Fast algorithms for factoring polynomials A selection

Erich Kaltofen 寒爐

 North Carolina State University$$
\begin{gathered}
\text { google->kaltofen } \\
\text { google->han lu }
\end{gathered}
$$

Overview of my work
Theorem. Factorization in $\mathrm{K}[x]$ is undecidable even if K is an effective field [van der Waerden '35, Fröhlich and Shepherdson '55].

Theorem. Factorization in $\mathbb{Z}_{p}[x]$ [Berlekamp '67] and $\mathbb{Q}[x]$ [LLL] is polynomial-time.

If factorization in $\mathrm{K}[x]$ is polynomial-time then factorization in $\mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$ is polynomial-time [Kaltofen '82].

If arithmetic in K is polynomial-time then factorization in $\overline{\mathrm{K}}\left[x_{1}, \ldots, x_{n}\right]$ is polynomial-time [Kaltofen '85, '91].

Overview of my work
Theorem. Factorization in $\mathrm{K}[x]$ is undecidable even if K is an effective field [van der Waerden '35, Fröhlich and Shepherdson '55].

Theorem. Factorization in $\mathbb{Z}_{p}[x]$ [Berlekamp '67] and $\mathbb{Q}[x]$ [LLL] is polynomial-time.

If factorization in $\mathrm{K}[x]$ is polynomial-time then factorization in $\mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$ is polynomial-time [Kaltofen '82].

If arithmetic in K is polynomial-time then factorization in $\overline{\mathrm{K}}\left[x_{1}, \ldots, x_{n}\right]$ is polynomial-time [Kaltofen '85, '91].

Best arithm. complexity: Lecerf ' $06 d^{3}$ with LinBox linear algebra

Division-free straight-line program example

```
v
v
v
v
v5}\leftarrow\mp@subsup{v}{4}{}\times\mp@subsup{x}{3}{}
:
v
```

The variable v_{101} holds a polynomial in $\mathrm{K}\left[x_{1}, x_{2}, \ldots\right]$

Straight-line programs [Kaltofen '85] and black box programs [Kaltofen \& Trager '88] for irreducible factors can be computed in random polynomial time in the input size and total degree.

Division-free straight-line program example

```
v
v}\leftarrow\leftarrowy-\mp@subsup{c}{2}{};\quad\mathrm{ Comment: c},\mp@subsup{c}{1}{},\mp@subsup{c}{2}{}\mathrm{ are constants in K
v
v4}\leftarrow\mp@subsup{v}{3}{}+\mp@subsup{v}{1}{}
v5}\leftarrow\mp@subsup{v}{4}{}\times\mp@subsup{x}{3}{}
!
v}101\leftarrow\mp@subsup{v}{100}{}+\mp@subsup{v}{51}{}
```

The variable v_{101} holds a polynomial in $\mathrm{K}\left[x_{1}, x_{2}, \ldots\right]$

Straight-line programs [Kaltofen '85] and black box programs [Kaltofen \& Trager '88] for irreducible factors can be computed in random polynomial time in the input size and total degree.
\longrightarrow used by V. Kabernets [2003] for complexity lower bounds.

Subquadratic complexity
Theorem. We have two algorithms that factor in $\mathbb{Z}_{2}[x]$ in $O\left(n^{1.81}\right)$ bit complexity [Kaltofen \& Shoup '95].

Subquadratic complexity
Theorem. We have two algorithms that factor in $\mathbb{Z}_{2}[x]$ in $O\left(n^{1.81}\right)$ bit complexity [Kaltofen \& Shoup '95].

Unfortunately, remains best-known complexity today Note: no complexity model tricks (output size, field operation count, etc.) possible

Approximate multivariate factorization
Conclusion on my exact algorithm [JSC 1(1)'85]
"D. Izraelevitz at Massachusetts Institute of Technology has already implemented a version of algorithm 1 using complex floating point arithmetic. Early experiments indicate that the linear systems computed in step (L) tend to be numerically ill-conditioned. How to overcome this numerical problem is an important question which we will investigate."

Approximate multivariate factorization
Conclusion on my exact algorithm [JSC 1(1)'85]
"D. Izraelevitz at Massachusetts Institute of Technology has already implemented a version of algorithm 1 using complex floating point arithmetic. Early experiments indicate that the linear systems computed in step (L) tend to be numerically ill-conditioned. How to overcome this numerical problem is an important question which we will investigate."

Gao, Kaltofen, May, Yang, Zhi 2004: practical algorithms to find the factorization of a nearby factorizable polynomial given any f
especially "noisy" f :
Given $f=f_{1} \cdots f_{s}+f_{\text {noise }}$,
we find $\bar{f}_{1}, \ldots \bar{f}_{s}$ s.t. $\left\|f_{1} \cdots f_{s}-\bar{f}_{1} \cdots \bar{f}_{s}\right\| \approx\left\|f_{\text {noise }}\right\|$
even for large noise: $\left\|f_{\text {noise }}\right\| /\|f\| \geq 10^{-3}$

Kaltofen \& Koiran '06: supersparse (lacunary) polynomials $f=\sum_{i} c_{i} \bar{X}^{\alpha_{i}} \in \mathrm{~K}[\bar{X}]$ where $\bar{X}^{\bar{\alpha}_{i}}=X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}$

Input: $\quad \varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $\mathrm{K}=\mathbb{Q}[\zeta] /(\varphi(\zeta))$
a supersparse $f(\bar{X})=\sum_{i=1}^{t} c_{i} \bar{X}^{\overline{\alpha_{i}}} \in \mathrm{~K}[\bar{X}]$
a factor degree bound d

Output: a list of all irreducible factors of f over K of degree $\leq d$ and their multiplicities (which is $\leq t$ except for any X_{j})

Bit complexity is:

$$
\begin{aligned}
& (\operatorname{size}(f)+d+\operatorname{deg}(\varphi)+\log \|\varphi\|)^{O(n)} \text { (sparse factors) } \\
& (\operatorname{size}(f)+d+\operatorname{deg}(\varphi)+\log \|\varphi\|)^{O(1)} \text { (blackbox factors) }
\end{aligned}
$$

where $\operatorname{size}(f)=\sum_{i=1}^{t}\left(\right.$ dense-size $\left.\left(c_{i}\right)+\left\lceil\log _{2}\left(\alpha_{i, 1} \cdots \alpha_{i, n}+2\right)\right\rceil\right)$

Black box polynomials

K an arbitrary field, e.g., rationals, reals, complexes

Perform polynmial algebra operations, e.g., factorization with

$$
\begin{array}{ll}
n^{O(1)} & \text { black box calls, } \\
n^{O(1)} & \text { arithmetic operations in } \mathrm{K} \text { and } \\
n^{O(1)} & \text { randomly selected elements in } \mathrm{K}
\end{array}
$$

Kaltofen and Trager (1988) efficiently construct the following efficient program:

Characterization of Factor Evaluation Program

- Always evaluates the same associate of each factor

$$
x y \quad \text { vs. } \quad\left(\frac{1}{2} x\right)(2 y)
$$

- Construction of program is Monte-Carlo (might produce incorrect program with probability $\leq \varepsilon$), and requires a factorization procedure for $\mathrm{K}[y]$, but the program itself is deterministic
- Program contains positive integer constants of value bounded by $2^{\operatorname{deg}(f)^{1+o(1)}} / \varepsilon$
- Program makes

$$
O\left(\operatorname{deg}(f)^{2}\right) \text { oracle calls, }
$$

none of whose inputs depends on another one's output, \rightarrow parallel version

- Furthermore, program performs $\operatorname{deg}(f)^{2+o(1)}$ arithmetic operations in K

Given a black box

compute by multiple evaluation of this black box the sparse representation of f

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{t} a_{i} x_{1}^{e_{i, 1}} \cdots x_{n}^{e_{i, n}}, \quad a_{i} \neq 0
$$

Several solutions that are polynomial-time in n and t :
Zippel (1979, 1988), Ben-Or, Tiwari (1988)
Kaltofen, Lakshman (1988)
Grigoriev, Karpinski, Singer (1988)
Mansour (1992)
Kaltofen and Lee (2000)

Homotopy Method for Solving $F(X)=0$
Known:
Solution to
$G(X)=0$
Wanted:
Solution to
$F(X)=0$
$x_{1}(0) \bullet \longrightarrow \bullet x_{1}(1)$
$x_{2}(0) \bullet \longrightarrow x_{2}(1)$
$x_{3}(0) \bullet \longrightarrow x_{3}(1)$: :
$x_{n}(0) \bullet \longrightarrow x_{n}(1)$
Follow from $y=0$ to $y=1$ the solutions of

$$
H(X(y))=(1-y) G(X(y))+y F(X(y))
$$

Our Homotopy

For $f\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$ consider

$$
\begin{array}{r}
\bar{f}(X, Y)=f\left(X+b_{1}, Y\left(p_{2}-a_{2}\left(p_{1}-b_{1}\right)-b_{2}\right)+a_{2} X+b_{2},\right. \\
\left.\ldots, Y\left(p_{n}-a_{n}\left(p_{1}-b_{1}\right)-b_{n}\right)+a_{n} X+b_{n}\right)
\end{array}
$$

The field elements $a_{2}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ are pre-chosen ("known") The field elements p_{1}, \ldots, p_{n} are input
Notice: The polynomial $\bar{f}(X, 0)$ is independent of p_{1}, \ldots, p_{n} and can be factored into

$$
\bar{f}(X, 0)=\prod_{i=1}^{r} g_{i}(X)^{e_{i}}, \quad g_{i}(X) \in \mathrm{K}[X] \text { irreducible }
$$

Our Homotopy

For $f\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$ consider

$$
\begin{array}{r}
\bar{f}(X, Y)=f\left(X+b_{1}, Y\left(p_{2}-a_{2}\left(p_{1}-b_{1}\right)-b_{2}\right)+a_{2} X+b_{2}\right. \\
\left.\ldots, Y\left(p_{n}-a_{n}\left(p_{1}-b_{1}\right)-b_{n}\right)+a_{n} X+b_{n}\right)
\end{array}
$$

The field elements $a_{2}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ are pre-chosen ("known") The field elements p_{1}, \ldots, p_{n} are input
Notice: The polynomial $\bar{f}(X, 0)$ is independent of p_{1}, \ldots, p_{n} and can be factored into

$$
\bar{f}(X, 0)=\prod_{i=1}^{r} g_{i}(X)^{e_{i}}, \quad g_{i}(X) \in \mathrm{K}[X] \text { irreducible }
$$

By an effective Hilbert Irreducibility Theorem one can guarantee that the g_{i} are distinct images of the factors of f
$g_{i}(X)=h_{i}\left(X+b_{1}, \ldots, a_{n} X+b_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{r} h\left(x_{1}, \ldots, x_{n}\right)^{e_{i}}$
\rightarrow enters randomization

Our Homotopy

For $f\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$ consider

$$
\begin{array}{r}
\bar{f}(X, Y)=f\left(X+b_{1}, Y\left(p_{2}-a_{2}\left(p_{1}-b_{1}\right)-b_{2}\right)+a_{2} X+b_{2},\right. \\
\left.\ldots, Y\left(p_{n}-a_{n}\left(p_{1}-b_{1}\right)-b_{n}\right)+a_{n} X+b_{n}\right)
\end{array}
$$

The field elements $a_{2}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ are pre-chosen ("known") The field elements p_{1}, \ldots, p_{n} are input
Notice: The polynomial $\bar{f}(X, 0)$ is independent of p_{1}, \ldots, p_{n} and can be factored into

$$
\bar{f}(X, 0)=\prod_{i=1}^{r} g_{i}(X)^{e_{i}}, \quad g_{i}(X) \in \mathrm{K}[X] \text { irreducible }
$$

By Hensel Lifting we can follow the factorization to

$$
\bar{f}(X, Y)=\prod_{i=1}^{r} \bar{h}_{i}(X, Y)^{e_{i}}
$$

Now
$\bar{f}\left(p_{1}-b_{1}, 1\right)=f\left(p_{1}, \ldots, p_{n}\right), \quad \forall i: \bar{h}_{i}\left(p_{1}-b_{1}, 1\right)=h_{i}\left(p_{1}, \ldots, p_{n}\right)$

Four Corollaries
Corollary 1: (Parallel Factorization)
For $\mathrm{K}=\mathbb{Q}$, we can compute in Monte Carlo $\mathscr{N} \mathscr{C}$ all sparse factors of f of fixed degree and with no more than a given number t terms

Corollary 2: (Sparse Rational Interpolation) Given a degree bound

$$
b \geq \max (\operatorname{deg}(f), \operatorname{deg}(g))
$$

and a bound t for the maximum number of non-zero terms in both f and g, we can in Las Vegas polynomial-time in b and t compute from a black box for f / g the sparse representations of f and g

Four Corollaries
Corollary 1: (Parallel Factorization)
For $\mathrm{K}=\mathbb{Q}$, we can compute in Monte Carlo $\mathscr{N} \mathscr{C}$ all sparse factors of f of fixed degree and with no more than a given number t terms

Corollary 2^{\prime} [Kaltofen \& Yang '07]: (Sparse Rational Interpol.) Given a degree bound

$$
b \geq \max (\operatorname{deg}(f), \operatorname{deg}(g))
$$

we can in Monte Carlo polynomial-time in b and t_{f}, t_{g} (number of terms in f and g) compute the sparse representations of f, g.

Four Corollaries
Corollary 1: (Parallel Factorization)
For $\mathrm{K}=\mathbb{Q}$, we can compute in Monte Carlo $\mathscr{N} \mathscr{C}$ all sparse factors of f of fixed degree and with no more than a given number t terms

Corollary 2^{\prime} [Kaltofen \& Yang '07]: (Sparse Rational Interpol.) Given a degree bound

$$
b \geq \max (\operatorname{deg}(f), \operatorname{deg}(g))
$$

we can in Monte Carlo polynomial-time in b and t_{f}, t_{g} (number of terms in f and g) compute the sparse representations of f, g.

Uses early termination [Kaltofen \& Lee '03]; our algorithm is practical. Hybrid version based on [Giesbrecht, Labahn, Lee '06] and [Kaltofen, Yang, Zhi '05].

Corollary 3: (Greatest Common Divisor)

From a black box for

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{r}\left(x_{1}, \ldots, x_{r}\right) \in \mathrm{K}\left[x_{1}, \ldots, x_{n}\right]
$$

we can efficiently produce a feasible program with oracle calls that allows to evaluate one and the same associate of

$$
\operatorname{GCD}\left(f_{1}, \ldots, f_{r}\right)
$$

Corollary 4: (Factors as Straight-Line Programs) Let $f \in \mathrm{~K}\left[x_{1}, \ldots, x_{n}\right]$ be given by a straight-line program of size s, e.g.,

```
v
v
v
v
v5}\leftarrow\mp@subsup{v}{4}{}\times\mp@subsup{x}{3}{}
\vdots
v vo1 }\leftarrow\mp@subsup{v}{100}{}+\mp@subsup{v}{51}{}
```

The variable v_{101} holds a polynomial in $\mathbb{F}_{q}\left[x_{1}, \ldots\right]$ of degree $\leq 2^{101}$. Then one can compute in polynomial-time in $s+\operatorname{deg}(f)$ straight-line programs of polynomial-size for all irreducible factors.

谢谢

THANK YOU!

