Fast algorithms for factoring polynomials A selection

Erich Kaltofen 実爐 North Carolina State University google->kaltofen google->han lu

Overview of my work

Theorem. Factorization in K[x] is undecidable even if K is an effective field [van der Waerden '35, Fröhlich and Shepherdson '55].

Theorem. Factorization in $\mathbb{Z}_p[x]$ [Berlekamp '67] and $\mathbb{Q}[x]$ [LLL] is polynomial-time.

If factorization in K[x] is polynomial-time then factorization in $K[x_1, \ldots, x_n]$ is polynomial-time [Kaltofen '82].

If arithmetic in K is polynomial-time then factorization in $\overline{K}[x_1, \dots, x_n]$ is polynomial-time [Kaltofen '85, '91].

Overview of my work

Theorem. Factorization in K[x] is undecidable even if K is an effective field [van der Waerden '35, Fröhlich and Shepherdson '55].

Theorem. Factorization in $\mathbb{Z}_p[x]$ [Berlekamp '67] and $\mathbb{Q}[x]$ [LLL] is polynomial-time.

If factorization in K[x] is polynomial-time then factorization in $K[x_1, \ldots, x_n]$ is polynomial-time [Kaltofen '82].

If arithmetic in K is polynomial-time then factorization in $\overline{K}[x_1, \dots, x_n]$ is polynomial-time [Kaltofen '85, '91].

Best arithm. complexity: Lecerf '06 d^3 with LinBox linear algebra

Division-free straight-line program example

 $\begin{array}{l}
\upsilon_{1} \leftarrow c_{1} \times x_{1}; \\
\upsilon_{2} \leftarrow y - c_{2}; \\
\upsilon_{3} \leftarrow \upsilon_{2} \times \upsilon_{2}; \\
\upsilon_{4} \leftarrow \upsilon_{3} + \upsilon_{1}; \\
\upsilon_{5} \leftarrow \upsilon_{4} \times x_{3}; \\
\vdots \\
\upsilon_{101} \leftarrow \upsilon_{100} + \upsilon_{51};
\end{array}$ Comment: c_{1}, c_{2} are constants in K

The variable v_{101} holds a polynomial in $K[x_1, x_2, ...]$

Straight-line programs [Kaltofen '85] and black box programs [Kaltofen & Trager '88] for irreducible factors can be computed in random polynomial time in the input size and total degree.

Division-free straight-line program example

 $\begin{array}{l}
\upsilon_{1} \leftarrow c_{1} \times x_{1}; \\
\upsilon_{2} \leftarrow y - c_{2}; \\
\upsilon_{3} \leftarrow \upsilon_{2} \times \upsilon_{2}; \\
\upsilon_{4} \leftarrow \upsilon_{3} + \upsilon_{1}; \\
\upsilon_{5} \leftarrow \upsilon_{4} \times x_{3}; \\
\vdots \\
\upsilon_{101} \leftarrow \upsilon_{100} + \upsilon_{51};
\end{array}$ Comment: c_{1}, c_{2} are constants in K

The variable v_{101} holds a polynomial in $K[x_1, x_2, ...]$

Straight-line programs [Kaltofen '85] and black box programs [Kaltofen & Trager '88] for irreducible factors can be computed in random polynomial time in the input size and total degree.

 \longrightarrow used by V. Kabernets [2003] for complexity lower bounds.

Subquadratic complexity

Theorem. We have two algorithms that factor in $\mathbb{Z}_2[x]$ in $O(n^{1.81})$ bit complexity [Kaltofen & Shoup '95].

Subquadratic complexity

Theorem. We have two algorithms that factor in $\mathbb{Z}_2[x]$ in $O(n^{1.81})$ bit complexity [Kaltofen & Shoup '95].

Unfortunately, remains best-known complexity today Note: no complexity model tricks (output size, field operation count, etc.) possible

Approximate multivariate factorization

Conclusion on my exact algorithm [JSC 1(1)'85]

"D. Izraelevitz at Massachusetts Institute of Technology has already implemented a version of algorithm 1 using complex floating point arithmetic. Early experiments indicate that the linear systems computed in step (L) tend to be **numerically ill-conditioned.** How to overcome this numerical problem is an important question which we will investigate."

Approximate multivariate factorization

Conclusion on my exact algorithm [JSC 1(1)'85]

"D. Izraelevitz at Massachusetts Institute of Technology has already implemented a version of algorithm 1 using complex floating point arithmetic. Early experiments indicate that the linear systems computed in step (L) tend to be **numerically ill-conditioned.** How to overcome this numerical problem is an important question which we will investigate."

Gao, Kaltofen, May, Yang, Zhi 2004: practical algorithms to find the factorization of a nearby factorizable polynomial given any f

especially "noisy" f: Given $f = f_1 \cdots f_s + f_{noise}$, we find $\overline{f}_1, \dots, \overline{f}_s$ s.t. $||f_1 \cdots f_s - \overline{f}_1 \cdots \overline{f}_s|| \approx ||f_{noise}||$ even for large noise: $||f_{noise}|| / ||f|| \ge 10^{-3}$ Kaltofen & Koiran '06: supersparse (lacunary) polynomials $f = \sum_{i} c_i \overline{X}^{\overline{\alpha_i}} \in \mathsf{K}[\overline{X}]$ where $\overline{X}^{\overline{\alpha_i}} = X_1^{\alpha_{i,1}} \cdots X_n^{\alpha_{i,n}}$

Input: $\varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $\mathsf{K} = \mathbb{Q}[\zeta]/(\varphi(\zeta))$ a supersparse $f(\overline{X}) = \sum_{i=1}^{t} c_i \overline{X}^{\overline{\alpha_i}} \in \mathsf{K}[\overline{X}]$ a factor degree bound d

Output: a list of all irreducible factors of f over K of degree $\leq d$ and their multiplicities (which is $\leq t$ except for any X_j)

Bit complexity is: $(\operatorname{size}(f) + d + \operatorname{deg}(\varphi) + \log \|\varphi\|)^{O(n)} \text{ (sparse factors)}$ $(\operatorname{size}(f) + d + \operatorname{deg}(\varphi) + \log \|\varphi\|)^{O(1)} \text{ (blackbox factors)}$ where $\operatorname{size}(f) = \sum_{i=1}^{t} (\operatorname{dense-size}(c_i) + \lceil \log_2(\alpha_{i,1} \cdots \alpha_{i,n} + 2) \rceil)$ Black box polynomials

K an arbitrary field, e.g., rationals, reals, complexes

Perform polynmial algebra operations, e.g., factorization with

- $n^{O(1)}$ black box calls,
- $n^{O(1)}$ arithmetic operations in K and
- $n^{O(1)}$ randomly selected elements in K

Kaltofen and Trager (1988) efficiently construct the following efficient program:

Characterization of Factor Evaluation Program

• Always evaluates the same associate of each factor

x y vs. $(\frac{1}{2}x) (2y)$

- Construction of program is Monte-Carlo (might produce incorrect program with probability $\leq \varepsilon$), and requires a factorization procedure for K[y], but the program itself is deterministic
- Program contains positive integer constants of value bounded by $2^{\deg(f)^{1+o(1)}}/\varepsilon$
- Program makes

$O(\deg(f)^2)$ oracle calls,

none of whose inputs depends on another one's output, \rightarrow parallel version

• Furthermore, program performs $deg(f)^{2+o(1)}$ arithmetic operations in K

Given a black box

compute by multiple evaluation of this black box the sparse representation of f

$$f(x_1,...,x_n) = \sum_{i=1}^t a_i x_1^{e_{i,1}} \cdots x_n^{e_{i,n}}, \quad a_i \neq 0$$

Several solutions that are polynomial-time in *n* and *t*:

Zippel (1979, 1988), Ben-Or, Tiwari (1988) Kaltofen, Lakshman (1988) Grigoriev, Karpinski, Singer (1988) Mansour (1992) Kaltofen and Lee (2000)

Homotopy Method for Solving F(X) = 0

Follow from y = 0 to y = 1 the solutions of

H(X(y)) = (1 - y)G(X(y)) + yF(X(y))

Our Homotopy

For
$$f(x_1,...,x_n) \in \mathsf{K}[x_1,...,x_n]$$
 consider
 $\bar{f}(X,Y) = f(X+b_1,Y(p_2-a_2(p_1-b_1)-b_2)+a_2X+b_2,$
 $\dots,Y(p_n-a_n(p_1-b_1)-b_n)+a_nX+b_n)$

The field elements $a_2, \ldots, a_n, b_1, \ldots, b_n$ are pre-chosen ("known") The field elements p_1, \ldots, p_n are input

Notice: The polynomial $\overline{f}(X,0)$ is independent of p_1, \ldots, p_n and can be factored into

$$\bar{f}(X,0) = \prod_{i=1}^{r} g_i(X)^{e_i}, \quad g_i(X) \in \mathsf{K}[X]$$
 irreducible

Our Homotopy

For
$$f(x_1,...,x_n) \in \mathsf{K}[x_1,...,x_n]$$
 consider
 $\bar{f}(X,Y) = f(X+b_1,Y(p_2-a_2(p_1-b_1)-b_2)+a_2X+b_2,$
 $\dots,Y(p_n-a_n(p_1-b_1)-b_n)+a_nX+b_n)$

The field elements $a_2, \ldots, a_n, b_1, \ldots, b_n$ are pre-chosen ("known") The field elements p_1, \ldots, p_n are input

Notice: The polynomial $\overline{f}(X,0)$ is independent of p_1, \ldots, p_n and can be factored into

$$\bar{f}(X,0) = \prod_{i=1}^{r} g_i(X)^{e_i}, \quad g_i(X) \in \mathsf{K}[X] \text{ irreducible}$$

By an *effective Hilbert Irreducibility Theorem* one can guarantee that the g_i are distinct images of the factors of f

$$g_i(X) = h_i(X + b_1, \dots, a_n X + b_n), \ f(x_1, \dots, x_n) = \prod_{i=1}^r h(x_1, \dots, x_n)^{e_i}$$

 \rightarrow enters randomization

Our Homotopy

For
$$f(x_1,...,x_n) \in \mathsf{K}[x_1,...,x_n]$$
 consider
 $\bar{f}(X,Y) = f(X+b_1,Y(p_2-a_2(p_1-b_1)-b_2)+a_2X+b_2,$
 $\dots,Y(p_n-a_n(p_1-b_1)-b_n)+a_nX+b_n)$

The field elements $a_2, \ldots, a_n, b_1, \ldots, b_n$ are pre-chosen ("known") The field elements p_1, \ldots, p_n are input

Notice: The polynomial $\overline{f}(X,0)$ is independent of p_1, \ldots, p_n and can be factored into

$$\bar{f}(X,0) = \prod_{i=1}^{r} g_i(X)^{e_i}, \quad g_i(X) \in \mathsf{K}[X]$$
 irreducible

By Hensel Lifting we can follow the factorization to

$$\bar{f}(X,Y) = \prod_{i=1}^r \bar{h}_i(X,Y)^{e_i}$$

Now

$$\bar{f}(p_1-b_1,1)=f(p_1,\ldots,p_n), \quad \forall i:\bar{h}_i(p_1-b_1,1)=h_i(p_1,\ldots,p_n)$$

Four Corollaries

Corollary 1: (Parallel Factorization) For $K = \mathbb{Q}$, we can compute in Monte Carlo \mathcal{NC} all sparse factors of *f* of fixed degree and with no more than a given number *t* terms

Corollary 2: (Sparse Rational Interpolation) Given a degree bound

 $b \geq \max(\deg(f), \deg(g))$

and a bound *t* for the maximum number of non-zero terms in both f and g, we can in **Las Vegas** polynomial-time in b and t compute from a black box for f/g the sparse representations of f and g

Four Corollaries

Corollary 1: (Parallel Factorization) For $K = \mathbb{Q}$, we can compute in Monte Carlo \mathcal{NC} all sparse factors of *f* of fixed degree and with no more than a given number *t* terms

Corollary 2' [Kaltofen & Yang '07]: (Sparse Rational Interpol.) Given a degree bound

 $b \geq \max(\deg(f), \deg(g))$

we can in **Monte Carlo** polynomial-time in *b* and t_f, t_g (number of terms in *f* and *g*) compute the sparse representations of *f*, *g*.

Four Corollaries

Corollary 1: (Parallel Factorization) For $K = \mathbb{Q}$, we can compute in Monte Carlo \mathcal{NC} all sparse factors of *f* of fixed degree and with no more than a given number *t* terms

Corollary 2' [Kaltofen & Yang '07]: (Sparse Rational Interpol.) Given a degree bound

 $b \geq \max(\deg(f), \deg(g))$

we can in **Monte Carlo** polynomial-time in *b* and t_f, t_g (number of terms in *f* and *g*) compute the sparse representations of *f*, *g*.

Uses **early termination** [Kaltofen & Lee '03]; our algorithm is practical. **Hybrid** version based on [Giesbrecht, Labahn, Lee '06] and [Kaltofen, Yang, Zhi '05].

Corollary 3: (Greatest Common Divisor) From a black box for

 $f_1(x_1,\ldots,x_n),\ldots,f_r(x_1,\ldots,x_r)\in\mathsf{K}[x_1,\ldots,x_n]$

we can efficiently produce a feasible program with oracle calls that allows to evaluate one and the same associate of

 $\operatorname{GCD}(f_1,\ldots,f_r).$

Corollary 4: (Factors as Straight-Line Programs) Let $f \in K[x_1, ..., x_n]$ be given by a straight-line program of size *s*, e.g.,

 $v_1 \leftarrow c_1 \times x_1;$ $v_2 \leftarrow x_2 - c_2;$ Comment: c_1, c_2 are constants in K $v_3 \leftarrow v_2 \times v_2;$ $v_4 \leftarrow v_3 + v_1;$ $v_5 \leftarrow v_4 \times x_3;$: $v_{101} \leftarrow v_{100} + v_{51};$

The variable v_{101} holds a polynomial in $\mathbb{F}_q[x_1,...]$ of degree $\leq 2^{101}$. Then one can compute in polynomial-time in $s + \deg(f)$ straight-line programs of **polynomial-size** for all irreducible factors.

THANK YOU!

