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Supersparse (lacunary) polynomials

The supersparse polynomial

f (X1, . . . ,Xn) =
t

∑
i=1

ci X
αi,1
1 · · ·X

αi,n
n

is input by a list of its coefficients and corresponding term degree
vectors.

size( f ) =
t

∑
i=1

(

dense-size(ci)+ ⌈log2(αi,1 · · ·αi,n +2)⌉
)

Term degrees can be very high, e.g.,≥ 2500
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Term degrees can be very high, e.g.,≥ 2500

OverZp : evaluate by repeated squaring
OverQ : cannot evaluate in polynomial-time exept forXi = 0,e2πi/k



Easy problems for supersparse polynomialsf = ∑i ciXαi ∈ K[X ]

Cucker, Koiran, Smale 1998: Compute roota ∈ Z : f (a) = 0.



Easy problems for supersparse polynomialsf = ∑i ciXαi ∈ K[X ]

H. W. Lenstra, Jr. 1999:
Input: ϕ(ζ) ∈ Z[ζ] monic irred.; letK = Q[ζ]/(ϕ(ζ))

a supersparsef (X) = ∑t
i=1ciXαi ∈ K[X ]

a factor degree boundd

Output: a list of all irreducible factors off overK of degree≤ d
and their multiplicities (which is≤ t except forX)

Let D = d ·deg(ϕ)
There are at mostO(t2 ·2D ·D · log(Dt)) factors of degree≤ d

Bit complexity is
(

size( f )+D+ log‖ϕ‖
)O(1)

Special caseϕ = ζ−1,d = D = 1: Algorithm finds all rational
roots in polynomial-time.



Our result for supersparse polynomialsf = ∑i ciX
αi ∈ K[X ]

whereX
αi = X

αi,1
1 · · ·X

αi,n
n

Input: ϕ(ζ) ∈ Z[ζ] monic irred.; letK = Q[ζ]/(ϕ(ζ))

a supersparsef (X) = ∑t
i=1ciX

αi ∈ K[X ]
a factor degree boundd

Output: a list of all irreducible factors off overK of degree≤ d
and their multiplicities (which is≤ t except for anyX j)

Bit complexity is:
(

size( f )+d +deg(ϕ)+ log‖ϕ‖
)O(n)

(sparse factors)
(

size( f )+d +deg(ϕ)+ log‖ϕ‖
)O(1)

(blackbox factors)

Our ISSAC ’05 result:K = Q,n = 2,d = 1



Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsef (X ,Y ) = ∑t
i=1ci XαiY βi ∈ Z[X ,Y ]

that is monic inX ;
an error probabilityε = 1/2l

Output: a list of polynomialsg j(X ,Y )
with degX(g j) ≤ 2 anddegY(g j) ≤ 2;

a list of corresponding multiplicities.

Theg j are with probability≥ 1− ε all irreducible
factors of f overQ of degree≤ 2 together with
their true multiplicities.

Bit complexity:
(

size( f )+ log1/ε
)O(1)
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With É. Schost + [Tao 2005]: remove monicity restriction
factors of degreeO(1).



Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsef (X ,Y ) = ∑t
i=1ci XαiY βi ∈ Z[X ,Y ]

that is monic inX ;
an error probabilityε = 1/2l

Output: a list of polynomialsg j(X ,Y )
with degX(g j) ≤ 2 anddegY(g j) ≤ 2;

a list of corresponding multiplicities.

Theg j are with probability≥ 1− ε all irreducible
factors of f overQ of degree≤ 2 together with
their true multiplicities.

Bit complexity:
(

size( f )+ log1/ε
)O(1)

With É. Schost—————–+ [Tao 2005]: remove monicity restriction
simple argument: factors of degreeO(1).



Concepts from algebraic number theory

Weil height for algebraic numberη :

Height(η) = ∏
ν∈MQ(η)

max(1, |η|ν)
dν

[Q(η):Q]

whereMQ(η) are all absolute values inQ(η), dν their local degrees.



Concepts from algebraic number theory

Weil height for algebraic numberη :

Height(η) = ∏
ν∈MQ(η)

max(1, |η|ν)
dν

[Q(η):Q]

whereMQ(η) are all absolute values inQ(η), dν their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension ofQ.
For any algebraicη 6= 0 that is not a root of unity

Height(η) ≥ exp

(

C1

D

(

log(2D)

loglog(5D)

)−13
)

= 1+o(1),

whereC1 > 0 andD = [L(η) : L].



Concepts from algebraic number theory

Weil height for algebraic numberη :
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max(1, |η|ν)
dν

[Q(η):Q]

whereMQ(η) are all absolute values inQ(η), dν their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension ofQ.
For any algebraicη 6= 0 that is not a root of unity

Height(η) ≥ exp

(

C1

D

(

log(2D)

loglog(5D)

)−13
)

= 1+o(1),

whereC1 > 0 andD = [L(η) : L].

We do not know aC1 explicitly, hence∃ an algorithm.



Concepts from diophantine geometry

Let P(X1, . . . ,Xn) ∈ C[X1, . . . ,Xn] be irreducible
V (P) = rootset (variety, hypersurface) ofP
S ⊆V (P) is Zariski dense iffS ⊆V (Q) =⇒ Q = P

Example:{(ξ,ξ,0) | ξ ∈ C} is not dense forX1−X2+X3.



Concepts from diophantine geometry

Let P(X1, . . . ,Xn) ∈ C[X1, . . . ,Xn] be irreducible
V (P) = rootset (variety, hypersurface) ofP
S ⊆V (P) is Zariski dense iffS ⊆V (Q) =⇒ Q = P

Example:{(ξ,ξ,0) | ξ ∈ C} is not dense forX1−X2+X3.

Theorem [cf. Laurent 1984]
Let P(X1, . . . ,Xn) ∈ C[X1, . . . ,Xn] be irreducible
and letS ⊆V (P) where each coordinate of each point is a root of
unity (torsion points).
Then

S is dense forP ⇐⇒ P =
n

∏
i=1

Xβi
i −θ,

whereθ is a root of unity andβi ∈ Z.

Example:{(e2πi/(2 j),e2πi/(3 j))} is dense forX2
1 −X3

2 .



Gap theorem for factors where cyclotomic points are not dense

Let P be the irreducible factor off .

Step 1: construct dense set{(θ1, . . . ,θn−1,η)} for P such that all
θi are roots of unity,η are not.



Gap theorem for factors where cyclotomic points are not dense

Let P be the irreducible factor off .

Step 1: construct dense set{(θ1, . . . ,θn−1,η)} for P such that all
θi are roots of unity,η are not.

Step 2: If f (X1, . . . ,Xn) = g+Xu
n h, degXn

(g) < k, apply Lenstra’s
gap argument to

g(θ1, . . . ,θn−1,η) = −ηuh(θ1, . . . ,θn−1,η)

and get
u− k ≥ χ =⇒ g(θ1, . . . ,θn−1,η) = 0

where

χ =
D
C2

(

log(2D)

loglog(5D)

)13

log(t(t +1)Height( f )).



Factors for which cyclotomic points are dense

Consider irreducible factor

Pβ,γ,θ = P(X1, . . . ,Xn) =
n

∏
i=1

Xβi
i −θ

n

∏
i=1

X γi
i

with ∀i : βi = 0∨ γi = 0 andGCD1≤i≤n(βi− γi) = 1.

Suppose(βn,γn) 6= (0,0). Plugging intof = ∑ j c jX
α j

Xn = λ
( n−1

∏
i=1

X γi−βi
i

)

1
βn−γn

we find j andk = ±GCD1≤i≤n(α0,i−α j,i) :

α0,n 6= α j,n and∀i : γi−βi = (α0,i−α j,i)/k,



Factors for which cyclotomic points are dense (cont.)

Step 1: compute candidates for(β,γ).

Step 2: computeλ as cyclotomic roots of bounded order of sets of
supersparse univariate polynomials inλ.

Step 3: compute the norm ofP(X1, . . . ,Xn), which must be irre-
ducible over the ground field.



Example

Xβ−θY γ | XnY 0−X0Y n+1 if

k = ±GCD(n−0,0− (n+1)) = ±1

and
−β = (n−0)/k, γ = (0− (n+1))/k

Therefore there is no such factor,
even in Stephen Watt’ssymbolicpolynomial sense.

Similar symbolic irreducibility criteria with gap theorem.



Another hard problem for supersparse polynomials inF2k[X ]

Theorem [Kipnis and Shamir CRYPTO ’99]
The set of all supersparse polynomials inF2k[X ] that have a root
in F2k is NP-hardfor all sufficiently largek.

Corollary (cf. Open Problem in our ISSAC’05 paper)
It is NP-hard to determine if a polynomial inX overF2k given by
a division-free straight-line program has a root inF2k.



Grazie mille!


