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Supersparse (lacunary) polynomials

The supersparse polynomial

f (X1, . . . ,Xn) =
t

∑
i=1

ci X
αi,1
1 · · ·X

αi,n
n

is input by a list of its coefficients and corresponding term degree
vectors.

size( f ) =
t

∑
i=1

(

dense-size(ci)+ ⌈log2(αi,1 · · ·αi,n+2)⌉
)

Term degrees can be very high, e.g.,≥ 2500
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Supersparse (lacunary) polynomials

The supersparse polynomial

f (X1, . . . ,Xn) =
t

∑
i=1

ci X
αi,1
1 · · ·X

αi,n
n

is input by a list of its coefficients and corresponding term degree
vectors.

size( f ) =
t

∑
i=1

(

dense-size(ci)+ ⌈log2(αi,1 · · ·αi,n+2)⌉
)

Term degrees can be very high, e.g.,≥ 2500

OverZp : evaluate by repeated squaring
OverQ : cannot evaluate in polynomial-time exept forXi = 0,e2πi/k
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Easy problems for supersparse polynomialsf = ∑i ciXαi ∈ Z[z]

Cucker, Koiran, Smale 1998: Compute roota∈ Z : f (a) = 0.

Gap idea: iff (a) = 0,a 6= ±1 theng1(a) = · · · = gs(a) = 0
where f (X) = ∑ j g j(X)Xα j andα j+1−α j −deg(g j) ≥ χ.
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Easy problems for supersparse polynomialsf = ∑i ciXαi ∈ Z[z]

Cucker, Koiran, Smale 1998: Compute roota∈ Z : f (a) = 0.

Gap idea: iff (a) = 0,a 6= ±1 theng1(a) = · · · = gs(a) = 0
where f (X) = ∑ j g j(X)Xα j andα j+1−α j −deg(g j) ≥ χ.

Write f (X) = g(X)
︸︷︷︸

deg(g) ≤ k

+Xuh(X), ‖ f‖1 = |c1|+ · · ·+ |ct|.

For a 6= ±1, h(a) 6= 0: |g(a)| < ‖ f‖1 · |a|k

|auh(a)| ≥ |a|u
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Easy problems for supersparse polynomialsf = ∑i ciXαi ∈ Z[z]

Cucker, Koiran, Smale 1998: Compute roota∈ Z : f (a) = 0.

Gap idea: iff (a) = 0,a 6= ±1 theng1(a) = · · · = gs(a) = 0
where f (X) = ∑ j g j(X)Xα j andα j+1−α j −deg(g j) ≥ χ.

Write f (X) = g(X)
︸︷︷︸

deg(g) ≤ k

+Xuh(X), ‖ f‖1 = |c1|+ · · ·+ |ct|.

For a 6= ±1, h(a) 6= 0: |g(a)| < ‖ f‖1 · |a|k

|auh(a)| ≥ |a|u

u−k≥ χ = log2‖ f‖1 =⇒|a|u≥ 2χ · |a|k≥‖ f‖1· |a|k =⇒ f (a) 6= 0.
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Polynomial time root-finder uses the fact that for

g j(X) = c1+c2x
β2 + · · ·+csx

βs, βi −βi−1 < χ, s≤ t

we have
βi ≤ (i −1)(χ−1),

so
deg(g j) ≤ (t −1)(χ−1)
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Easy problems for supersparse polynomialsf = ∑i ciXαi ∈ K[X]

H. W. Lenstra, Jr. 1999:
Input: ϕ(ζ) ∈ Z[ζ] monic irred.; letK = Q[ζ]/(ϕ(ζ))

a supersparsef (X) = ∑t
i=1ciXαi ∈ K[X]

a factor degree boundd

Output: a list of all irreducible factors off overK of degree≤ d
and their multiplicities (which is≤ t except forX)

Let D = d ·deg(ϕ)
There are at mostO(t2 ·2D ·D · log(Dt)) factors of degree≤ d

Bit complexity is
(
size( f )+D+ log‖ϕ‖

)O(1)

Special caseϕ = ζ−1,d = D = 1: Algorithm finds all rational
roots in polynomial-time.
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Our ISSAC ’06 result for supersparse polynomials
f = ∑i ciX

αi ∈ K[X] whereX
αi = X

αi,1
1 · · ·X

αi,n
n

Input: ϕ(ζ) ∈ Z[ζ] monic irred.; letK = Q[ζ]/(ϕ(ζ))

a supersparsef (X) = ∑t
i=1ciX

αi ∈ K[X]
a factor degree boundd

Output: a list of all irreducible factors off overK of degree≤ d
and their multiplicities (which is≤ t except for anyXj)

Bit complexity is:
(
size( f )+d+deg(ϕ)+ log‖ϕ‖

)O(n)
(sparse factors)

(
size( f )+d+deg(ϕ)+ log‖ϕ‖

)O(1)
(blackbox factors)
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Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsef (X,Y) = ∑t
i=1ci XαiYβi ∈ Z[X,Y]

that is monic inX;
an error probabilityε = 1/2l

Output: a list of polynomialsg j(X,Y)
with degX(g j) ≤ 2 anddegY(g j) ≤ 2;

a list of corresponding multiplicities.

Theg j are with probability≥ 1− ε all irreducible
factors of f overQ of degree≤ 2 together with
their true multiplicities.

Bit complexity:
(
size( f )+ log1/ε

)O(1)
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Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsef (X,Y) = ∑t
i=1ci XαiYβi ∈ Z[X,Y]

that is monic inX;
an error probabilityε = 1/2l

Output: a list of polynomialsg j(X,Y)
with degX(g j) ≤ 2 anddegY(g j) ≤ 2;

a list of corresponding multiplicities.

Theg j are with probability≥ 1− ε all irreducible
factors of f overQ of degree≤ 2 together with
their true multiplicities.

Bit complexity:
(
size( f )+ log1/ε

)O(1)

With É. Schost + [Tao 2005]: remove monicity restriction
factors of degreeO(1).
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Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsef (X,Y) = ∑t
i=1ci XαiYβi ∈ Z[X,Y]

that is monic inX;
an error probabilityε = 1/2l

Output: a list of polynomialsg j(X,Y)
with degX(g j) ≤ 2 anddegY(g j) ≤ 2;

a list of corresponding multiplicities.

Theg j are with probability≥ 1− ε all irreducible
factors of f overQ of degree≤ 2 together with
their true multiplicities.

Bit complexity:
(
size( f )+ log1/ε

)O(1)

With É. Schost—————–+ [Tao 2005]: remove monicity restriction
simple argument: factors of degreeO(1).
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Algorithm
Step 0: compute all factors off that are inQ[Y] by Lenstra’s
method on the coefficients ofXαi

Step 1: compute linear and quadratic factors inQ[X] of f (X,0),
f (X,1) and f (X,−1) by Lenstra’s method

Step 2: interpolate all factor combinations;
Test ifg(X,Y) divides f (X,Y) by

0≡ f (X,a) mod(g(X,a), p) wherea∈ Z, p prime are random
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Leading coefficient problem

If the leading (trailing) coefficient inX does not vanish for
Y = 0,e2πi/k, then one can imposea factorof the leading (trailing)
coefficient ong.

We can generalize gap theorem and computeall small degree fac-
tors of supersparse polynomialsdeterministically.
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Concepts from algebraic number theory

Weil height for algebraic numberη :

Height(η) = ∏
ν∈MQ(η)

max(1, |η|ν)
dν

[Q(η):Q]

whereMQ(η) are all absolute values inQ(η), dν their local degrees.
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Concepts from algebraic number theory

Weil height for algebraic numberη :

Height(η) = ∏
ν∈MQ(η)

max(1, |η|ν)
dν

[Q(η):Q]

whereMQ(η) are all absolute values inQ(η), dν their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension ofQ.
For any algebraicη 6= 0 that is not a root of unity

Height(η) ≥ exp

(

C1

D

(
log(2D)

loglog(5D)

)−13
)

= 1+o(1),

whereC1 > 0 andD = [L(η) : L].
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Concepts from algebraic number theory

Weil height for algebraic numberη :

Height(η) = ∏
ν∈MQ(η)

max(1, |η|ν)
dν

[Q(η):Q]

whereMQ(η) are all absolute values inQ(η), dν their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension ofQ.
For any algebraicη 6= 0 that is not a root of unity

Height(η) ≥ exp

(

C1

D

(
log(2D)

loglog(5D)

)−13
)

= 1+o(1),

whereC1 > 0 andD = [L(η) : L].

We do not know aC1 explicitly, hence∃ an algorithm.
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Concepts from diophantine geometry

Let P(X1, . . . ,Xn) ∈ C[X1, . . . ,Xn] be irreducible
V(P) = rootset (variety, hypersurface) ofP
S⊆V(P) is Zariski dense iffS⊆V(Q) =⇒ Q = P

Example:{(ξ,ξ,0) | ξ ∈ C} is not dense forX1−X2+X3.
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Concepts from diophantine geometry

Let P(X1, . . . ,Xn) ∈ C[X1, . . . ,Xn] be irreducible
V(P) = rootset (variety, hypersurface) ofP
S⊆V(P) is Zariski dense iffS⊆V(Q) =⇒ Q = P

Example:{(ξ,ξ,0) | ξ ∈ C} is not dense forX1−X2+X3.

Theorem [cf. Laurent 1984]
Let P(X1, . . . ,Xn) ∈ C[X1, . . . ,Xn] be irreducible
and letS⊆V(P) where each coordinate of each point is a root of
unity (torsion points).
Then

S is dense forP⇐⇒ P =
n

∏
i=1

Xβi
i −θ,

whereθ is a root of unity andβi ∈ Z.

Example:{(e2πi/(2 j),e2πi/(3 j))} is dense forX2
1 −X3

2 .
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Gap theorem for factors where cyclotomic points are not dense

Let P be the irreducible factor off .

Step 1: construct dense set{(θ1, . . . ,θn−1,η)} for P such that all
θi are roots of unity,η are not.
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Gap theorem for factors where cyclotomic points are not dense

Let P be the irreducible factor off .

Step 1: construct dense set{(θ1, . . . ,θn−1,η)} for P such that all
θi are roots of unity,η are not.

Step 2: If f (X1, . . . ,Xn) = g+Xu
n h, degXn

(g) < k, apply Lenstra’s
gap argument to

g(θ1, . . . ,θn−1,η) = −ηuh(θ1, . . . ,θn−1,η)

and get
u−k≥ χ =⇒ g(θ1, . . . ,θn−1,η) = 0

where

χ =
D
C2

(
log(2D)

loglog(5D)

)13

log(t(t +1)Height( f )).
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Factors for which cyclotomic points are dense

Consider irreducible factor

Pβ,γ,θ = P(X1, . . . ,Xn) =
n

∏
i=1

Xβi
i −θ

n

∏
i=1

Xγi
i

with ∀i : βi = 0∨ γi = 0 andGCD1≤i≤n(βi − γi) = 1.

Suppose(βn,γn) 6= (0,0). Plugging intof = ∑ j c jX
α j

Xn = λ
(n−1

∏
i=1

Xγi−βi
i

) 1
βn−γn

we find j andk = ±GCD1≤i≤n(α0,i −α j,i) :

α0,n 6= α j,n and∀i : γi −βi = (α0,i −α j,i)/k,
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Factors for which cyclotomic points are dense (cont.)

Step 1: compute candidates for(β,γ).

Step 2: computeλ as cyclotomic roots of bounded order of sets of
supersparse univariate polynomials inλ.

Step 3: compute the norm ofP(X1, . . . ,Xn), which must be irre-
ducible over the ground field.
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Example

Xβ−θYγ | XnY0−X0Yn+1 if

k = ±GCD(n−0,0− (n+1)) = ±1

and
−β = (n−0)/k, γ = (0− (n+1))/k

Therefore there is no such factor,
even in Stephen Watt’ssymbolicpolynomial sense.

Similar symbolic irreducibility criteria with gap theorem.
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Hard problems for supersparse polynomials∑i cizei ∈ Z[z]

Plaisted 1977: LetN = ∏n
i=1 pi, wherepi distinct primes.

Formula Polynomial Rootset

x j z
N
pj −1 {(e

2πi
N )a | a≡ 0 (mod p j)}

¬xk
zN−1

z
N
pk −1

=
pk−1

∑
i=0

z
iN
pk {(e

2πi
N )b | b 6≡ 0 (mod pk)}

L1∨L2 LCM(Poly(L1),Poly(L2)) Roots(L1)∪Roots(L2)

x j ∨¬xk
(z

N
pj pk −1)(zN−1)

z
N
pk −1

(is supersparse polynomial)
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Hard problems for supersparse polynomials∑i cizei ∈ Z[z]

Plaisted 1977: LetN = ∏n
i=1 pi, wherepi distinct primes.

Formula Polynomial Rootset

x j z
N
pj −1 {(e

2πi
N )a | a≡ 0 (mod p j)}

¬xk
zN−1

z
N
pk −1

=
pk−1

∑
i=0

z
iN
pk {(e

2πi
N )b | b 6≡ 0 (mod pk)}

L1∨L2 LCM(Poly(L1),Poly(L2)) Roots(L1)∪Roots(L2)

x j ∨¬xk
(z

N
pj pk −1)(zN−1)

z
N
pk −1

(is supersparse polynomial)

C1∧C2 GCD(Poly(C1),Poly(C2)) Roots(C1)∩Roots(C2)

Theorem C1∧·· ·∧Cl is satisfiable
⇐⇒ GCD(Poly(C1), . . . ,Poly(Cl)) 6= 1.
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Other hard problems [Plaisted 1977/78]

1. Given sequencesa1, . . . ,am ∈ Z and b1, . . .bn ∈ Z determine
whether

m

∏
i=1

(zai −1) is not a factor of
n

∏
i=1

(zbi −1).

2. Given a set{a1, . . . ,am} ⊂ Z determine whether
Z 2π

0
cos(a1θ) · · ·cos(amθ)dθ 6= 0.
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Hard problems for supersparse polynomials inK[X,Y]

Theorem
The set of all monic (inX) irreducible supersparse polynomials
in K[X,Y] is co-NP-hardfor K = Q andK = Fq for all p and all
sufficiently largeq = pk, via randomized reduction.

Corollary
Suppose we have a Monte Carlo polynomial-time irreducibility
test for monic supersparse polynomials inF2k[X,Y] (for sufficiently
largek).
Then large integers can be factored in Las Vegas polynomial-time.
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Another hard problem for supersparse polynomials inF2k[X]

Theorem [Kipnis and Shamir CRYPTO ’99]
The set of all supersparse polynomials inF2k[X] that have a root
in F2k is NP-hardfor all sufficiently largek.

Corollary (cf. Open Problem in our ISSAC’05 paper)
It is NP-hard to determine if a polynomial inX overF2k given by
a division-free straight-line program has a root inF2k.
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Grazie mille!


