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Gröbner and me

1974–1977 I was an undergraduate student of Bruno Buchberger
(6 “Scheine” [individual grades])

1982–1983 Promoted Buchberger’s algorithm at the University
of Toronto with somewhat delayed success

1987–1990 Supervised my first Ph.D. student Lakshman Y. N.
“On the Complexity of Computing Gröbner Bases for Zero
Dimensional Polynomial Ideals”
Greetings from Lakshman



My 1998 Challenge Problem 5
Buchberger’s algorithm [1967]
S-polynomial construction and reduction correspond to
row-reduction in comparable matrices

Faugère’s [1997] method: use sparse “symbolic” LU matrix
decomposition for performing these row reductions.

Problem 5
Compute Gröbner bases approximately by iterative methods for
solving systems, such as Gauss&Seidel, conjugate gradient,
Newton,...

A solution plugs into numerical software and computes some
bases faster than the exact approach; the structure of the bases
may be determined, e.g., by modular arithmetic



Factorization of “noisy” polynomials over the
complex numbers [my 1998 Challenge Problem 1]

81x4 +16y4−648z4 +72x2y2−648x2−288y2 +1296= 0

(9x2 +4y2 +18
√

2z2−36)(9x2 +4y2−18
√

2z2−36) = 0

81x4 +16y4−648.003z4 +72x2y2 + .002x2z2 + .001y2z2

−648x2−288y2− .007z2 +1296= 0



Conclusion on my exact algorithm [JSC 1(1)’85]

“D. Izraelevitz at Massachusetts Institute of Technology has
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate thatthe
linear systems computed in step (L) tend to benumerically
ill-conditioned. How to overcome this numerical problem is an
important question which we will investigate.”



Public abstract of my 1989 NSF proposal

“Motivated by geometric design, we propose to develop an
algorithm for computing the irreducible components of an
algebraic curve or surface given by its polynomial defining
implicit equation with floating point coefficients. Attacked by
computer algebra methods, the problem is to computing the
approximate factorization of a rational bivariate polynomial.”



The Approximate Factorization Problem
[Kaltofen ’89; Sasaki ’89]

Given f ∈ C[x,y] irreducible, findf̃ ∈ C[x,y] s.t. degf̃ ≤ degf ,
f̃ factors, and‖ f − f̃‖ is minimal.



The Approximate Factorization Problem
[Kaltofen ’89; Sasaki ’89]

Given f ∈ C[x,y] irreducible, findf̃ ∈ C[x,y] s.t. degf̃ ≤ degf ,
f̃ factors, and‖ f − f̃‖ is minimal.

Problem depends on choice of norm‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree:mdeg f = (degx f ,degy f )



The Approximate Factorization Problem
[Kaltofen ’89; Sasaki ’89]

Given f ∈ C[x,y] irreducible, findf̃ ∈ C[x,y] s.t. degf̃ ≤ degf ,
f̃ factors, and‖ f − f̃‖ is minimal.

Degree bound is important:
(1+δx) f is reducible but forδ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε



My NSF Workshop onIntegrated Symbolic–
Numeric Computingat ISSAC 1992

• • •−
•• ••∽

•• ••∽

• •>
• ••a

8:15am B. Donald, “Geometric algorithms, rational rotations,
and computational topology.”

9:30am R. Liska, “Symbolic computation techniques in the
finite difference method for solving PDEs.”

10:30am A. Letichevsky, “Rule-based programming in APS.”

11:30am L. Wauthier, “An example of computer algebra
application in artificial satellite theory.”

1:30pm P. Moore, “A symbolic interface to adaptive algorithms
for parabolic systems.”

2:30pm J. Renegar, “Condition numbers and complexity
theory.”

3:45pm K. Broughan, “Senac: a software environment for
numeric and algebraic computation.”
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What’s in a Name?
• Integrated Symbolic-Numeric Computing [ISSAC 1992]
• Symbolic-Numeric Algebra for Polynomials [SNAP’96,

JSC special issue]
• Symbolic and Numerical Scientific Computation

[SNSC’99]
• Hybrid Symbolic-Numeric Computation [Computer

Algebra Handbook 2002]
• Symbolic-Numeric Computation [SNC 2005]
• Approximate Algebraic Computation [AAC@ACA’05]
• Approximate Commutative Algebra [ApCoA’06]

• Applicable Algebra and Error Correcting Codes [AAECC]
• Journal of Symbolic Computation
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Previous Work on Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors[Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby
factorizablef̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds formin‖ f − f̃‖ (“irreducibility
radius”)
[Kaltofen and May ISSAC ’03; Nagasaka CASC ’04, ’05]
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Our ISSAC’04, ASCM’05, 2005, 2006 Results
[joint with John May, Zhengfeng Yang, Lihong Zhi
(and Shuhong Gao ISSAC’04)]

• Several practical algorithms to compute approximate
multivariate GCDs

• Practical algorithms to find the factorization of a nearby
factorizable polynomial given anyf

especially “noisy”f :
Given f = f1 · · · fs+ fnoise,
we find f̄1, . . . f̄s s.t.‖ f1 · · · fs− f̄1 · · · f̄s‖ ≈ ‖ fnoise‖
even for large noise:‖ fnoise‖/‖ f‖ ≥ 10−3



Maple Demonstration



Lesson #1: The solution of some problems takes time



Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem.f is reducible⇐⇒ ∃g,h∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

mdegg≤ (m−2,n) , mdegh≤ (m,n−1)
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f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem.f is reducible⇐⇒ ∃g,h∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

mdegg≤ (m−2,n) , mdegh≤ (m,n−1)

PDEÃ linear system in the coefficients ofg andh



Gao’s PDE based Factorizer
Change degree bound:mdegg≤ (m−1,n),mdegh≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors off

Require square-freeness:GCD( f , ∂ f
∂x) = 1



Gao’s PDE based Factorizer
Change degree bound:mdegg≤ (m−1,n),mdegh≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors off

Require square-freeness:GCD( f , ∂ f
∂x) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE}.

Any solutiong∈ G satisfiesg = ∑r
i=1λi

∂ fi
∂x

f
fi

with λi ∈ C, so

f = f1 · · · fs = ∏
λ∈C

gcd( f ,g−λ
∂ f
∂x

)

( fi the distinct irreducible factors off )

With high probability∃ distinctλi s.t. fi = gcd( f ,g−λi
∂ f
∂x)



Gao’s PDE based Factorizer

Algorithm
Input: f ∈ K[x,y], K ⊆ C

Output: f1, . . . , fs ∈ C[x,y]

1. Find a basis for the linear spaceG, and choose a random
elementg∈ G.

2. Compute the polynomialEg = ∏i(z−λi) via an eigenvalue
formulation
If Eg not squarefree, choose a newg

3. Compute the factorsfi = gcd( f ,g−λi
∂ f
∂x) in K(λi).

In exact arithmetic the extension fieldK(λi) is found via
univariate factorization.



Adapting to the Approximate Bivariate Case

The following must be solved to create an approximate factorizer
from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension ofG, and computing
an approximate solutiong;

3. Randomize s.t. the polynomialEg has no clusters of roots;

4. Compute approximate squarefree factorization.



Approximate Factorization

Input: f ∈ C[x,y] abs. irreducible, approx. square-free
Output: f1, . . . , fs approx. factors off .

1. Compute the SVD ofRup( f ), determines, its approximate
nullity, and chooseg = ∑aigi, a random linear combination
of the lasts right singular vectors

2. ComputeEg and its roots via an eigenvalue computation

3. For eachλi compute the approximate GCD
fi = gcd( f ,g−λi f )

4. Optimize‖ f − f1 · · · fs‖2 via Gauss-Newton iterative
refinement.



When to optimize?



The MatrixAg

Let {gi}s
i=1 be a basis forG, g∈R G

Let Ag = (ai, j) be thes×smatrix s.t.

ggi ≡
s

∑
j=1

ai, j g j
∂ f
∂x

(mod f ) in C(y)[x].



The MatrixAg

Let {gi}s
i=1 be a basis forG, g∈R G

Let Ag = (ai, j) be thes×smatrix s.t.

ggi ≡
s

∑
j=1

ai, j g j
∂ f
∂x

(mod f ) in C(y)[x].

Then,CharPoly(Ag) = Eg

With high probability the eigenvalues ofAg are distinct so:

f = ∏
λ∈Eigenvalues(Rup( f ))

gcd( f ,g−λ f )

is a complete factorization off overC



Generalization to Several Variables

• PDEs can be generalized to many variables

∂
∂yi

g
f
− ∂

∂x
hi

f
= 0, ∀1≤ i ≤ k

degg≤ degf , deghi ≤ degf , ∀1≤ i ≤ k,

degxg≤ (degx f )−1, degyi
hi ≤ (degyi

f )−1, ∀1≤ i ≤ k.



Approximate GCD Problem

Given two polynomialsf ,g∈ C[y1,y2, . . . ,yr ], with total degree
deg( f ) = m anddeg(g) = n. For a positive integerk with
k≤ min(m,n), we wish to compute∆ f , ∆g∈ C[y1,y2, . . . ,yr ]
such thatdeg(∆ f ) ≤ m, deg(∆g) ≤ n, and

• deg(gcd( f +∆ f ,g+∆g)) ≥ k,

• ‖∆ f‖2
2 +‖∆g‖2

2 is minimized.



Approximate GCD Problem

Given two polynomialsf ,g∈ C[y1,y2, . . . ,yr ], with total degree
deg( f ) = m anddeg(g) = n. For a positive integerk with
k≤ min(m,n), we wish to compute∆ f , ∆g∈ C[y1,y2, . . . ,yr ]
such thatdeg(∆ f ) ≤ m, deg(∆g) ≤ n, and

• deg(gcd( f +∆ f ,g+∆g)) ≥ k,

• ‖∆ f‖2
2 +‖∆g‖2

2 is minimized.

REMARK: The problem has a globally minimal real or complex
solution.



Theε-GCD Problem
Problem formulation:
find highest degree approximate GCD within distanceε.



Theε-GCD Problem
Problem formulation:
find highest degree approximate GCD within distanceε.

Should solve our problem by binary search/bisection on distance.
But for certainε theε-GCD problem is “ill-posed.”



Lesson #2: Be careful about what numerical algorithms
claim they can do.
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Current methods use global numerical optimization techniques.

• Gauss-Newton and Lagrangian multipliers

• STLN [Park, Zhang, and Rosen ’99: Zhi’s talk]

• STLS[Lemmerling, Mastronardi, and Van Huffel 2000]

• CTLS and Riemannian SVD[Mastronardi, Lemmerling,
and Van Huffel 2000]

• Structured condition numbers[Rump 2003]



Lesson #3: a. Contemporary numerical analysis is
amazing.

b. Symbolic problems are difficult cases.
c. Methods must be adapted.

The two disciplines are converging.



Lesson #4: Approximate symbolic problems can be
computationally more complex than exact ones.

Floating point input data may slow us down.



End or Handbook section [Corless, Kaltofen, Watt]

The challenge of hybrid symbolic numeric algorithms is to
explore the effects of imprecision, discontinuity, andalgorithmic
complexity by applying mathematical optimization, perturbation
theory, and inexact arithmetic and other tools in order to solve
mathematical problems that today are not solvable by numerical
or symbolic methods alone.



End or Handbook section [Corless, Kaltofen, Watt]

The challenge of hybrid symbolic numeric algorithms is to
explore the effects of imprecision, discontinuity, andalgorithmic
complexity by applying mathematical optimization, perturbation
theory, and inexact arithmetic and other tools in order to solve
mathematical problems that today are not solvable by numerical
or symbolic methods alone.

[Zhi 2003, ASCM’03]
“Displacement structure in computing approximate GCD of
univariate polynomials.”
[Li, Yang and Zhi SNC’05]



End or Handbook section [Corless, Kaltofen, Watt]

The challenge of hybrid symbolic numeric algorithms is to
explore the effects of imprecision, discontinuity, andalgorithmic
complexity by applying mathematical optimization, perturbation
theory, and inexact arithmetic and other tools in order to solve
mathematical problems that today are not solvable by numerical
or symbolic methods alone.

“Interactive Supercomputing”
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Notes on the Repeated Factor Case

We sayf is approximately square-free if:

dist. to nearest reducible poly.< dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotientf̄ of f andgcd( f , ∂ f
∂x)

(“deflation”) and factor the approximately square-free kernel f̄

Determine multiplicity of approximate factorsfi by comparing
the degrees of the approximate GCDs:

gcd( fi ,∂k f/∂xk)



Table of Benchmarks

Ex. deg( fi)
coeff.

error

backward

error

bkwd err.

w/ G-N iter
time(sec) iters impr.

1 2,3 10−2 1.08e–2 1.02e–3 7.764 7 10.6×
2 5,5 10−13 1.07e–12 1.18e–13 6.813 2 9.0×
3 10,10 10−7 9.95e–7 2.87e–7 157.09 3 3.4×
4 7,8 10−9 1.94e–8 2.38e–9 50.222 16 8.2×
5 3,3,3 0 1.24e–13 6.44e–14 19.517 1 2.4×
6 6,6,10 10−5 1.47e–4 7.24e–6 1329.4 4 20.3×
7 9,7 10−4 2.18e–4 7.07e–5 74.157 4 3.1×
8 4,4,4,4,4 10−5 3.34e–3 8.56e–6 5345.5 4 390.6×
9 3,3,3 10−1 8.03e–1 1.06e–1 33.062 16 7.6×

10 12,7,5 10−5 3.16e–4 8.02e–6 1766.7 4 39.4×



Table of Benchmarks Continued

Ex. deg( fi)
coeff.

error

backward

error

bkwd err.

w/ G-N iter
time(sec) iters impr.

11 12,7,5 10−5 7.77e–5 7.66e–6 2737.6 4 10.2×
12 12,7,5 10−3 5.82e–3 7.66e–4 4288.7 6 7.6×
13 5,(5)2 10−5 6.84e–5 6.52e–6 46.751 3 10.5×
14 (5)3,3,(2)4 10−10 2.60e–8 3.93e–9 136.39 2 6.6×
15 5,5 10−5 1.55e–5 7.91e–6 559.30 3 2.0×
15a 2,2 10−5 4.62e–13 3.23e–14 2.871 2 14.4×
15b 2,3 10−2 7.44e–4 3.78e–4 6.687 4 2.0×
16 18,18 10−6 4.50e–6 6.65e–7 5945.9 3 6.8×
17 18,18 10−6 4.03e–6 6.61e–7 10348. 3 6.1×
18 6,6 10−7 2.97e–7 5.10e–8 31.829 2 3.8×



More than two variables by sparse interpolation

• Our multivariate implementation together with
Wen-shin Lee’snumericalsparse interpolation code
quickly factors polynomials arising in engineering
Stewart-Gough platforms

Polynomials were 3 variables, factor multiplicities up to 5,
coefficient error10−16, are from[Sommese, Verschelde,
Wampler 2004]



Stewart Platform Example

Josh Targownik’s bypass surgery motorized manipulator



Current Factorization Investigations
• Use structured total least squares, possibly with constraints.
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Current Factorization Investigations
• Use structured total least squares, possibly with constraints.

• Investigation of displacement operators for generalized
Sylvester and Ruppert matrices.

• Compute nearest factorization with a given degree pattern,
e.g., all linear factors.

• Apply sparse interpolation to handle sparse multivariate
problems



Code + Benchmarks at:
http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html

or
google->kaltofen (click on “Software”)

http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html
google->kaltofen


Danke schön!
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