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Overview of my work

Theorem. Factorization inK|x| is undecidable even K is an ef-
fective field [van der Waerden '35, éinlich and Shepherdson '55].

Theorem. Factorization irZ,|x| [Berlekamp '67] and)|x| [LLL]
IS polynomial-time.

If factorization in K|x| is polynomial-time then factorization in
K[Xa,...,X%n| IS polynomial-time [Kaltofen '82].

If arithmetic inK is polynomial-time then factorization i[x1, .. ., X,
IS polynomial-time [Kaltofen '85, '91].
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Best arithm. complexity: Lecerf’068° with LinBox linear algebra



Division-free straight-line program example

U1 < C1 X Xq,
Up < Y — Cp; Comment:c,, ¢, are constants I
U3 <— U X U,
Ug <— U3z + Uy,
Us <— Uy X X3,

U101 <— U100+ Usy,

The variablevo; holds a polynomial irK|xy, o, . . .|

Straight-line programs [Kaltofen '85] and black box pramsa
[Kaltofen & Trager '88] for irreducible factors can be conted
In random polynomial time in the input size and total degree.
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—— used by V. Kabernets [2003] for complexity lower bounds.



Subquadratic complexity

Theorem. We have two algorithms that factor #p[x] in O(n'?)
bit complexity [Kaltofen & Shoup ’95].



Subquadratic complexity

Theorem. We have two algorithms that factor #p[x] in O(n'?)
bit complexity [Kaltofen & Shoup ’95].

Unfortunately, remains best-known complexity today

Note: no complexity model tricks (output size, field operati
count, etc.) possible



Approximate multivariate factorization

Conclusion on my exact algorithm [JSC 1(1)'85]

“D. Izraelevitz at Massachusetts Institute of Technologg h
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate titae
linear systems computed in step (L) tend tonbeerically
IlI-conditioned. How to overcome this numerical problem is an
Important question which we will investigate.”
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Gao, Kaltofen, May, Yang, Zhi 2004: practical algorithmditml
the factorization of a nearby factorizable polynomial giay f
especially “noisy”f :
Givenf = fi--- fs+ fhoise o
we find fy,... fss.t.||[f1 - fs— -+ f4|| & || froisd|

even for large noiself froisd| /|| f|| > 1073



Kaltofen & Koiran '06: supersparse (lacunary) polynomials
a1 din

f_ZCuX e K[X ]WhereX'—x1 C X

Input:  ¢({) € Z[¢] monic irred.; letK = Q[{]/(¢({))
a supersparséX) = 31, X" € K[X]
a factor degree boundl

Output: a list of all irreducible factors of overK of degree<d
and their multiplicities (which is< t except for anyX;)

Bit complexity Is:
(size(f)+d+deg$)+log|¢])
(size(f)+d+deg$) +log|¢]|)

t

wheresizg f) = Z(dense-siz@:i) + [log,(ai1---ain+2)])

O(n
O(1

) (sparse factors)

) (blackbox factors)



10
Black box polynomials

X]_,...,XnEK

f E K[X]_, o e ,Xn]
K an arbitrary field, e.g., rationals, reals, complexes

Perform polynmial algebra operations, e.g., factorizatath

n°1  black box calls,
n°L  arithmetic operations i and
n°® randomly selected elementshn



Kaltofen and Trager (1988) efficiently construct the foliog ef-
ficient program:

pl,...7pn€K .

Precomputed data includirgg, . .., e,.
Program makes “oracle calls™:

aj,...,dn ,an)
b, ... ., bn)
C17 7Cn)

hl(p17° ©e pn)
h2(p17° *e pn>
hr<p17---apn>

f(X1,..., %) = ha(Xg, ..o, %)% e (Xgy oo, %)™
hi € K|Xg,...,Xy] irreducible.
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Characterization of Factor Evaluation Program

e Always evaluates the same associate of each factor

Xy vs. (3%) (2)

e Construction of program is Monte-Carlo (might produce incor-
rect program with probability< €), and requires a factorization
procedure foK|y|, but the program itself is deterministic

e Program contains positive integer constants of value bedind
by 2degf)1+o(1)/g
e Program makes
O(deq f)?) oracle calls,

none of whose inputs depends on another one’s output,
— parallel version

e Furthermore, program perfornagg f)>° arithmetic opera-
tions InK



Given a black box

plj...’anK\- f(pljjpn)EK

f(Xl,...,Xn) S K[Xl,...,Xn]
K a field

compute by multiple evaluation of this black box the spaegpze-
sentation off

X17 Zlalxj_ Xﬁi n7 di # O
Several solutions that are polynomial-timeniandt:

Zippel (1979, 1988), Ben-Or, Tiwari (1988)
Kaltofen, Lakshman (1988)

Grigoriev, Karpinski, Singer (1988)
Mansour (1992)

Kaltofen and Lee (2000)
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Homotopy Method for Solving (X) =0

Known: Wanted:

Solution to Solution to

G(X)=0 F(X)=0
Xl(O) ° > @ Xl(l)
XZ(O) ® > @ Xz(l)
X3(O) ® > @ Xg(l)
Xn(0) @ Xn(1)

Follow fromy = 0 to y = 1 the solutions of
H(X(y)) = (1-y)G(X(y)) +YF(X(y))
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Our Homotopy

For f(xq,...,%n) € K[Xq,...,X,| consider

f(X,Y) = f(X+by,Y(p2—ax(p1—by) — by) +aX + by,
Y (Pn— an(pr—b1) —bn) +anX +by)

The field elements,. ... ,a,, by, ..., b, are pre-chosen (“known™)
The field elementg., ..., p, are input

Notice: The ponnomiaIf_(X,O) IS Independent op, ..., p, and
can be factored into

f(X,0) = |_|g. )%, gi(X) € K[X] irreducible
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f(X,0) = |_|g. )%, gi(X) € K[X] irreducible

By aneffective Hilbert I rreducibility Theorem one can guarantee

that theg; are distinct images of the factors bf
I

gi(X) =hi(X+by,...,anX+Dby), T(X1,...,%) = |_|h(x1,...,xn)e‘
| —

— enters randomization



Our Homotopy

For f(xq,...,%n) € K[Xq,...,X,| consider

f(X,Y) = f(X+by,Y(p2—ax(p1—by) — by) +aX + by,
Y (Pn— an(pr—b1) —bn) +anX +by)

The field elements,. ... ,a,, by, ..., b, are pre-chosen (“known™)
The field elementg., ..., p, are input

Notice: The ponnomiaIf_(X,O) IS Independent op, ..., p, and
can be factored into

f(X,0) = |_|g. )%, gi(X) € K[X] irreducible

By Hensel Lifting we can follow the factorization to
r_
— |_|hI(X7Y)a
B
Now

f(pr—by,1) = f(pr,...,pn), Vi:h(pr—by, 1) =h(ps...,pn)
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Four Corollaries

Corollary 1: (Parallel Factorization)
ForK =@, we can compute in Monte Carlg” % all sparse factors
of f of fixed degree and with no more than a given nuntlderms

Corollary 2: (Sparse Rational Interpolation)
Given a degree bound

b > max(deq f),dedg))

and a bound for the maximum number of non-zero terms in both
f andg, we can inL as Vegas polynomial-time inb andt compute
from a black box forf /g the sparse representationsfadindg
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Four Corollaries

Corollary 1. (Parallel Factorization)
ForK =@, we can compute in Monte Carlg” % all sparse factors
of f of fixed degree and with no more than a given nuntlderms

Corollary 2’ [Kaltofen & Yang '07]: (Sparse Rational Interpol.)
Given a degree bound

b > max(deq f),dedg))

we can inMonte Carlo polynomial-time inb andts,ty (number
of terms Iinf andg) compute the sparse representations$,af.

Usesearly termination [Kaltofen & Lee '03]; our algorithm is
practical.Hybrid version based on [Giesbrecht, Labahn, Lee '06]
and [Kaltofen, Yang, Zhi '05].



Corollary 3. (Greatest Common Divisor)
From a black box for

fo(Xe, ..oy Xn)s ey Fr(Xey ooy %) € K[Xq, ..., Xn)

we can efficiently produce a feasible program with oracléscal
that allows to evaluate one and the same associate of

GCD(fy,..., f).
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Corollary 4. (Factors as Straight-Line Programs)
Let f € K[xq,...,X,] be given by a straight-line program of size
e.g.,

U1 < C1 X Xq;

Up < Xo — Co; Comment:cy, c, are constants i

Uz < U X Ug;

Ug < U3+ U1,

Us <— Uy X X3,

U101 <— U100+ Us1,

The variablevio; holds a polynomial irfy[xs, . ..] of degree

< 2191 Then one can compute in polynomial-timedn- deq f)
straight-line programs gbéolynomial-size for all irreducible fac-
tors.
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