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Overview of my work

Theorem. Factorization inK[x] is undecidable even ifK is an ef-
fective field [van der Waerden ’35, Fröhlich and Shepherdson ’55].

Theorem. Factorization inZp[x] [Berlekamp ’67] andQ[x] [LLL]
is polynomial-time.

If factorization in K[x] is polynomial-time then factorization in
K[x1, . . . ,xn] is polynomial-time [Kaltofen ’82].

If arithmetic inK is polynomial-time then factorization inK[x1, . . . ,xn]
is polynomial-time [Kaltofen ’85, ’91].
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Overview of my work

Theorem. Factorization inK[x] is undecidable even ifK is an ef-
fective field [van der Waerden ’35, Fröhlich and Shepherdson ’55].

Theorem. Factorization inZp[x] [Berlekamp ’67] andQ[x] [LLL]
is polynomial-time.

If factorization in K[x] is polynomial-time then factorization in
K[x1, . . . ,xn] is polynomial-time [Kaltofen ’82].

If arithmetic inK is polynomial-time then factorization inK[x1, . . . ,xn]
is polynomial-time [Kaltofen ’85, ’91].

Best arithm. complexity: Lecerf ’06d3 with LinBox linear algebra
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Division-free straight-line program example

υ1← c1×x1;
υ2← y−c2; Comment:c1,c2 are constants inK
υ3← υ2×υ2;
υ4← υ3+υ1;
υ5← υ4×x3;
...
υ101← υ100+υ51;

The variableυ101 holds a polynomial inK[x1,x2, . . .]

Straight-line programs [Kaltofen ’85] and black box programs
[Kaltofen & Trager ’88] for irreducible factors can be computed
in random polynomial time in the input size and total degree.
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Division-free straight-line program example

υ1← c1×x1;
υ2← y−c2; Comment:c1,c2 are constants inK
υ3← υ2×υ2;
υ4← υ3+υ1;
υ5← υ4×x3;
...
υ101← υ100+υ51;

The variableυ101 holds a polynomial inK[x1,x2, . . .]

Straight-line programs [Kaltofen ’85] and black box programs
[Kaltofen & Trager ’88] for irreducible factors can be computed
in random polynomial time in the input size and total degree.

−→ used by V. Kabernets [2003] for complexity lower bounds.
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Subquadratic complexity

Theorem. We have two algorithms that factor inZ2[x] in O(n1.81)
bit complexity [Kaltofen & Shoup ’95].
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Subquadratic complexity

Theorem. We have two algorithms that factor inZ2[x] in O(n1.81)
bit complexity [Kaltofen & Shoup ’95].

Unfortunately, remains best-known complexity today
Note: no complexity model tricks (output size, field operation
count, etc.) possible
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Approximate multivariate factorization

Conclusion on my exact algorithm [JSC 1(1)’85]

“D. Izraelevitz at Massachusetts Institute of Technology has
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate thatthe
linear systems computed in step (L) tend to benumerically
ill-conditioned. How to overcome this numerical problem is an
important question which we will investigate.”
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Approximate multivariate factorization

Conclusion on my exact algorithm [JSC 1(1)’85]

“D. Izraelevitz at Massachusetts Institute of Technology has
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate thatthe
linear systems computed in step (L) tend to benumerically
ill-conditioned. How to overcome this numerical problem is an
important question which we will investigate.”

Gao, Kaltofen, May, Yang, Zhi 2004: practical algorithms tofind
the factorization of a nearby factorizable polynomial given any f

especially “noisy”f :
Given f = f1 · · · fs+ fnoise,
we find f̄1, . . . f̄s s.t.‖ f1 · · · fs− f̄1 · · · f̄s‖ ≈ ‖ fnoise‖

even for large noise:‖ fnoise‖/‖ f‖ ≥ 10−3
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Kaltofen & Koiran ’06: supersparse (lacunary) polynomials
f = ∑i ciX

αi ∈ K[X] whereX
αi = X

αi,1
1 · · ·X

αi,n
n

Input: ϕ(ζ ) ∈ Z[ζ ] monic irred.; letK = Q[ζ ]/(ϕ(ζ ))

a supersparsef (X) = ∑t
i=1ciX

αi ∈ K[X]
a factor degree boundd

Output: a list of all irreducible factors off overK of degree≤ d
and their multiplicities (which is≤ t except for anyXj)

Bit complexity is:
(

size( f )+d+deg(ϕ)+ log‖ϕ‖
)O(n)

(sparse factors)
(

size( f )+d+deg(ϕ)+ log‖ϕ‖
)O(1)

(blackbox factors)

wheresize( f ) =
t

∑
i=1

(dense-size(ci)+ ⌈log2(αi,1 · · ·αi,n+2)⌉)
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Black box polynomials

x1, . . . ,xn ∈ K
−−−−−−−−−−→

f (x1, . . . ,xn) ∈ K
−−−−−−−−−−−−→

f ∈ K[x1, . . . ,xn]
K an arbitrary field, e.g., rationals, reals, complexes

Perform polynmial algebra operations, e.g., factorization with

nO(1) black box calls,
nO(1) arithmetic operations inK and
nO(1) randomly selected elements inK
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Kaltofen and Trager (1988) efficiently construct the following ef-
ficient program:

p1, . . . , pn ∈ K
−−−−−−−−−−−→

Precomputed data includinge1, . . . ,en.
Program makes “oracle calls”:

a1, . . . ,an−−−−−−−−−→

f (x1, . . . ,xn)

f (a1, . . . ,an)−−−−−−−−−−→

b1, . . . ,bn−−−−−−−−−→

f (x1, . . . ,xn)

f (b1, . . . ,bn)−−−−−−−−−−→

...
c1, . . . ,cn−−−−−−−−−→

f (x1, . . . ,xn)

f (c1, . . . ,cn)−−−−−−−−−−→

. . .

f (x1, . . . ,xn) = h1(x1, . . . ,xn)
e1 · · ·hr(x1, . . . ,xn)

er

hi ∈ K[x1, . . . ,xn] irreducible.

h1(p1, . . . , pn)−−−−−−−−−−−−−→
h2(p1, . . . , pn)−−−−−−−−−−−−−→

...

hr(p1, . . . , pn)−−−−−−−−−−−−−→
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Characterization of Factor Evaluation Program

• Always evaluates the same associate of each factor

x y vs. (
1
2
x) (2y)

•Construction of program is Monte-Carlo (might produce incor-
rect program with probability≤ ε), and requires a factorization
procedure forK[y], but the program itself is deterministic

• Program contains positive integer constants of value bounded
by 2deg( f )1+o(1)

/ε
• Program makes

O(deg( f )2) oracle calls,

none of whose inputs depends on another one’s output,
→ parallel version

• Furthermore, program performsdeg( f )2+o(1) arithmetic opera-
tions inK
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Given a black box

p1, . . . , pn ∈ K
−−−−−−−−−−→

f (p1, . . . , pn) ∈ K
−−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ K[x1, . . . ,xn]
K a field

compute by multiple evaluation of this black box the sparse repre-
sentation off

f (x1, . . . ,xn) =
t

∑
i=1

aix
ei,1
1 · · ·x

ei,n
n , ai 6= 0

Several solutions that are polynomial-time inn andt:

Zippel (1979, 1988), Ben-Or, Tiwari (1988)
Kaltofen, Lakshman (1988)
Grigoriev, Karpinski, Singer (1988)
Mansour (1992)
Kaltofen and Lee (2000)
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Homotopy Method for SolvingF(X) = 0

Known: Wanted:
Solution to Solution to
G(X) = 0 F(X) = 0

x1(0) •−−−−−−−−−−−−−−−−−−−−−−−−−−→• x1(1)

x2(0) •−−−−−−−−−−−−−−−−−−−−−−−−−−→• x2(1)

x3(0) •−−−−−−−−−−−−−−−−−−−−−−−−−−→• x3(1)
... ...

xn(0) •−−−−−−−−−−−−−−−−−−−−−−−−−−→• xn(1)

Follow fromy = 0 to y = 1 the solutions of

H(X(y)) = (1−y)G(X(y))+yF(X(y))
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Our Homotopy

For f (x1, . . . ,xn) ∈ K[x1, . . . ,xn] consider

f̄ (X,Y) = f (X +b1,Y(p2−a2(p1−b1)−b2)+a2X +b2,

. . .,Y(pn−an(p1−b1)−bn)+anX +bn)

The field elementsa2, . . . ,an,b1, . . . ,bn are pre-chosen (“known”)
The field elementsp1, . . . , pn are input

Notice: The polynomial f̄ (X,0) is independent ofp1, . . . , pn and
can be factored into

f̄ (X,0) =
r

∏
i=1

gi(X)ei, gi(X) ∈ K[X] irreducible
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Our Homotopy

For f (x1, . . . ,xn) ∈ K[x1, . . . ,xn] consider

f̄ (X,Y) = f (X +b1,Y(p2−a2(p1−b1)−b2)+a2X +b2,

. . .,Y(pn−an(p1−b1)−bn)+anX +bn)

The field elementsa2, . . . ,an,b1, . . . ,bn are pre-chosen (“known”)
The field elementsp1, . . . , pn are input

Notice: The polynomial f̄ (X,0) is independent ofp1, . . . , pn and
can be factored into

f̄ (X,0) =
r

∏
i=1

gi(X)ei, gi(X) ∈ K[X] irreducible

By aneffective Hilbert Irreducibility Theorem one can guarantee
that thegi are distinct images of the factors off

gi(X) = hi(X +b1, . . . ,anX +bn), f (x1, . . . ,xn) =
r

∏
i=1

h(x1, . . . ,xn)
ei

→ enters randomization
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Our Homotopy

For f (x1, . . . ,xn) ∈ K[x1, . . . ,xn] consider

f̄ (X,Y) = f (X +b1,Y(p2−a2(p1−b1)−b2)+a2X +b2,

. . .,Y(pn−an(p1−b1)−bn)+anX +bn)

The field elementsa2, . . . ,an,b1, . . . ,bn are pre-chosen (“known”)
The field elementsp1, . . . , pn are input

Notice: The polynomial f̄ (X,0) is independent ofp1, . . . , pn and
can be factored into

f̄ (X,0) =
r

∏
i=1

gi(X)ei, gi(X) ∈ K[X] irreducible

By Hensel Lifting we can follow the factorization to

f̄ (X,Y) =
r

∏
i=1

h̄i(X,Y)ei

Now

f̄ (p1−b1,1) = f (p1, . . . , pn), ∀i : h̄i(p1−b1,1) = hi(p1, . . . , pn)
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Four Corollaries

Corollary 1: (Parallel Factorization)
ForK = Q, we can compute in Monte CarloN C all sparse factors
of f of fixed degree and with no more than a given numbert terms

Corollary 2: (Sparse Rational Interpolation)
Given a degree bound

b≥max(deg( f ),deg(g))

and a boundt for the maximum number of non-zero terms in both
f andg, we can inLas Vegas polynomial-time inb andt compute
from a black box forf/g the sparse representations off andg



19

Four Corollaries

Corollary 1: (Parallel Factorization)
ForK = Q, we can compute in Monte CarloN C all sparse factors
of f of fixed degree and with no more than a given numbert terms

Corollary 2′ [Kaltofen & Yang ’07]: (Sparse Rational Interpol.)
Given a degree bound

b≥max(deg( f ),deg(g))

we can inMonte Carlo polynomial-time inb andt f , tg (number
of terms in f andg) compute the sparse representations off , g.
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Four Corollaries

Corollary 1: (Parallel Factorization)
ForK = Q, we can compute in Monte CarloN C all sparse factors
of f of fixed degree and with no more than a given numbert terms

Corollary 2′ [Kaltofen & Yang ’07]: (Sparse Rational Interpol.)
Given a degree bound

b≥max(deg( f ),deg(g))

we can inMonte Carlo polynomial-time inb andt f , tg (number
of terms in f andg) compute the sparse representations off , g.

Usesearly termination [Kaltofen & Lee ’03]; our algorithm is
practical.Hybrid version based on [Giesbrecht, Labahn, Lee ’06]
and [Kaltofen, Yang, Zhi ’05].
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Corollary 3: (Greatest Common Divisor)
From a black box for

f1(x1, . . . ,xn), . . . , fr(x1, . . . ,xr) ∈ K[x1, . . . ,xn]

we can efficiently produce a feasible program with oracle calls
that allows to evaluate one and the same associate of

GCD( f1, . . . , fr).
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Corollary 4: (Factors as Straight-Line Programs)
Let f ∈ K[x1, . . . ,xn] be given by a straight-line program of sizes,
e.g.,

υ1← c1×x1;
υ2← x2−c2; Comment:c1,c2 are constants inK
υ3← υ2×υ2;
υ4← υ3+υ1;
υ5← υ4×x3;
...
υ101← υ100+υ51;

The variableυ101 holds a polynomial inFq[x1, . . .] of degree
≤ 2101. Then one can compute in polynomial-time ins+ deg( f )
straight-line programs ofpolynomial-size for all irreducible fac-
tors.
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