi ∈ DN×N with D an integral domain.
δ an upper bound on the degree of the matrix generator.
Note that the algorithm will process at most 2 · δ elements of the sequence.

Output F (z) ∈ DN×N [z] a minimal matrix generator with deg(F (z)) ≤ δ. The generator is
valid for the given δ. The generator F (z) is the minimal matrix generator of a sequence
with the same sequence prefix as that of M(z). If the generator is not the minimal
generator of the given sequence, then the minimal generator of M(z) has degree greater
than δ or the sequence is not a normalizable remainder sequence.

2

In the case that the initial prefix of the input sequence is not a normalizable remainder
sequence, then the algorithm returns “singular sequence”.

Variables

t an index for the current sequence element being processed.

Λt(z) ∈ DN×N [z] the reversal current generator.

Bt(z) ∈ DN×N [z] the auxiliary polynomial used to eliminate discrepancies.

Lt the nominal degree of Λt(z). We have throughout the algorithm that deg(Λt) ≤ Lt.

∆t, the coefficient of zt in the polynomial M(z) ·Λt−1(z), often referred to in literature
as the current discrepancy.

ρ ∈ D the diagonal entry of the evaluation of Bt−1(z). ρ is initialized to 1.

ǫ a counter of the number of times the current ρ has been used.

γ the difference in the new and previous degree when Lt is increased.

g ∈ D and h ∈ D scalar divisors used to control coefficient growth.

ffmbm1 t← 0
Λ−1(z)← IN
B−1(z)← 0N×N

L−1 ← 0
ρ← 1
g ← h← 1.

ffmbm2 while t+ 1− Lt−1 ≤ δ do Steps ffmbm3 through ffmbm12

ffmbm3 ∆t ← Coeff (t;M(z) · Λt−1(z))

ffmbm4 if ∆t 6= 0N×N and 2Lt−1 < t+ 1 do step ffmbm5

ffmbm5 if det(∆t) = 0 then return “singular sequence”

We must compute adj(∆t) and det(∆t). Both can be computed using the
fraction free diagonalization algorithm in [Nakos et al. 1997].

Λt(z)← ρ · Λt−1(z)−Bt−1(z) ·∆t

The multiplication on the left is scalar multiplication and the multiplication
on the right is matrix multiplication. If N = 1 then both multiplications are
scalar multiplications.

Bt(z)← z · Λt−1(z) · adj(∆t)

Note that if N = 1, then adj(∆t) = 1.

ρ← det(∆t)

Lt ← t+ 1− Lt−1

γ ← t+ 1− 2Lt−1 = Lt − Lt−1

3

ǫ← 0

ffmbm6 if ∆ 6= 0N×N and 2Lt−1 ≥ t+ 1 do step ffmbm7

ffmbm7 Λt(z)← ρ · Λt−1(z)−Bt−1(z) ·∆t

Bt(z)← z ·Bt−1(z)

Lt ← Lt−1

ǫ← ǫ+ 1
The use of ǫ is an implementation of the pseudo-division described in [Hearn
1972]. The algorithm skips over zeros in the pseudo-division and recovers the
necessary multiplications in step ffmbm11. Brown [1978] describes a similar
improvement of the PRS algorithm.

ffmbm8 if ∆t = 0N×N do step ffmbm9

ffmbm9 Λt(z)← Λt−1(z)

Bt(z)← z ·Bt−1(z)

Lt ← Lt−1

ffmbm10 if 2Lt = t+ 1 do step ffmbm11

ffmbm11 Λt(z)←
1

g · hγ·N
· (ργ−ǫ · Λt(z)) (the divisions are exact)

g ← ρ

h←
gγ

hγ·N−1
(the division is exact)

ffmbm12 t← t+ 1

ffmbm13 end while

ffmbm14 return F (z) = zLt−1 · Λt−1(z
−1)

2.2 Normalizable Remainder Sequence

The fraction free Matrix Berlekamp/Massey algorithm in section 2.1 will always return a
candidate generator for scalar sequences. However, when the input sequence has a higher di-
mension, then the input sequences must be a normalizable remainder sequence. Our concept
of a normalizable remainder sequence is related to the results of Kaltofen and Villard [2004].
There the authors use a half-gcd algorithm to compute a minimal matrix generator. The
half-gcd algorithm requires that the leading term of each remainder must be nonsingular so
the matrix polynomial division is defined. Further, they require that the degree difference
between each successive remainder polynomial is 1, so there is no gap that can exist in a gcd
calculation.

Algorithm 2.1 enforces a similar nonsingularity requirement but removes the gap re-
striction. During the execution of the Algorithm 2.1, the degree of the candidate minimal
generator is updated if step ffmbm5 is performed. Whenever a nonzero discrepancy requires

4

a degree increase, the discrepancy must be nonsingular. Such degree increases correspond to
the division step of the half-gcd algorithm of Kaltofen and Villard [2004]. The determininant
of the discrepancy is calculated using the diagonalization algorithm of Nakos et al. [1997]. If
the determinant is zero, then the algorithm returns an error statement “singular sequence”.
Since all scalar sequences are normalizable remainder sequences, then the scalar algorithm
will not return “singular sequence” for any input. The proofs of integrality given in sec-
tion 3.2 require that the discrepancy have nonzero determinant. To relax the requirement
of normalizable remainder sequences, a new algorithm with different proofs is needed and
currently unknown. The use of the gap variable γ that represents the degree gap between
successive generator degrees, allows us to remove the gap condition present in Kaltofen and
Villard [2004].

Such nonsingularity requirements are not uncommon in polynomial algebra. In Becker-
mann et al. [1997], the authors compute matrix padé systems in a fraction free manner. Their
algorithm proceeds on a diagonal path from normal point to normal point. These normal
points are points in the padé table that obey a nonsingular requirement. These normal points
are very similar to our normalizable remainder sequences, since both ideas imply that a well
defined block matrix is nonsingular. In their case, a normal point is a point where a block
Sylvester matrix is nonsingular. In our situation, a normalizable remainder sequence implies
that the degree of each column of the generator is equal. Further as we shall see in Section 3,
this implies that the Lt×Lt, block Hankel matrix defined by the sequence is nonsingular for
all t such that Lt > 0. In Beckermann and Labahn [2000], the authors generalize the defini-
tion of a normal point. They then are able to compute around singularities. Unfortunately
we have not been able to apply those results and make a more general fraction free Matrix
Berlekamp/Massey algorithm similar to the algorithm in Kaltofen and Yuhasz [2013].

3 Proof of correctness

The proof of correctness for Algorithm 2.1 is given in two parts. First we show that the
algorithm computes a minimal matrix generator if the bound δ is correct. If the input δ is
two small, then as is the case in Kaltofen and Yuhasz [2013], the candidate generator may be
incorrect. Second we will show that all operations performed by Algorithm 2.1 are integer
operations and all the variables remain integral.

3.1 Minimality of the output

In Kaltofen and Yuhasz [2013], the authors proved the correctness of the general Matrix
Berlekamp/Massey algorithm for field arithmetic. We will restate some of the important
theorems here and give different proofs for some of the theorems that are affected by the
change in the update procedure of the new algorithm. We will also restate the importance
of δ and the terminating condition, which were first given in Kaltofen and Yuhasz [2013].

We begin with the following definition.

Definition 1 Define the quantity bt−1 at every stage t of Algorithm 2.1 by bt−1 = t+1−Lt−1.
The quantity bt−1 is the nominal degree of the polynomial Bt−1(z). An alternate definition is
bt = t+ 2− Lt.

5

As stated in the definition, bt is the nominal degree of the auxiliary polynomial Bt. The
value of bt corresponds to the value β in the general Matrix Berlekamp/Massey algorithm of
Kaltofen and Yuhasz [2013]. Unlike, the general algorithm, we do not need to maintain the
value of bt because it is a well defined formula involving t and Lt. In the general algorithm,
β must be maintained because the nominal degree of the auxiliary (and generator) columns
are not guaranteed to be equal. Algorithm 2.1 has this regularity since it only works on
normalizable remainder sequences. In the general scalar algorithm, the main loop continues
so long as β ≤ δ. So our algorithm maintains the same termination criteria. For if β > δ, then
2Lt−1 < t + 1 and so any nonsingular discrepancy will increase the degree of the generator
to β > δ.

The definition of bt also allows us to state the next lemma. The following lemma is
a restatement of Lemma 9 in Kaltofen and Yuhasz [2013]. This lemma was first used by
Coppersmith as one of the conditions his version of the Matrix Berlekamp/Massey algorithm
maintained [Coppersmith 1994].

Lemma 1 At the completion of every stage t, the following holds.

• Coeff (l;M(z) · Λt(z)) = 0N×N for all l such that Lt ≤ l ≤ t.

• Coeff (l;M(z) ·Bt(z)) = 0N×N for all l such that t+ 2− Lt = bt ≤ l ≤ t.

Proof. For t = −1, the lemma is true by default since both ranges are empty.
Suppose t ≥ −1 and the lemma holds at t. At stage t+1, there are three possible updates

depending on the Lt and ∆t+1. We will analyze all three updating procedures to prove the
lemma.

First suppose that 2Lt < t + 2 and ∆t+1 = 0N×N . So Λt+1(z) = Λt(z), Lt+1 = Lt

and Bt+1(z) = z · Bt(z). So by induction Coeff (l;M(z) · Λt+1(z)) = 0N×N for all Lt+1 ≤
l ≤ t. Further, since ∆t+1 = Coeff (t + 1;M(z) · Λt+1(z)) = 0N×N , then the condition
holds for Λt+1(z). Since Bt+1(z) = z · Bt(z), then by induction we know for all l such that
t+3−Lt+1 ≤ l ≤ t+1 we see that Coeff (l;M(z)Bt+1(z)) = Coeff (l−1;M(z)Bt(z)) = 0N×N

with t+ 2− Lt+1 ≤ l − 1 ≤ t. So the condition holds.
Next suppose that 2Lt < t+ 2 and ∆t+1 6= 0N×N is nonsingular. So Bt+1(z) = z · Λt(z) ·

adj(∆t+1) and Lt+1 = t+2−Lt. thus by induction, for all l such that t+3−Lt+1 = Lt+1 ≤
l ≤ t + 1, we know that Coeff (l;M(z)Bt+1(z)) = Coeff (l − 1;M(z)Λt(z)) · adj(∆t+1) =
0N×N · adj(∆t+1) = 0N×N with Lt ≤ l − 1 ≤ t. So the condition holds for Bt+1(z). Note
that Coeff (t + 2;M(z)Bt+1(z)) = ρ · IN . If Lt = 0, then Lt+1 = t + 2 and so the range
is empty and the condition holds for Λt+1(z) by default. Otherwise, since Λt+1(z) = ρ ·
Λt(z) · −Bt(z) · ∆t+1, then by induction, for all l such that t + 2 − Lt = Lt+1 ≤ l ≤ t
we know that Coeff (l;M(z)Λt+1(z)) = ρ · 0N×N − 0N×N · ∆t+1 = 0N×N . Further since
Lt > 0, then Bt(z) is nonzero and as above Coeff (t+ 1;M(z)Bt(z)) = ρ · IN . So we see that
Coeff (t+ 1;M(z)Λt+1(z)) = ρ ·∆t+1 − (ρ · IN) ·∆t+1 = 0N×N . Thus the condition holds for
Λt+1(z).

Finally, suppose 2Lt ≥ t + 2. Its obvious that if we prove the condition after step 7,
then the scalar adjustment of step 11 will not affect the condition. In step 7, we see that
Λt+1(z) = ρ · Λt(z) − Bt(z) · ∆t+1 and Lt+1 = Lt. So as in the previous case, induction
implies that for all l such that Lt = Lt+1 ≤ l ≤ t we know that Coeff (l;M(z)Λt+1(z)) =

6

ρ · 0N×N − 0N×N · ∆t+ 1 = 0N×N . Further, as in the previous case, we see that Coeff (t +
1;M(z)Λt+1(z)) = ρ ·∆t+1− (ρ · IN) ·∆t+1 = 0N×N . So the condition holds for Λt+1(z). Like
the first case, we have Bt+1(z) = z ·Bt(z). So the proof of the condition is the same and the
condition holds for Bt+1(z).

Thus the conditions hold at stage t+1 for every possible update, and so by induction the
conditions hold at every stage.

Since Lemma 1 holds for our fraction free Matrix Berlekamp/Massey algorithm, then the
subsequent lemmas from Kaltofen and Yuhasz [2013] also hold for the algorithm. Thus, The-
orem 4, Lemma 12, Lemma 13 and Theorem 5 imply that Algorithm 2.1 has the following
output options. The algorithm returns a minimal matrix generator for a prefix of the matrix
sequence {Mk}

∞
k=0. This generator is the only possible generator with degree less than δ for

any continuation of of the sequence. Thus the returned generator is the unique generator
for the given matrix sequence prefix and the given δ. Finally, if the algorithm returns “sin-
gular sequence” then this is a certificate that the sequence is not a normalizable remainder
sequence. Theorem 5 of Kaltofen and Yuhasz [2013] also states that the fraction free Matrix
Berlekamp/Massey algorithm will process at most a prefix of 2δ elements of the sequence.

Both the general Matrix Berlekamp/Massey algorithm of Kaltofen and Yuhasz [2013] and
Algorithm 2.1 have error outputs, but the error outputs of each algorithm are not the same.
As previously stated, if Algorithm 2.1 return “singular sequence”, then the algorithm has
diagnosed that the sequence is not a normalizable remainder sequence. This condition is
not a requirement of the general Matrix Berlekamp/Massey algorithm since that algorithm
computes a minimal matrix generator for arbitrary matrix sequences. Therefore the general
algorithm does not produce the “singular sequence” output. The general algorithm’s error
output is “insufficient bound”. Algorithm 2.1 does not produce this error because the δ of the
algorithm is different than the δ of the general algorithm, which we will denote as δ̄. The two
values are related by the formula δ̄ = Nδ. In the general algorithm, the terminating value δ̄ is
a condition not on the degree of the generator but the determinantal degree. Further, during
an update, the determinantal degree could increase past δ̄ while the loop condition had been
satisfied. This is not possible in Algorithm 2.1 since every column of the generator has the
same nominal degree, meaning the determinantal degree will always be N ·Lt at every stage t.
The enforcement of the sequence being normalizable, means that Algorithm 2.1 would return
“insufficient bound” only if N · Lt > N · δ, which implies that Lt > δ. Assuming that the
degree was increased at stage t, then this implies that Lt = t+ 1− Lt−1 > δ. This condition
violates the loop condition and so the algorithm would have ended before the update. Thus
Algorithm 2.1 cannot diagnose if δ is too small, but will instead compute a generator that is
valid for the given δ and a certain prefix of the matrix sequence.

3.2 Integrality

Having established that Algorithm 2.1 computes a minimal matrix generator, we are left to
show that every intermediate value remains integral. To do this, we will show that h and
Λt−1(0) are determinants of integral matrices, generalizing the subresultant based identities
of [Giesbrecht et al. 2002] to matrix polynomials by giving a direct argument. Being de-
terminants obviously implies integrality of those values, but by applying Cramer’s rule, this
implies the integrality of every intermediate value.

7

Mn

Mn′

Ln′

Mn

Ln′′ Ln′ + 1

Ln′ + 1
n− Ln′ + 2

Ln = n− Ln′ + 1

Mn−1

M2n−2Ln′+1

M2n−2Ln′+2

Ln = n− Ln′ + 1

MLn′−1

Ln′

Mn−Ln′

Mn−Ln′

M0

M1

Mn−Ln′+1

Mn Mn+1

Mn−Ln′

MLn′

MLn′+1

M2Ln′−1

Mn−Ln′
Mn−1

Mn

Figure 1: Berlekamp/Massey algorithm

Figure 1 follows the execution as in [Kaltofen and Lee 2003, Fig. 1]. For t = n a non-zero
discrepancy ∆n has caused execution of Step ffmbm5. The generator degree has changed last
at t = n′, i.e., 2Ln−1 = 2Ln′ ≤ n. So Ln is increased to Ln = n+1−Ln′ > Ln′ , and subsequent
iterations execute either Step ffmbm7 or Step ffmbm8 until t = 2Ln−1 = 2n−2Ln′+1 > n
without changing Lt, i.e., “complete the square.” Additionally, at t = 2Ln − 1 the divisions
of Step ffmbm11 adjust the generator polynomial and the auxiliary scalars.

Lemma 2 In Algorithm 2.1 at the end of Step ffmbm11, before Step ffmbm12 that incre-
ments t, the following statements are always true.

1. The scalar h = (−1)N ·χ times the determinant of the the principal (NLt)× (NLt) block
Hankel matrix HLt

generated by {Mk}
∞
k=0, where χ =

∑
γ′⌊γ′/2⌋ with the summation

taken over each value of γ′ that has been computed in Step ffmbm5 so far. In addition,
that determinant is non-zero.

8

2. Λt(0) = h IN .

Proof. We will use induction to prove the lemma. Subscripted quantities ρi, γi, ǫi,
etc. refer, like Li, to the values these variables have at the end of the iteration for t = i at
Step ffmbm12 before t is incremented. If the sequence is all zero matrices, Step ffmbm11
is never executed and the trivial identity matrix generator is returned. Thus the lemma is
true.

Assume now that the algorithm encounters its first non-zeroMk, where k ≥ 0. Then t = k,
∆k = Mk and Step ffmbm5 is executed. If Mk is non-singular, the algorithm continues. In
Figure 1 we then have Ln′ = 0, n = k, and L2n+1 = Ln = n+ 1, and γn = Ln − Ln′ = n+ 1.
Step ffmbm11 occurs at t = 2n + 1 and the (N(n + 1)) × (N(n + 1)) block Hankel matrix
has the form

HL2n+1
=




0N×N 0N×N · · · 0N×N Mk

0N×N 0N×N . .
.

Mk

... . .
.

. .
.

0N×N Mk

Mk

*



,

whose determinant is (−1)N ⌊(n+1)/2⌋ρn+1
n = (−1)N ·χ2n+1h2n+1, because ⌊(n+ 1)/2⌋ block row

exchanges put the matrix in block upper triangular form, where each block row exchange
needs N row exchanges. Since Bt(z) is always a multiple of z, Λ(0) has been multiplied by
ρn in Step ffmbm7 exactly ǫ2n+1 times, and subsequently in Step ffmbm11 an additional
γn − ǫ2n+1 times, yielding Λ2n+1(0) = ργnIN = h2n+1IN .

Assume that the lemma is true for t = j′ = 2Ln′−1, the last time the end of Step ffmbm11
was reached (see again Figure 1). We suppose that the first next non-zero, non-singular
discrepancy is found at iteration t = n > 2Ln′ − 1. Then the square is completed at iteration
t = j = 2n−2Ln′ +1 > n. We subscript the variable h by j′ and j, depending for which t we
have completed Step ffmbm11. Let Λj′(z) =

∑Ln′

κ=0 λj′,κz
κ, where λj′,κ ∈ DN×N . When post-

multiplying the (NLn)×(NLn) block Hankel matrixHLn
(see Figure 1) by the (LnN)×(LnN)

block upper triangular matrix

ULn
=




IN 0 0 . . . 0 λj′,Ln′
0 . . .

0 IN 0 . . . 0 λj′,Ln′−1 λj′,Ln′
. . .

...
. . .

. . .
. . .

...
...

...
...

0 0
. . . IN 0 λj′,2 λj′,3 . . .

0 0 0
. . . IN λj′,1 λj′,2 . . .

0 0 0
. . . 0 λj′,0 λj′,1 . . .

...
...

...
...

. . .
. . .

. . .
...

0 0 0 0 . . . 0 0 λj′,0




9

(there are γn = Ln − Ln′ block columns containing matrix coefficients λj′,κ), we get




HLn′
0 0 0

0 0 0 ∆n

0
... . .

.

0 ∆n *


 .

As in the induction step, this matrix requires ⌊γn/2⌋ block row exchanges for the matrix to
be transformed to block upper triangular form, where each block row exchange requires N
row exchanges. By hypothesis det(λj′,0) = hN

j′ . Therefore

det(HLn
) =

det(HLn′
) (−1)N ⌊γn/2⌋ det(∆n)

γn

det(ULn
)

= (−1)N ⌊γn/2⌋
(−1)N ·χj′hj′ρ

γn
n

hγnN
j′

= (−1)N ·χjhj,

which establishes Part 1.
For Part 2, by hypothesis Λj′(0) = hj′IN and, similarly to the induction basis above,

that coefficient gets multiplied by ρn′ once in Step ffmbm5 and by ρn exactly ǫ times in
Step ffmbm7 before Step ffmbm11. Therefore

Λj(0) =
ρ
γn−ǫj
n ρ

ǫj
n ρn′

ρn′hγnN
j′

Λj′(0) =
ργnn
hγnN
j′

hj′In = hjIn.

We now show that every intermediate value is integral at every stage of Algorithm 2.1.

Theorem 1 The quantities Λt(z), Bt(z), ρ, ∆t, g and h of Algorithm 2.1 are integral for all
t ≥ 0.

Proof. We continue the notation from Lemma 2. We will again use induction on t to prove
the theorem. We only need to worry about the computations at t = 2n − 1, where n is a
stage that step ffmbm5 is performed, since this is the time that step ffmbm11 is performed.
All eliminations in steps ffmbm5 and ffmbm7 contain no divisions. So if the variables are
integral at the completion of stage 2n− 1, then at every other step, the values must remain
integral. Further this implies that ∆t and adj(∆t) are always integral if Λt(z) is always
integral. Thus g and ρ are always integral since they are det(∆t) for some t at every stage.
If the sequence is all zero matrices then no update is ever performed, so the theorem is true
by initialization.

Let Mk be the first nonzero discrepancy where k ≥ 0. At t = 2k−1, Step 11 is performed.
Since gt = ht = 1, then there is no division and so all of the values are integral.

Assume that the theorem is true for t = j′ = 2Ln′ − 1, the last time the end of
Step ffmbm11 was reached (see again Figure 1). We suppose that the first next non-zero,
non-singular discrepancy is found at iteration t = n > 2Ln′−1. Then the square is completed
at iteration t = j = 2n − 2Ln′ + 1 > n. Since Bj(z) = zγt+1 · Λn−1(z) · adj(∆n), then the
induction hypothesis proves that Bj(z) is integral. Before the division in step ffmbm11, we
know by induction that Λ is integral. Lemma 2 says that hj is integral since it only differs
from the determinant of the Lj+1 × Lj+1 block Hankel matrix Hj defined in Lemma 2 by a

sign. Also hj is nonzero since hj and ρj are nonzero. Let Ĥ be the Lj × Lj + 1 rectangular

10

block Hankel matrix defined by {Mk}
∞
k=0 (see Figure 1). Lemma 1 implies that the Lj + 1

block coefficient vector λk [Kaltofen and Yuhasz 2013, Definition 7], defined by the kth col-
umn of Λj is a nullspace vector of Ĥ. Since Λ(0) = ± det(Hj) · IN , then the last N rows of
λk = ± det(Hj) · e

k where ek is the kth standard basis vector. Thus the first Lj ·N entries of
λk are equal to ± det(Hj) ·H

−1
j · b

k where bk is the kth column of the Lj + 1 block column

of Ĥ (see Figure 1). Thus Cramer’s rule implies that λk is integral for 1 ≤ k ≤ N . So all
of the coefficients of Λj(z) are integral at the completion of stage j. Therefore the theorem
holds at every stage t of Algorithm 2.1.

4 Block Hankel Systems With Arbitrary Right Sides

Figure 2 follows the execution of the Matrix Berlekamp/Massey algorithm as a block Hankel
matrix solver with arbitrary right side Y . If we assume that the finite sequence of matrices
defining the block Hankel matrix is a normalizable remainder sequence, then the Matrix
Berlekamp/Massey algorithm can be extended to a linear solver with the addition of one

block (solution) vector. The solution block column vector Λ̃ is produced for each non-
singular leading principal block Hankel coefficient matrix. When Algorithm 2.1 increases
the generator degree in Step 5, then the next blocks YLn′

, . . . , YLn−1 can be solved for like
the corresponding M blocks. In Figure 2, the columns containing Y are not actually a part
of the block Hankel matrix but are there to illustrate when each block of Y is processed.
Note the Λ̃n is Λ̃Ln′−1 padded at the bottom by Ln − Ln′ zero blocks. A block discrepancy

∆̃t at Yt, L
′
n ≤ t ≤ Ln − 1, of the current solution Λ̃t−1 for Y0, . . . , Yt−1 is removed by

Λ̃t ← ρ · Λ̃t−1 − adj. coeff. col. vector(Bt−1) · ∆̃t. The fraction free division at Step 11 is the
same, with a separate count for zero discrepancies.

5 Examples and Conclusions

5.1 Scalar Example

We give two simple scalar examples to illustrate how the improved pseudo-division imple-
mentation in our algorithm results in smaller intermediate values than that of the fraction
free Berlekamp/Massey algorithm of Giesbrecht et al. [2002]. The first sequence shows how
our algorithm builds the pseudo-division step-by-step and how that affects the coefficient
size. Let the sequence {ak}

∞
k=0 be defined as:

0, 0, 0, 5, 5, 10, 15, 25, 40, 65, 105, 172, 275, 445, 720, 1165, . . . ,

a variation of the Fibonacci sequence. This Fibonacci sequence has an error at a11. This
error will be corrected if we make δ large enough. By inputting δ = 14, Algorithm 2.1 will
correct the error by ignoring the first 11 sequence elements. The following table gives the
value of Λt(0) for both algorithms.

Notice that the |Λt(0)| of Algorithm 2.1 is smaller or equal to the corresponding value of
Giesbrecht et al. [2002]. The iterations where the two algorithms have the same value are
the iterations where the Step 11 is executed or iterations where a zero discrepancy occurs. In

11

Y0

Mn′

Ln′

Ln′′ Ln′ + 1

Ln′ + 1
n− Ln′ + 2

Ln = n− Ln′ + 1

Mn−1

Ln = n− Ln′ + 1

Ln′

Mn−Ln′

Mn−Ln′

M0

M1

Mn

Mn−Ln′

Mn−Ln′
Mn−1

Mn

Mn

Y0

Y1

MLn′−1 YLn′−1

YLn′

YLn−1

YLn′−1

Figure 2: Block-Hankel Linear System Solver

these steps, the value of |Λt(0)| is a known determinant and so the values must be equal. In
every other step, when the pseudo-division of the algorithm in Giesbrecht et al. [2002] is being
performed, our algorithm is smaller. This difference is also true for the other coefficients of
Λt. The polynomial computed by our algorithm is −102400z14+102400z13+102400z12. The
algorithm of [Giesbrecht et al. 2002] computes the negative polynomial of our algorithm.

The second example shows how the improved pseudo-division of [Hearn 1972] allows us
to skip over zero discrepancies during the pseudo-division in our algorithm. We define the
sequence {ak}

∞
k=0 to be defined as:

0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 10, 0, 0, 0, 0, 15, . . . ,

another variation of the Fibonacci sequence. This variation of the Fibonacci sequence is
the standard sequence, multiplied by 5 with four zeroes inserted between each Fibonacci
sequence element. These zeroes lead to zero discrepancies during the pseudo-division of both

12

Table 1: Example 1
Iteration GKL Our Algorithm Iteration GKL Our Algorithm

1 1 1 15 ≈–7.6e13 ≈6.1e12
2 1 1 16 10000 10000
3 1 1 17 ≈9.5e12 ≈1.25e7
4 –625 1 18 760000 –760000
5 –625 5 19 ≈2.3e18 ≈5.7e11
6 –625 25 20 4040000 –4040000
7 –625 125 21 ≈–4.2e20 ≈1.6e13
8 625 625 22 –25881600 –25881600
9 625 625 23 ≈1.1e23 ≈6.6e14
10 625 625 24 166722816 166722816
11 625 625 25 ≈–1.1e25 ≈2.7e16
12 ≈–7.6e13 3125 26 –430074880 430074880
13 ≈–7.6e13 3906250 27 ≈1.8e22 ≈1.8e17
14 ≈–7.6e13 ≈4.8e9 28 102400 –102400

our algorithm and the algorithm of Giesbrecht et al. [2002]. The following table gives the
value of Λt(0) for both algorithms.

Table 2: Example 2
Iteration GKL Our Algorithm Iteration GKL Our Algorithm

1 1 1 11 –15625 5
2 1 1 12 15625 15625
3 1 1 13 15625 15625
4 1 1 14 15625 15625
5 1 1 15 15625 15625
6 –15625 1 16 ≈–2.9e25 78125
7 –15625 1 17 ≈–2.9e25 78125
8 –15625 1 18 ≈–2.9e25 78125
9 –15625 1 19 ≈–2.9e25 78125
10 –15625 1 20 9765625 9765625

As the table shows, our algorithm builds the pseudo-division step by step and and skips
over zero discrepancies during the pseudo-division steps. This makes the intermediate values
much smaller. As in the previous case, the two algorithms have the same coefficients during
the iterations where Λt(0) is a known determinant. The polynomial computed by both
algorithms for this sequence is 9765625z10 − 9765625z5 − 9765625.

13

5.2 Scalar Monic Minimal Generators

During the design of the scalar version of Algorithm 2.1, the following theorem was discovered.
As the algorithm was tested on various sequences, a pattern emerged. For every integer
sequence, the minimal generator F , computed by Algorithm 2.1 had a very intriguing content.
Every coefficient of the generator was divisible by the leading term of F . Therefore, by
dividing F by its leading term, we will call it h, then F/h is monic and so it must be the
unique minimal generator of the sequence denoted by fmin. Thus since h exactly divides
every coefficient of F , then the unique minimal generator is integral. The two examples
in the previous section both exhibit this behavior. So we have the following theorem, a
generalization of a result by Pierre Fatou in [Fatou 1906, page 368].

Theorem 2 If {ak}
∞
k=0 is a linearly generated sequence with ai ∈ D where D is a unique

factorization domain, then the monic minimal generator fmin ∈ D[z].

Proof. Let F be the field of quotients of D and let a(z) ∈ D[[z]] be the power series
a(z) =

∑
i≥0 aiz

i. Without loss of generality, we assume that the unique monic minimal
generator of {ak}

∞
k=0, fmin, is such that fmin(0) 6= 0. Otherwise, fmin is divisible by zi for

some i > 0. This factor of zi skips over the first i sequence elements in the linear generation.
As such we can divide fmin by zi and skip the necessary sequence elements to continue the
proof.

Since {ak}
∞
k=0 is linearly generated, then there exists two polynomials A(z), B(z) ∈ F [z]

such that A(z)
B(z)

= a(z) and A(z), B(z) are relatively prime. This is a known result of linearly

generated (linearly recurrent) sequences and rational functions. Further, we know that B(z)
is a minimal recurrence of {ak}

∞
k=0 and so the reverse polynomial of B(z) is a minimal

generator of {ak}
∞
k=0. By clearing out denominators, we can assume that A(z), B(z) ∈ D[z]

and A,B remain relatively prime. So A(z) = B(z)a(z). We now proceed to show that B is
the unique minimal recurrence.

Suppose there exists d ∈ D, d not a unit, such that d is a common divisor of the coefficients
of B(z). Then since A(z) = B(z)a(z), we see that d is a common divisor of all the coefficients
of A(z), contradicting the relative primeness of A and B. So no such d can exist.

Since A and B are relatively prime, there exists U(z), V (z) ∈ D[z] such that UA+V B =

α ∈ D \ {0}. Thus the rational function G = α
B(z)

= U(z)A(z)
B(z)

+ V (z) = U(z)a(z) + V (z) ∈

D[[z]]. If c ∈ D \ {0} is a common divisor of the coefficients of G, then B(z)G(z) = α
implies that c | α. Therefore we can clear out the common divisors of G and call it G∗. Let
α∗ = B(z)G∗(z).

Finally we show that B(0) = 1. Suppose there exists p ∈ D a prime such that p | B(0).
Then B(z)G∗(z) = α∗ implies that B(0)G∗(0) = α∗ and so p | α∗. Now consider B(z)G∗(z) =
0 ∈ D/pD[[z]]. Since D is a unique factorization domain, then D/pD is an integral domain
and so D/pD[[z]] is also an integral domain. So B = 0 or G∗ = 0. Thus p is a common
divisor of the coefficients of B or G∗. This is a contradiction from the previous paragraphs
and so there is no p ∈ D that divides B(0) and so B(0) is a unit of D. Therefore we can
assume that B(0) = 1.

So a(z) = A(z)
B(z)

and B(0) = 1. Further B is a minimal recurrence of {ak}
∞
k=0 and B ∈ D[z].

So the reverse of B is fmin and fmin ∈ D[z].

14

Theorem 2 allows us to compute the unique minimal generator of a scalar sequence in a
unique factorization domain using Algorithm 2.1. By performing a final division by h before
returning the generator, we can compute ±fmin. This result does not extend to general
matrix sequences. A counterexample is the following sequence:

Mi =

[
3 · Fiboi 2 · Fiboi

0 mi

]
,

where mi = −2 for i ≡ 2 mod 3 and mi = 1 otherwise. This sequence has a unique right
minimal matrix generator given by:

f(z) =

[
z2 − z − 1 −4

3
z − 4

3

0 z2 + z + 1

]
.

We know that f is the unique right minimal matrix generator because it is in (descending
degree) column Popov form. Algorithm 2.1 confirms that this sequence is a normalizable
remainder sequence.

5.3 Conclusion

We present a fraction free Matrix Berlekamp/Massey algorithm. The algorithm works for
any scalar sequence and any normalizable remainder sequence. If the sequence is not a nor-
malizable remainder sequence, then the algorithm may return a certificate that is is not. The
scalar form of Algorithm 2.1 maintains smaller intermediate values than the previous known
algorithm. Theorem 2 allows us to compute the unique minimal generators of sequences in
unique factorization domains such as Z or F [X] using our fraction free scalar algorithm. A
fraction free variant of the general Matrix Berlekamp/Massey algorithm is still unknown.

References

Bareiss, E. H. Sylvester’s identity and multistep integers preserving Gaussian elimination.
Math. Comp., 22:565–578, 1968.

Beckermann, Bernhard, Cabay, Stanley, and Labahn, George. Fraction-free computation of
matrix pade systems. In International Symposium on Symbolic and Algebraic Computation,
pages 125–132, 1997. URL citeseer.ist.psu.edu/beckermann97fractionfree.html.

Beckermann, Bernhard and Labahn, George. Fraction-free computation of matrix rational
interpolants and matrix GCDs. SIAM J. Matrix Anal. Applic., 22(1):114–144, 2000.

Berlekamp, E. R. Algebraic Coding Theory. McGraw-Hill Publ., New York, 1968.

Brown, W. S. On Euclid’s algorithm and the computation of polynomial greatest common
divisors. J. ACM, 18:478–504, 1971.

Brown, W. S. The subresultant PRS algorithm. ACM Trans. Math. Software, 4:237–249,
1978.

15

citeseer.ist.psu.edu/beckermann97fractionfree.html

Brown, W. S. and Traub, J. F. On Euclid’s algorithm and the theory of subresultants. J.
ACM, 18:505–514, 1971.

Collins, George E. Subresultants and reduced polynomial remainder sequences. J. ACM, 14:
128–142, 1967.

Coppersmith, D. Solving homogeneous linear equations over GF(2) via block Wiedemann
algorithm. Math. Comput., 62(205):333–350, 1994.

Corless, Robert M., Jeffrey, David J., and Zhou, Wenqin. Fraction-free forms of LU and QR
matrix factors. In Proc. Transgressive Computing, pages 443–446, Granada, 2006.

Dickinson, Bradley W., Morf, Martin, and Kailath, Thomas. A minimal realization algorithm
for matrix sequences. IEEE Trans. Automatic Control, AC-19(1):31–38, February 1974.

Dornstetter, J. L. On the equivalence between Berlekamp’s and Euclid’s algorithms. IEEE
Trans. Inf. Theory, it-33(3):428–431, 1987.

Fatou, P. Séries trigonométriques et séries de Taylor. Acta Mathematica, 30(1):335–400,
December 1906.

Giesbrecht, Mark, Kaltofen, Erich, and Lee, Wen-shin. Algorithms for computing the sparsest
shifts for polynomials via the Berlekamp/Massey algorithm. In Mora, T., editor, Proc. 2002
Internat. Symp. Symbolic Algebraic Comput. (ISSAC’02), pages 101–108, New York, N.
Y., 2002. ACM Press. ISBN 1-58113-484-3.

Hearn, Anthony C. An improved non-modular polynomial gcd algorithm. SIGSAM Bull.,
(23):10–15, 1972. ISSN 0163-5824.

Kaltofen, Erich and Lee, Wen-shin. Early termination in sparse interpolation algorithms.
J. Symbolic Comput., 36(3–4):365–400, 2003. Special issue Internat. Symp. Symbolic
Algebraic Comput. (ISSAC 2002). Guest editors: M. Giusti & L. M. Pardo. URL:
EKbib/03/KL03.pdf.

Kaltofen, Erich and Villard, Gilles. On the complexity of computing determinants. Compu-
tational Complexity, 13(3-4):91–130, 2004. URL: EKbib/04/KaVi04_2697263.pdf; Maple
7 worksheet URL: EKbib/04/KaVi04_2697263.mws.

Kaltofen, Erich and Yuhasz, George. On the matrix Berlekamp-Massey algorithm. ACM
Trans. Algorithms, 9(4), September 2013. URL: EKbib/06/KaYu06.pdf.

Massey, J. L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory, it-15:
122–127, 1969.

Nakos, George C., Turner, Peter R., and Williams, Robert M. Fraction-free algorithms for
linear and polynomial equations. SIGSAM Bull., 31(3):11–19, 1997. ISSN 0163-5824.

Zhou, Wenqin and Jeffrey, David J. Fraction-free matrix factors: new forms for LU and QR
factors. Frontiers of Computer Science in China, 2(1):67–80, 2008. ISSN 1673-7350.

16

http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/04/KaVi04_2697263.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/04/KaVi04_2697263.mws
http://www.math.ncsu.edu/~kaltofen/bibliography/06/KaYu06.pdf

