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Supersparse (lacunary) polynomials

The supersparse polynomial
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Term degrees can be very high, exg.2°%°



Supersparse (lacunary) polynomials

The supersparse polynomial

t
f(X]_,...,xn) p— ZCinl’l...xr?'vn
=1
IS Input by a list of its coefficients and corresponding teegree

vectors.
t

sizg f) = Z (dense-siz@:i) + [log, (i 1+ - Qi n+ 2)})

Term degrees can be very high, exg.2>%
OverZy: evaluate by repeated squaring |
OverQ: cannot evaluate in polynomial-time exept #r= 0, e?/k



Easy problems for supersparse polynomiais §; ¢, X € Z|z

Cucker, Koiran, Smale 1998: Compute rect Z: f(a) =0.

Gap idea: iff (a) = 0,a# +1theng;(a) =--- =gs(a) =0
wheref(X) = ¥ ;g;(X)X% andaj; —a; —dedqg;) > X
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Gap idea: iff (a) = 0,a# +1theng;(a) =--- =gs(a) =0
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Write (X) = g(X)  +X"(X), [[f]ls=][Cs|+---+]c.
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Easy problems for supersparse polynomiais §; ¢, X € Z|z

Cucker, Koiran, Smale 1998: Compute rect Z: f(a) =0.

Gap idea: iff (a) = 0,a# +1theng;(a) =--- =gs(a) =0
wheref(X) = ¥ ;g;(X)X% andaj; —a; —dedqg;) > X

Write (X) = g(X)  +X"(X), [[f]ls=][Cs|+---+]c.

=~
degg) <Kk
Fora# +1,h(a) #0:  |g(@)] < [[f[|z-]a
a'h(a)| > |a/"

u—k>x=log, | fll=[a" > 2 [af* > || f[|2- [a]* = f(a) #0.



Polynomial time root-finder uses the fact that for
gi(X) =cr+cxP2 4 reos, Bi—Biii<Xx, s<t

we have
Bi<(i—-1)(x—1),
SO
degg;) < (t—1)(x—1)



Easy problems for supersparse polynomiais §; ¢, X% € K|X]

H. W. Lenstra, Jr. 1999:

Input:  ¢({) € Z|(] monicirred.; letk = Q[{]/($(]))
a supersparsé(X) = y1_, X% € K[X]
a factor degree boundl

Output: a list of all irreducible factors of overK of degree<d
and their multiplicities (which is< t except forX)

LetD =d-ded¢)
There are at mosd(t?-2° - D -log(Dt)) factors of degree d

Bit complexity is(size(f)+ D +log||¢| )O(l)

Special cas¢ =(—1,d =D = 1: Algorithm finds all rational
roots in polynomial-time.



Our ISSAC '06 result for supersparse polynomials
dil aj n

f=ycX " e K[X] whereX™ = X" X;

Input:  ¢(¢) € Z[¢] monic irred.; letk = Q|[{]/($(]))
a supersparsé(X) = 3L, X" € K[X]
a factor degree boundl

Output: a list of all irreducible factors of overK of degree< d
and their multiplicities (which i< t except for anyx;)

Bit complexity Is:
(size(f)+d+deg¢)+log|d])
(size(f)+d+deg¢)+logld])

O(n
O(1

) (sparse factors)

) (blackbox factors)



Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsé(X,Y) =S_, ¢ X%YP € Z[X,Y]
that is monic InX;
an error probabilitye = 1/2

Output: a list of polynomialsy;(X,Y)
with deg (g;) <2 anddeg,(g;) < 2;
a list of corresponding multiplicities.

Theg; are with probability> 1 — € all irreducible
factors off overQ of degree< 2 together with
their true multiplicities.

Bit complexity: (size(f) +log1/e) oW
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Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsé(X,Y) =S_, ¢ X%YP € Z[X,Y]
that is monic InX;
an error probabilitye = 1/2

Output: a list of polynomialsy;(X,Y)
with deg (g;) <2 anddeg,(g;) < 2;
a list of corresponding multiplicities.

Theg; are with probability> 1 — € all irreducible
factors off overQ of degree< 2 together with
their true multiplicities.

Bit complexity: (size(f) +log1/e) oW

With E. Schost + [Tao 2005]: remove monicity restriction
factors of degre®(1).
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Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparsé(X,Y) =S_, ¢ X%YP € Z[X,Y]
that is monic InX;
an error probabilitye = 1/2

Output: a list of polynomialsy;(X,Y)
with deg (g;) <2 anddeg,(g;) < 2;
a list of corresponding multiplicities.

Theg; are with probability> 1 — € all irreducible
factors off overQ of degree< 2 together with
their true multiplicities.

Bit complexity: (size(f) +log1/e) oW

With E. Schost{Fae-2005}: remove monicity restriction
simple argument: factors of degrégl).




Algorithm

Step 0: compute all factors df that are inQ|Y| by Lenstra’s
method on the coefficients o

Step 1. compute linear and quadratic factorigx| of f(X,0),
f(X,1)andf(X,—1) by Lenstra’s method

Step 2: interpolate all factor combinations;
Test ifg(X,Y) dividesf(X.Y) by

0= f(X,a) mod(g(X,a), p) wherea € Z, p prime are random
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Leading coefficient problem

If the leading (trailing) coefficient itX does not vanish for

Y = 0,e?™/k then one can imposefactorof the leading (trailing)
coefficient ong.

We can generalize gap theorem and compiltsmall degree fac-
tors of supersparse polynomialsterministically.
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Concepts from algebraic number theory

Weil height for algebraic numbey:
d

Height(n) = L‘| max(1, ny)

whereMg,,) are all absolute values {a(n), d, their local degrees.
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Concepts from algebraic number theory

Weil height for algebraic numbey:
d

Height(n) = L‘| max(1, ny)

whereMg,,) are all absolute values {a(n), d, their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension(f
For any algebraiq # 0O that is not a root of unity

Height(n) > exp (C[:)l ( 0g(2D) )> > =1+0(1),

loglog(5D
whereC; > 0andD = [L(n) : L].
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Concepts from algebraic number theory

Weil height for algebraic numbey:
d

Height(n) = L‘| max(1, ny)

whereMg,,) are all absolute values {a(n), d, their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension(f
For any algebraiq # 0O that is not a root of unity

Height(n) > exp (C[:)l ( 0g(2D) )> > =1+0(1),

loglog(5D
whereC; > 0andD = [L(n) : L].

We do not know &, explicitly, henced an algorithm.



Concepts from diophantine geometry

Let P(Xy,...,Xn) € C[Xq,...,Xy] be irreducible
V(P) = rootset (variety, hypersurface) Bf
SCV(P) is Zariski dense ifSCV(Q) =— Q=P

Example:{(&.&,0) | ¢ € C} is not dense foK; — X, + Xs.
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Concepts from diophantine geometry

Let P(Xy,...,Xn) € C[Xq,...,Xy] be irreducible
V(P) = rootset (variety, hypersurface) Bf
SCV(P) is Zariski dense ifSCV(Q) =— Q=P

Example:{(&.&,0) | ¢ € C} is not dense foK; — X, + Xs.

Theorem [cf. Laurent 1984]

Let P(Xq,...,X,) € C[Xy,...,X,| be irreducible

and letSC V(P) where each coordinate of each point is a root of
unity (torsion points).

Then

n
Sis dense foP < P = |_|><iBi — 6,
|=
where0 is a root of unity and; € Z.

Example:{(e?7/(21) /G is dense foiX? — X3.
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Gap theorem for factors where cyclotomic points are noteens

Let P be the irreducible factor of.

Step 1: construct dense sgb4,....6, 1,n)} for P such that all
0; are roots of unityn are not.



Gap theorem for factors where cyclotomic points are noteens

Let P be the irreducible factor of.

Step 1: construct dense sgb4,....6, 1,n)} for P such that all
0; are roots of unityn are not.

Step 2: Iff(Xy,...,X,) =g+ Xih, deg (g) <k, apply Lenstra’s
gap argument to

g(ela e 7en—17 r]) — _nuh(ela RN eI’]—la r])

and get
u_kZ X=— g(ela'”)en—l)n) =0
where
_ D ( log2D) \" (t(t + 1) Height f))
K= C, \loglog(5D) J J '
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Factors for which cyclotomic points are dense

Consider irreducible factor

Ps.ye = P(X4,.. |_|>§ 9|_l>§y'

with Vi: B =0Vy, = 0andGCDyj (i —

Supposé B, yn) # (0,0). Plugging intof = 5, ¢;X"!

n—1 1

X = A ( |—| XiViBi) Bn—Yn

we find j andk = =GCD;<j<p(0gi — ;)

Oon 7 OjnandVi: yi—Bi = (ag; — aj,) /K,

21
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Factors for which cyclotomic points are dense (cont.)

Step 1: compute candidates {dd;y).

Step 2: compute as cyclotomic roots of bounded order of sets of
supersparse univariate polynomialsiin

Step 3: compute the norm &f(Xy,...,X,), which must be irre-
ducible over the ground field.



Example

XPB @YY | XnY0 — XOyn+ if
k=+GCD(n—0,0— (n+1)) = £1

and

—B=(M-0)/k, y=(0-(n+1))/k
Therefore there is no such factor,
even in Stephen Wattsymbolicpolynomial sense.

Similar symbolic irreducibility criteria with gap theorem

23
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Hard problems for supersparse polynomigls,z® < 7|2

Plaisted 1977: LelN = [];_, pi, wherep; distinct primes.

Formula Polynomial Rootset
N T
X; P —1 {(eZW)a\ a=0 (mod p;j)}
N1 Pl o
X = > 2 {(e%)° b0 (modpy)
7k — 1 =

L.VL, LCM (POly(L]_), POly(L2)> ROOtS{Ll) U ROOtiLz)

N

(2% —1)(2' — 1)

Xj V Xk
Zk — 1

(Is supersparse polynomial)
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Hard problems for supersparse polynomigls,z® < 7|2

Plaisted 1977: LelN = [];_, pi, wherep; distinct primes.

Formula Polynomial Rootset
N T
X; P —1 {(eZW)a\ a=0 (mod p;j)}
N1 Pl o
X = > 2 {(e%)° b0 (modpy)
7k — 1 =

L.VL, LCM (POly(Ll), POly(Lz)) ROOtS{Ll) U ROOtiLz)

N

(2% —1)(2' — 1)

Xj V Xk
Zk — 1

(Is supersparse polynomial)

CiNG GCD(POly(Cl), POly(Cg)) ROOtE(Cl) M ROOtE{Cz)

Theorem C; A --- AC IS satisfiable
<= GCD(Poly(Cy),...,Poly(C)) # 1.



Other hard problems [Plaisted 1977/78]

1. Given sequences,...,.am € Z andbq,...b, € Z determine

whether
m

I‘l(za*' —1) is not a factor of ﬁ(zbi —1).

2. Given aselay,...,an} C Z determine whether

/O chos(ale) .--c09an0)do =+~ 0.
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Hard problems for supersparse polynomial&iix, Y]

Theorem

The set of all monic (inX) irreducible supersparse polynomials
in K[X,Y] is co-NP-hardfor K = Q andK = [, for all p and all
sufficiently largeg = p¥, via randomized reduction.

Corollary
Suppose we have a Monte Carlo polynomial-time irreducibilit

test for monic supersparse polynomial&ia[ X, Y| (for sufficiently
largek).
Then large integers can be factored in Las Vegas polynatmma-



Another hard problem for supersparse polynomial&.inX|

Theorem [Kipnis and Shamir CRYPTO ’99]

The set of all supersparse polynomialstij|X| that have a root
In F.« IS NP-hardfor all sufficiently largek.

Corollary (cf. Open Problem in our ISSAC’05 paper)
It is NP-hard to determine if a polynomial i overF.« given by
a division-free straight-line program has a rootin.
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Grazie mille!
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