
The Art of Symbolic Computation

Erich Kaltofen

google->kaltofen

– p.1

Caviness’s foreword to the Computer Algebra Handbook

Two ideas lie gleaming on the jeweler’s velvet. The first is the
calculus, the second, the algorithm. The calculus and the rich
body of mathematical analysis to which it gave rise made
modern science possible; but it has been the algorithm that has
made possible the modern world.

—David Berlinski,The Advent of the Algorithm

– p.2

Caviness’s foreword to the Computer Algebra Handbook

Two ideas lie gleaming on the jeweler’s velvet. The first is the
calculus, the second, the algorithm. The calculus and the rich
body of mathematical analysis to which it gave rise made
modern science possible; but it has been the algorithm that has
made possible the modern world.

—David Berlinski,The Advent of the Algorithm

So, gentle reader, I recommend this volume and all its concepts,
symbols, and algorithms to you.

—Bob Caviness,Computer Algebra Handbook

– p.2

Where it began
1960s-early 70s: MIT project MAC [Moses]

∫

1+(x+1)ndx = x+(x+1)n+1/(n+1), n 6= −1

S. C. Johnson, “Tricks for Improving Kronecker’s Method,” Bell
Laboratories Report 1966.
Berlekamp/Zassenhaus’s, Risch’s algorithms

∫

x+1
x4 e1/xdx = −x2−x+1

x2 e1/x

B. G. Claybrook, “A new approach to the symbolic factorization
of multivariate polynomials,”Artificial Intelligence, vol. 7,
(1976), pp. 203–241.

– p.3

Important algorithms: “classical” computer algebra

Euclid, Chinese remainder

Sturm chains, Seidenberg’s algorithm

Gauss’s distinct degree factorization, Berlekamp/Zassenhaus

Berlekamp/Massey

Gröbner, Macaulay resultants, Wu triangular sets

Risch integration and transcendence theory of special functions

FFT-based polynomial arithmetic

Gosper and Karr

Collins cylindrical algebraic decomposition

. . .

– p.4

Information Department, PO Box 50005, SE-104 05 Stockholm, Sweden, webbsite: www.kva.se
Tel: +46-8-673 95 95, Fax +46-8-15 56 70, e-mail: info@kva.se

THE NOBEL PRIZE IN PHYSICS 1999

PRESS RELEASE 12 OCTOBER 1999
The Prize I Further reading I The laureates

The Royal Swedish Academy of Sciences has awarded

the 1999 Nobel Prize in Physics
jointly to

Professor Gerardus ’t Hooft , University of Utrecht, Utrecht, the Netherlands,
and
Professor Emeritus Martinus J.G. Veltman, University of Michigan, USA,
resident in Bilthoven, the Netherlands.

The two researchers are being awarded the Nobel Prize for having placed particle
physics theory on a firmer mathematical foundation. ...

The Academy’s citation:
"for elucidating the quantum structure of electroweak interactions in physics."

...
One person who had not given up hope of being able to renormalize non-abelian
gauge theories was Martinus J.G.Veltman. At the end of the 1960s he was a
newly appointed professor at the University of Utrecht. Veltman had developed
the Schoonschip computer program which, using symbols, performed algebraic
simplifications of the complicated expressions that all quantum field theories
result in when quantitative calculations are performed. Twenty years earlier,
Feynman had indeed systematised the problem of calculation and introduced
Feynman diagrams that were rapidly accepted by researchers. But at that time
there were no computers. Veltman believed firmly in the possibility of finding a
way of renormalizing the theory and his computer program was the cornerstone
of the comprehensive work of testing different ideas.

– p.5

Important algorithms: “middle earth”
Zippel and Ben-Or-Tiwari sparse interpolation

Singer and Kovacic differential equation solvers

Lattice basis reduction [LLL]

Zeilenberger

Wiedemann, block Wiedemann/Lanczos, matrix Padé

Straight-line and black box polynomial factorization

Baby steps/giant steps algorithms for linear and
polynomial algebra

Tellegen’s principle

Real roots of polynomial systems

Noda-Sasaki approximate GCD, Sasaki approx. factorization

Corless et al. SVD methods

. . .
– p.6

Important algorithms: “modern” symbolic computation
Sparse resultants, A- and J-resultants

Giesbrecht/Mulders-Storjohann diophantine linear solvers

Fast bit complexity in linear algebra over the integers

Black box matrix preconditioners, early termination

Sasaki/van Hoeij power sums, Bostan et al. logarithmic
derivatives

Sparsest shift of polynomials

Villard-Jeannerod optimal polynomial matrix inverse

Skew, Ore and differential polynomial factorization

Approximate polynomial factorization via PDEs

Barvinok-Woods and De Loera et al. short rational functions

Lenstra/Kaltofen-Koiran lacunary polynomial factorization

. . .
– p.7

Factorization of “noisy” polynomials over the
complex numbers [my 1998 Challenge Problem 1]

81x4 +16y4−648z4 +72x2y2−648x2−288y2 +1296= 0

(9x2 +4y2 +18
√

2z2−36)(9x2 +4y2−18
√

2z2−36) = 0

81x4 +16y4−648.003z4 +72x2y2 + .002x2z2 + .001y2z2

−648x2−288y2− .007z2 +1296= 0
– p.8

Conclusion on my exact algorithm [JSC 1(1)’85]

“D. Izraelevitz at Massachusetts Institute of Technology has
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate thatthe
linear systems computed in step (L) tend to benumerically
ill-conditioned. How to overcome this numerical problem is an
important question which we will investigate.”

– p.9

The Approximate Factorization Problem
[Kaltofen ’89; Sasaki ’89]

Given f ∈ C[x1, . . . ,xr] irreducible, findf̃ ∈ C[x1, . . . ,xr] s.t.
degf̃ ≤ degf , f̃ factors, and‖ f − f̃‖ is minimal.

– p.10

The Approximate Factorization Problem
[Kaltofen ’89; Sasaki ’89]

Given f ∈ C[x1, . . . ,xr] irreducible, findf̃ ∈ C[x1, . . . ,xr] s.t.
degf̃ ≤ degf , f̃ factors, and‖ f − f̃‖ is minimal.

Problem depends on choice of norm‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree:
mdeg f = (degx1

f , . . . ,degxr
f)

– p.10

The Approximate Factorization Problem
[Kaltofen ’89; Sasaki ’89]

Given f ∈ C[x1, . . . ,xr] irreducible, findf̃ ∈ C[x1, . . . ,xr] s.t.
degf̃ ≤ degf , f̃ factors, and‖ f − f̃‖ is minimal.

Degree bound is important:
(1+δ x) f is reducible but forδ < ε/‖ f‖,

‖(1+δ x) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.10

Previous Work on Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors[Hitz, Kaltofen, Lakshman ’99])

– p.11

Previous Work on Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors[Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby
factorizablef̄ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

– p.11

Previous Work on Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors[Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby
factorizablef̄ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds formin‖ f − f̃‖ (“irreducibility
radius”)
[Kaltofen and May ISSAC ’03; Nagasaka CASC ’04, ’05]

– p.11

Our ISSAC’04, ASCM’05, 2005, 2006 Results
[joint with John May, Zhengfeng Yang, Lihong Zhi
(and Shuhong Gao ISSAC’04)]

• Several practical algorithms to compute approximate
multivariate GCDs

– p.12

Our ISSAC’04, ASCM’05, 2005, 2006 Results
[joint with John May, Zhengfeng Yang, Lihong Zhi
(and Shuhong Gao ISSAC’04)]

• Several practical algorithms to compute approximate
multivariate GCDs

• Practical algorithms to find the factorization of a nearby
factorizable polynomial given anyf

especially “noisy”f :
Given f = f1 · · · fs+ fnoise,
we find f̄1, . . . f̄s s.t.‖ f1 · · · fs− f̄1 · · · f̄s‖ ≈ ‖ fnoise‖
even for large noise:‖ fnoise‖/‖ f‖ ≥ 10−3

– p.12

Maple Demonstration

– p.13

Ruppert’s Theorem (Bivariate Case)

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem.f is reducible⇐⇒ ∃g,h∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

mdegg≤ (m−2,n) , mdegh≤ (m,n−1)

– p.14

Ruppert’s Theorem (Bivariate Case)

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem.f is reducible⇐⇒ ∃g,h∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

mdegg≤ (m−2,n) , mdegh≤ (m,n−1)

PDEÃ linear system in the coefficients ofg andh

– p.14

Ruppert’s Theorem (Bivariate Case)

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem.f is reducible⇐⇒ ∃g,h∈ K[x,y], non-zero,

f
∂g
∂y

−g
∂ f
∂y

+h
∂ f
∂x

− f
∂h
∂x

= 0

mdegg≤ (m−2,n) , mdegh≤ (m,n−1)

PDEÃ linear system in the coefficients ofg andh

– p.14

Gao’s PDE based Factorizer
Change degree bound:mdegg≤ (m−1,n),mdegh≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors off

Require square-freeness:GCD(f , ∂ f
∂x) = 1

– p.15

Gao’s PDE based Factorizer
Change degree bound:mdegg≤ (m−1,n),mdegh≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors off

Require square-freeness:GCD(f , ∂ f
∂x) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE}.

Any solutiong∈ G satisfiesg = ∑r
i=1λi

∂ fi
∂x

f
fi

with λi ∈ C, so

f = f1 · · · fs = ∏
λ∈C

gcd(f ,g−λ
∂ f
∂x

)

(fi the distinct irreducible factors off)

With high probability∃ distinctλi s.t. fi = gcd(f ,g−λi
∂ f
∂x)

– p.15

Gao’s PDE based Factorizer

Algorithm
Input: f ∈ K[x,y], K ⊆ C

Output: f1, . . . , fs ∈ C[x,y]

1. Find a basis for the linear spaceG, and choose a random
elementg∈ G.

2. Compute the polynomialEg = ∏i(z−λi) via an eigenvalue
formulation
If Eg not squarefree, choose a newg

3. Compute the factorsfi = gcd(f ,g−λi
∂ f
∂x) in K(λi).

In exact arithmetic the extension fieldK(λi) is found via
univariate factorization.

– p.16

Adapting to the Approximate Bivariate Case

The following must be solved to create an approximate factorizer
from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension ofG, and computing
an approximate solutiong;

3. Randomize s.t. the polynomialEg has no clusters of roots;

4. Compute approximate squarefree factorization.

– p.17

Approximate Factorization

Input : f ∈ C[x,y] abs. irreducible, approx. square-free
Output : f1, . . . , fs approx. factors off .

1. Compute the SVD ofRup(f), determines, its approximate
nullity, and chooseg = ∑aigi, a random linear combination
of the lasts right singular vectors

2. ComputeEg and its roots via an eigenvalue computation

3. For eachλi compute the approximate GCD
fi = gcd(f ,g−λi f)

4. Optimize‖ f − f1 · · · fs‖2 via Gauss-Newton iterative
refinement.

– p.18

Approximate Polynomial GCD via STLN
[joint with Z. Yang and L. Zhi ISSAC 2006]

For polynomialsf1, . . . fs ∈ C[x1,x2, . . . ,xr] with total degree
deg(fi) = mi and a positive integerk with k≤ min(mi), we
compute∆ f i ∈ C[x1,x2, . . . ,xr] such thatdeg(∆ f i) ≤ mi , and

• deg(GCDi(fi +∆ f i)) ≥ k,

• ∑i ‖∆ f i‖2
2 is minimized.

– p.19

Approximate Polynomial GCD via STLN
[joint with Z. Yang and L. Zhi ISSAC 2006]

For polynomialsf1, . . . fs ∈ C[x1,x2, . . . ,xr] with total degree
deg(fi) = mi and a positive integerk with k≤ min(mi), we
compute∆ f i ∈ C[x1,x2, . . . ,xr] such thatdeg(∆ f i) ≤ mi , and

• deg(GCDi(fi +∆ f i)) ≥ k,

• ∑i ‖∆ f i‖2
2 is minimized.

Based on structure preserving total least squares algorithms.
Can be used to computed an approximate squarefree
factorization.

– p.19

More than two variables by sparse interpolation

• Our multivariate implementation together with
Wen-shin Lee’snumericalsparse interpolationcode
quickly factors polynomials arising in engineering
Stewart-Gough platforms

Polynomials were 3 variables, factor multiplicities up to 5,
coefficient error10−16, are from[Sommese, Verschelde,
Wampler 2004]

– p.20

Stewart Platform Example

Josh Targownik’s bypass surgery motorized manipulator

– p.21

What is an algorithm?
– finite unambiguous list of steps (“control, program”)

– computes a function fromD −→ E whereD is infinite
(“infinite Turing tape”)

– p.22

What is an algorithm?
– finite unambiguous list of steps (“control, program”)

– computes a function fromD −→ E whereD is infinite
(“infinite Turing tape”)

Ambiguity through randomization

– Monte Carlo (BPP): “always fast, probably correct”.
Examples:isprime

Lemma [DeMillo&Lipton’78, Schwartz/Zippel’79]
Let f ,g∈ F[x1, . . . ,xr], f 6= g,S⊆ F.

Probability(f (a1, . . . ,ar) 6= g(a1, . . . ,ar) | ai ∈ S)

≥ 1−max{deg(f),deg(g)}/cardinality(S)

E.g., sparse polynomial interpolation, factorization, minimal
polynomial and rank of a sparse matrix

– p.22

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– p.23

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas (RP): “always correct, probably fast”.
Examples: polynomial factorization inZp[x], wherep≫ 2.
Determinant of a sparse matrix

– p.23

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas (RP): “always correct, probably fast”.
Examples: polynomial factorization inZp[x], wherep≫ 2.
Determinant of a sparse matrix

De-randomization: conjectured slow-down is within polynomial
complexity.

Shuhong Gao, E. Kaltofen, and Lauder, A., “Deterministic
distinct degree factorization for polynomials over finite fields,”
2001.

M. Agrawal, N. Kayal, N. Saxena, “PRIMES is in P,” 2002.
– p.23

Kabanets and Impagliazzo [STOC 2003]
If Schwartz/Zippelcan bede-randomized (subexponentially),
then theredo not exist polynomial-size circuits for NEXP or the
permanent.

Zeev Dvir and Amir Shpilka, “Quasi-polynomial polynomial
identity testing for depth-3 circuits with bounded top fan-in,”
2005.

– p.24

Kabanets and Impagliazzo [STOC 2003]
If Schwartz/Zippelcan bede-randomized (subexponentially),
then theredo not exist polynomial-size circuits for NEXP or the
permanent.

Zeev Dvir and Amir Shpilka, “Quasi-polynomial polynomial
identity testing for depth-3 circuits with bounded top fan-in,”
2005.

Efficiency dilemma: the higher the confidence in the result, the
more time it takes to compute it.

– p.24

Black box polynomials

x1, . . . ,xn ∈ F

−−−−−−−−−−−→
f (x1, . . . ,xn) ∈ F

−−−−−−−−−−−−−−→

f ∈ F[x1, . . . ,xn]

F an arbitrary field, e.g., rationals, reals, complexes

Perform polynomial algebra operations, e.g., factorization with

(n·deg(f))O(1)











black box calls,

arithmetic operations inF and

randomly selected elements inF

– p.25

Black box matrices

y∈ F
n

−−−−−−→
A·y∈ F

n

−−−−−−−−→

A∈ F
n×n singular

F an arbitrary, e.g., finite field

Perform linear algebra operations, e.g.,A−1b [Wiedemann 86]
with

O(n) black box calls and

n2(logn)O(1) arithmetic operations inF and

O(n) intermediate storage for field elements

LinBox Release 1.0 [www.linalg.org]: an exact Matlab

– p.26

www.linalg.org

Black box manipulation (“functional programming”):
Factorization [Kaltofen and Trager 1988]

p1, . . . , pn ∈ F−−−−−−−−−−−→

Precomputed data includinge1, . . . ,en.

Program makes “oracle calls”:

a1, . . . ,an−−−−−−−−−→

f (x1, . . . ,xn)

f (a1, . . . ,an)−−−−−−−−−−→

b1, . . . ,bn−−−−−−−−−→

f (x1, . . . ,xn)

f (b1, . . . ,bn)−−−−−−−−−−→

...
c1, . . . ,cn−−−−−−−−−→

f (x1, . . . ,xn)

f (c1, . . . ,cn)−−−−−−−−−−→

. . .

f (x1, . . . ,xn) = h1(x1, . . . ,xn)
e1 · · ·hr(x1, . . . ,xn)

er

hi ∈ F[x1, . . . ,xn] irreducible.

h1(p1, . . . , pn)−−−−−−−−−−−−−→
h2(p1, . . . , pn)−−−−−−−−−−−−−→

...

hr(p1, . . . , pn)−−−−−−−−−−−−−→

– p.27

Given a black box

p1, . . . , pn ∈ F

−−−−−−−−−−−→
f (p1, . . . , pn) ∈ F

−−−−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F[x1, . . . ,xn]

F a field

compute by multiple evaluation of this black box the
sparse representation off

f (x1, . . . ,xn) =
t

∑
i=1

aix
ei,1
1 · · ·xei,n

n , ai 6= 0

– p.28

Given a black box

p1, . . . , pn ∈ F

−−−−−−−−−−−→
f (p1, . . . , pn) ∈ F

−−−−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F[x1, . . . ,xn]

F a field

compute by multiple evaluation of this black box the
sparse representation off

f (x1, . . . ,xn) =
t

∑
i=1

aix
ei,1
1 · · ·xei,n

n , ai 6= 0

Many algorithms that are polynomial-time indeg(f),n, t :

Zippel 1979, 1988; Ben-Or, Tiwari 1988
Kaltofen, Lakshman, Wiley 1988, 1990
Grigoriev, Karpinski, Singer 1988
Kaltofen, Lee, Lobo 2000, 2003
Mansour 1992; Giesbrecht, Lee, Labahn 2006: numerical method – p.28

Show Wen-shin Lee’s Maple worksheet

– p.29

FoxBox [Díaz, Kaltofen 1998] example: determinant of
symmetric Toeplitz matrix

det(

















a0 a1 . . . an−2 an−1

a1 a0 . . . an−3 an−2
...

...
...

...
...

an−2 an−3 . . . a0 a1

an−1 an−2 . . . a1 a0

















)

= F1(a0, . . . ,an−1) ·F2(a0, . . . ,an−1).

over the integers.

– p.30

Serialization offactors boxof 8 by 8 symmetric Toeplitz matrix
modulo 65521

15,8,-1,1,2,2,-1,8,1,7,1,1,20752,-1,1,39448,33225,984,17332,
53283,35730,23945,13948,22252,52005,13703,8621,27776,
33318,2740,4472,36959,17038,55127,16460,26669,39430,1,0,1,
4,20769,16570,58474,30131,770,4,25421,22569,51508,59396,
10568,4,20769,16570,58474,30131,770,8,531,55309,40895,
38056,34677,30870,397,59131,12756,3,13601,54878,13783,
39334,3,41605,59081,10842,15125,3,45764,5312,9992,25318,3,
59301,18015,3739,13650,3,23540,44673,45053,33398,3,4675,
39636,45179,40604,3,49815,29818,2643,16065,3,46787,46548,
12505,53510,3,10439,37666,18998,32189,3,38967,14338,
31161,12779,3,27030,21461,12907,22939,3,24657,32725,
47756,22305,3,44226,9911,59256,54610,3,56240,51924,26856,
52915,3,16133,61189,17015,39397,3,24483,12048,40057,21323

– p.31

Serialization ofcheckpointduring sparse interpolation

28, 14, 9, 64017, 31343, 5117, 64185, 47755, 27377, 25604,
6323, 41969, 14, 3, 4, 0, 0, 3, 4, 0, 1, 3, 4, 0, 2, 3, 4, 0, 3, 3, 4, 0,
4, 3, 4, 1, 0, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 3, 3, 4, 2, 0, 3, 4, 2, 1, 3,
4, 2, 2, 3, 4, 3, 0, 3, 4, 3, 1, 14, 59877, 1764, 59012, 44468, 1,
19485, 25871, 3356, 2, 58834, 49014, 65518, 15714, 65520, 1,
2, 4, 4, 1, 1

– p.32

Numerical Randomized (Monte Carlo)

more efficiency, but more efficiency, but

approximate result uncertain result

ill-conditionedness unfavorable inputs:

near singular inputs pseudo-primes,

∑i ∏ j(xi − j),

Coppersmith’s “pathological” matrices

convergence analysis probabilistic analysis

try algorithms on try algorithms

unproven inputs with limited randomness

– p.33

Numerical Randomized (Monte Carlo)

more efficiency, but more efficiency, but

approximate result uncertain result

ill-conditionedness unfavorable inputs:

near singular inputs pseudo-primes,

∑i ∏ j(xi − j),

Coppersmith’s “pathological” matrices

convergence analysis probabilistic analysis

try algorithms on try algorithms

unproven inputs with limited randomness

Numerical + randomized, e.g., approximate factorizer:
all of the above (?)

– p.33

Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result
of possibly unknown validity

– p.34

Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result
of possibly unknown validity

– Is a proven complete solution in a more stringent setting,
for example, by restricting the inputs or by slowing the
algorithm

– p.34

Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result
of possibly unknown validity

– Is a proven complete solution in a more stringent setting,
for example, by restricting the inputs or by slowing the
algorithm

– Has an experimental track record, for example, works on
50% of cases

– p.34

– p.35

	 \[-6ex] {
ed large itshape The Art of Symbolic Computation}\ \
ed Erich Kaltofen\ ifshoweps \[-0.5truecm] hspace *{3.0truecm}epsfig {file=../../../../Postscript/seal.eps,height=10truecm}\[-4truecm]else \ �lack MIT / NCSU\ �i {	tfamily google->kaltofen}
	
lap {Caviness's foreword to the Computer Algebra Handbook}
	Where it began
	
lap {Important algorithms: ``classical'' computer algebra}
	 \[-6.5truecm] hspace *{3truecm}psfig {file=physics99_short.ps,width=17truecm}
	Important algorithms: ``middle earth''
	
lap {Important algorithms: ``modern'' symbolic computation}
	Factorization of ``noisy'' polynomials over the\[-1ex] complex numbers [my 1998 Challenge Problem~1]
	Conclusion on my exact algorithm [JSC 1(1)'85]
	The Approximate Factorization Problem\[-1ex] [Kaltofen '89; Sasaki '89]
	Previous Work on Approximate Factorization
	 \ Our ISSAC'04, ASCM'05, 2005, 2006 Results\[-1ex] [joint with John May, Zhengfeng Yang, Lihong Zhi\[-1ex] (and Shuhong Gao ISSAC'04)]
	Maple Demonstration
	Ruppert's Theorem (Bivariate Case)
	Gao's PDE based Factorizer
	Gao's PDE based Factorizer
	Adapting to the Approximate Bivariate Case
	Approximate Factorization
	Approximate Polynomial GCD via STLN\[-1ex] [joint with Z. Yang and L. Zhi ISSAC 2006]
	More than two variables by sparse interpolation
	Stewart Platform Example
	What is an algorithm?
	
	
	Black box polynomials
	Black box matrices
	
	
	 Show Wen-shin Lee's Maple worksheet
	
	
	
	
	Hallmarks of a good heuristic
	 \[-5.5truecm]hspace *{0.5truecm}epsfig {file=fireworks.ps,width=20truecm}

