Factoring Supersparse (Lacunary) Polynomials

Erich Kaltofen
North Carolina State University google->kaltofen

Joint work with Pascal Koiran
ENS Lyon, France

Supersparse (lacunary) polynomials
The supersparse polynomial

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{t} c_{i} X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}
$$

is input by a list of its coefficients and corresponding term degree vectors.

$$
\operatorname{size}(f)=\sum_{i=1}^{t}\left(\operatorname{dense-size}\left(c_{i}\right)+\left\lceil\log _{2}\left(\alpha_{i, 1} \cdots \alpha_{i, n}+2\right)\right\rceil\right)
$$

Term degrees can be very high, e.g., $\geq 2^{500}$

Supersparse (lacunary) polynomials
The supersparse polynomial

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{t} c_{i} X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}
$$

is input by a list of its coefficients and corresponding term degree vectors.

$$
\operatorname{size}(f)=\sum_{i=1}^{t}\left(\operatorname{dense}-\operatorname{size}\left(c_{i}\right)+\left\lceil\log _{2}\left(\alpha_{i, 1} \cdots \alpha_{i, n}+2\right)\right\rceil\right)
$$

Term degrees can be very high, e.g., $\geq 2^{500}$
Over \mathbb{Z}_{p} : evaluate by repeated squaring
Over \mathbb{Q} : cannot evaluate in polynomial-time exept for $X_{i}=0, e^{2 \pi i / k}$

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in \mathbb{Z}[z]$
Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(X)=\sum_{j} g_{j}(X) X^{\alpha_{j}}$ and $\alpha_{j+1}-\alpha_{j}-\operatorname{deg}\left(g_{j}\right) \geq \chi$.

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in \mathbb{Z}[z]$
Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(X)=\sum_{j} g_{j}(X) X^{\alpha_{j}}$ and $\alpha_{j+1}-\alpha_{j}-\operatorname{deg}\left(g_{j}\right) \geq \chi$.

Write $f(X)=\underbrace{g(X)}_{\operatorname{deg}(g) \leq k}+X^{u} h(X), \quad\|f\|_{1}=\left|c_{1}\right|+\cdots+\left|c_{t}\right|$.

For $a \neq \pm 1, h(a) \neq 0: \quad|g(a)|<\|f\|_{1} \cdot|a|^{k}$

$$
\left|a^{u} h(a)\right| \geq|a|^{u}
$$

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in \mathbb{Z}[z]$
Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(X)=\sum_{j} g_{j}(X) X^{\alpha_{j}}$ and $\alpha_{j+1}-\alpha_{j}-\operatorname{deg}\left(g_{j}\right) \geq \chi$.

$$
\text { Write } f(X)=\underbrace{g(X)}_{\operatorname{deg}(g) \leq k}+X^{u} h(X), \quad\|f\|_{1}=\left|c_{1}\right|+\cdots+\left|c_{t}\right| \text {. }
$$

For $a \neq \pm 1, h(a) \neq 0: \quad|g(a)|<\|f\|_{1} \cdot|a|^{k}$ $\left|a^{u} h(a)\right| \geq|a|^{u}$
$u-k \geq \chi=\log _{2}\|f\|_{1} \Longrightarrow|a|^{u} \geq 2^{\chi} \cdot|a|^{k} \geq\|f\|_{1} \cdot|a|^{k} \Longrightarrow f(a) \neq 0$.

Polynomial time root-finder uses the fact that for

$$
g_{j}(X)=c_{1}+c_{2} x^{\beta_{2}}+\cdots+c_{s} x^{\beta_{s}}, \quad \beta_{i}-\beta_{i-1}<\chi, \quad s \leq t
$$

we have

$$
\beta_{i} \leq(i-1)(\chi-1),
$$

SO

$$
\operatorname{deg}\left(g_{j}\right) \leq(t-1)(\chi-1)
$$

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in K[X]$
H. W. Lenstra, Jr. 1999:

Input: $\quad \varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K=\mathbb{Q}[\zeta] /(\varphi(\zeta))$
a supersparse $f(X)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} \in K[X]$
a factor degree bound d
Output: a list of all irreducible factors of f over K of degree $\leq d$ and their multiplicities (which is $\leq t$ except for X)

Let $D=d \cdot \operatorname{deg}(\varphi)$
There are at most $O\left(t^{2} \cdot 2^{D} \cdot D \cdot \log (D t)\right)$ factors of degree $\leq d$
Bit complexity is $(\operatorname{size}(f)+D+\log \|\varphi\|) O(1)$

Special case $\varphi=\zeta-1, d=D=1$: Algorithm finds all rational roots in polynomial-time.

Our ISSAC '06 result for supersparse polynomials $f=\sum_{i} c_{i} \bar{X}^{\bar{\alpha}_{i}} \in K[\bar{X}]$ where $\bar{X}^{\bar{\alpha}_{i}}=X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}$

Input: $\quad \varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K=\mathbb{Q}[\zeta] /(\varphi(\zeta))$
a supersparse $f(\bar{X})=\sum_{i=1}^{t} c_{i} \bar{X}^{\overline{\alpha_{i}}} \in K[\bar{X}]$
a factor degree bound d

Output: a list of all irreducible factors of f over K of degree $\leq d$ and their multiplicities (which is $\leq t$ except for any X_{j})

Bit complexity is:

$$
\begin{aligned}
& (\operatorname{size}(f)+d+\operatorname{deg}(\varphi)+\log \|\varphi\|)^{O(n)} \\
& (\operatorname{size}(f)+d+\operatorname{deg}(\varphi)+\log \|\varphi\|)^{O(1)} \\
& (\text { blacke factors) } \\
& (\text { blactors })
\end{aligned}
$$

Linear and quadratic bivariate factors [ISSAC'05]
Input: \quad a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2
$$

a list of corresponding multiplicities.

The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(\operatorname{size}(f)+\log 1 / \varepsilon)^{O(1)}$

Linear and quadratic bivariate factors [ISSAC'05]
Input: \quad a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2 \text {; }
$$

a list of corresponding multiplicities.
The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(\operatorname{size}(f)+\log 1 / \varepsilon)^{O(1)}$
With É. Schost + [Tao 2005]: remove monicity restriction factors of degree $O(1)$.

Linear and quadratic bivariate factors [ISSAC'05]
Input: \quad a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2 \text {; }
$$

a list of corresponding multiplicities.

The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(\operatorname{size}(f)+\log 1 / \varepsilon)^{O(1)}$
With É. Schost+ [Tao 2005]: remove monicity restriction simple argument: factors of degree $O(1)$.

Algorithm

Step 0: compute all factors of f that are in $\mathbb{Q}[Y]$ by Lenstra's method on the coefficients of $X^{\alpha_{i}}$

Step 1: compute linear and quadratic factors in $\mathbb{Q}[X]$ of $f(X, 0)$, $f(X, 1)$ and $f(X,-1)$ by Lenstra's method

Step 2: interpolate all factor combinations;
Test if $g(X, Y)$ divides $f(X, Y)$ by

$$
0 \equiv f(X, a) \bmod (g(X, a), p) \text { where } a \in \mathbb{Z}, p \text { prime are random }
$$

Leading coefficient problem
If the leading (trailing) coefficient in X does not vanish for $Y=0, e^{2 \pi i / k}$, then one can impose a factor of the leading (trailing) coefficient on g.

We can generalize gap theorem and compute all small degree factors of supersparse polynomials deterministically.

Concepts from algebraic number theory
Weil height for algebraic number η :

$$
\operatorname{Height}(\eta)=\prod_{v \in M_{\mathbb{Q}(\eta)}} \max \left(1,|\eta|_{v}\right)^{\frac{d_{v}}{[\mathbb{Q}(\eta): \mathbb{Q}]}}
$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta), d_{v}$ their local degrees.

Concepts from algebraic number theory
Weil height for algebraic number η :

$$
\operatorname{Height}(\eta)=\prod_{v \in M_{\mathbb{Q}(\eta)}} \max \left(1,|\eta|_{v}\right)^{\frac{d_{v}}{\mathbb{Q}(\eta): \mathbb{Q}]}}
$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta), d_{v}$ their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}.
For any algebraic $\eta \neq 0$ that is not a root of unity

$$
\operatorname{Height}(\eta) \geq \exp \left(\frac{C_{1}}{D}\left(\frac{\log (2 D)}{\log \log (5 D)}\right)^{-13}\right)=1+o(1)
$$

where $C_{1}>0$ and $D=[L(\eta): L]$.

Concepts from algebraic number theory
Weil height for algebraic number η :

$$
\operatorname{Height}(\eta)=\prod_{v \in M_{\mathbb{Q}(\eta)}} \max \left(1,|\eta|_{v}\right)^{\frac{d_{v}}{\mathbb{Q}(\eta): \mathbb{Q}]}}
$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta), d_{v}$ their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}.
For any algebraic $\eta \neq 0$ that is not a root of unity

$$
\operatorname{Height}(\eta) \geq \exp \left(\frac{C_{1}}{D}\left(\frac{\log (2 D)}{\log \log (5 D)}\right)^{-13}\right)=1+o(1)
$$

where $C_{1}>0$ and $D=[L(\eta): L]$.
We do not know a C_{1} explicitly, hence \exists an algorithm.

Concepts from diophantine geometry
Let $P\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be irreducible $V(P)=$ rootset (variety, hypersurface) of P
$S \subseteq V(P)$ is Zariski dense iff $S \subseteq V(Q) \Longrightarrow Q=P$
Example: $\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\}$ is not dense for $X_{1}-X_{2}+X_{3}$.

Concepts from diophantine geometry
Let $P\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be irreducible $V(P)=$ rootset (variety, hypersurface) of P
$S \subseteq V(P)$ is Zariski dense iff $S \subseteq V(Q) \Longrightarrow Q=P$
Example: $\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\}$ is not dense for $X_{1}-X_{2}+X_{3}$.

Theorem [cf. Laurent 1984]
Let $P\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be irreducible and let $S \subseteq V(P)$ where each coordinate of each point is a root of unity (torsion points).
Then

$$
S \text { is dense for } P \Longleftrightarrow P=\prod_{i=1}^{n} X_{i}^{\beta_{i}}-\theta
$$

where θ is a root of unity and $\beta_{i} \in \mathbb{Z}$.
Example: $\left\{\left(e^{2 \pi i /(2 j)}, e^{2 \pi i /(3 j)}\right)\right\}$ is dense for $X_{1}^{2}-X_{2}^{3}$.

Gap theorem for factors where cyclotomic points are not dense
Let P be the irreducible factor of f.
Step 1: construct dense set $\left\{\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)\right\}$ for P such that all θ_{i} are roots of unity, η are not.

Gap theorem for factors where cyclotomic points are not dense
Let P be the irreducible factor of f.
Step 1: construct dense set $\left\{\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)\right\}$ for P such that all θ_{i} are roots of unity, η are not.

Step 2: If $f\left(X_{1}, \ldots, X_{n}\right)=g+X_{n}^{u} h, \operatorname{deg}_{X_{n}}(g)<k$, apply Lenstra's gap argument to

$$
g\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)=-\eta^{u} h\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)
$$

and get

$$
u-k \geq \chi \Longrightarrow g\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)=0
$$

where

$$
\chi=\frac{D}{C_{2}}\left(\frac{\log (2 D)}{\log \log (5 D)}\right)^{13} \log (t(t+1) \operatorname{Height}(f))
$$

Factors for which cyclotomic points are dense
Consider irreducible factor

$$
P_{\beta, \gamma, \theta}=P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} X_{i}^{\beta_{i}}-\theta \prod_{i=1}^{n} X_{i}^{\gamma_{i}}
$$

with $\forall i: \beta_{i}=0 \vee \gamma_{i}=0$ and $\operatorname{GCD}_{1 \leq i \leq n}\left(\beta_{i}-\gamma_{i}\right)=1$.

Suppose $\left(\beta_{n}, \gamma_{n}\right) \neq(0,0)$. Plugging into $f=\sum_{j} c_{j} \bar{X}^{\overline{\alpha_{j}}}$

$$
X_{n}=\lambda\left(\prod_{i=1}^{n-1} X_{i}^{\gamma_{i}-\beta_{i}}\right)^{\frac{1}{\beta_{n}-\gamma_{n}}}
$$

we find j and $k= \pm \operatorname{GCD}_{1 \leq i \leq n}\left(\alpha_{0, i}-\alpha_{j, i}\right)$:

$$
\alpha_{0, n} \neq \alpha_{j, n} \text { and } \forall i: \gamma_{i}-\beta_{i}=\left(\alpha_{0, i}-\alpha_{j, i}\right) / k,
$$

Factors for which cyclotomic points are dense (cont.)

Step 1: compute candidates for (β, γ).

Step 2: compute λ as cyclotomic roots of bounded order of sets of supersparse univariate polynomials in λ.

Step 3: compute the norm of $P\left(X_{1}, \ldots, X_{n}\right)$, which must be irreducible over the ground field.

Example

$$
\begin{aligned}
X^{\beta}-\theta Y^{\gamma} \mid X^{n} Y^{0} & -X^{0} Y^{n+1} \text { if } \\
k & = \pm \operatorname{GCD}(n-0,0-(n+1))= \pm 1
\end{aligned}
$$

and

$$
-\beta=(n-0) / k, \quad \gamma=(0-(n+1)) / k
$$

Therefore there is no such factor, even in Stephen Watt's symbolic polynomial sense.

Similar symbolic irreducibility criteria with gap theorem.

Hard problems for supersparse polynomials $\sum_{i} c_{i} z^{e_{i}} \in \mathbb{Z}[z]$
Plaisted 1977: Let $N=\prod_{i=1}^{n} p_{i}$, where p_{i} distinct primes.

Formula

$$
\begin{array}{cc}
x_{j} & z^{\overline{p_{j}}}-1 \\
\neg x_{k} & \frac{z^{N}-1}{z^{\frac{N}{p_{k}}}-1}=\sum_{i=0}^{p_{k}-1} z^{\frac{i N}{p_{k}}}
\end{array}
$$

Rootset

$$
\begin{aligned}
& \left\{\left.\left(e^{\frac{2 \pi \mathrm{i}}{N}}\right)^{a} \right\rvert\, a \equiv 0\left(\bmod p_{j}\right)\right\} \\
& \left\{\left.\left(e^{\frac{2 \pi \mathrm{i}}{N}}\right)^{b} \right\rvert\, b \not \equiv 0\left(\bmod p_{k}\right)\right\}
\end{aligned}
$$

$L_{1} \vee L_{2} \operatorname{LCM}\left(\operatorname{Poly}\left(L_{1}\right), \operatorname{Poly}\left(L_{2}\right)\right) \quad \operatorname{Roots}\left(L_{1}\right) \cup \operatorname{Roots}\left(L_{2}\right)$
$x_{j} \vee \neg x_{k} \quad \frac{\left(z^{\frac{N}{P_{j} p_{k}}}-1\right)\left(z^{N}-1\right)}{z^{\frac{N}{p_{k}}}-1}$
(is supersparse polynomial)

Hard problems for supersparse polynomials $\sum_{i} c_{i} z^{e_{i}} \in \mathbb{Z}[z]$
Plaisted 1977: Let $N=\prod_{i=1}^{n} p_{i}$, where p_{i} distinct primes.

Formula

$$
\begin{array}{cc}
x_{j} & z^{\overline{p_{j}}}-1 \\
\neg x_{k} & \frac{z^{N}-1}{z^{\frac{N}{p_{k}}}-1}=\sum_{i=0}^{p_{k}-1} z^{\frac{i N}{p_{k}}}
\end{array}
$$

Rootset

$$
\begin{aligned}
& \left\{\left.\left(e^{\frac{2 \pi \mathrm{i}}{N}}\right)^{a} \right\rvert\, a \equiv 0\left(\bmod p_{j}\right)\right\} \\
& \left\{\left.\left(e^{\frac{2 \pi \mathrm{i}}{N}}\right)^{b} \right\rvert\, b \not \equiv 0\left(\bmod p_{k}\right)\right\}
\end{aligned}
$$

$L_{1} \vee L_{2} \operatorname{LCM}\left(\operatorname{Poly}\left(L_{1}\right), \operatorname{Poly}\left(L_{2}\right)\right) \quad \operatorname{Roots}\left(L_{1}\right) \cup \operatorname{Roots}\left(L_{2}\right)$
$x_{j} \vee \neg x_{k} \quad \frac{\left(z^{\frac{N}{P_{j} p_{k}}}-1\right)\left(z^{N}-1\right)}{z^{\frac{N}{p_{k}}}-1} \quad$ (is supersparse polynomial)

$$
C_{1} \wedge C_{2} \operatorname{GCD}\left(\operatorname{Poly}\left(C_{1}\right), \operatorname{Poly}\left(C_{2}\right)\right) \quad \operatorname{Roots}\left(C_{1}\right) \cap \operatorname{Roots}\left(C_{2}\right)
$$

Theorem $C_{1} \wedge \cdots \wedge C_{l}$ is satisfiable

$$
\Longleftrightarrow \operatorname{GCD}\left(\operatorname{Poly}\left(C_{1}\right), \ldots, \operatorname{Poly}\left(C_{l}\right)\right) \neq 1
$$

Other hard problems [Plaisted 1977/78]

1. Given sequences $a_{1}, \ldots, a_{m} \in \mathbb{Z}$ and $b_{1}, \ldots b_{n} \in \mathbb{Z}$ determine whether

$$
\prod_{i=1}^{m}\left(z^{a_{i}}-1\right) \quad \text { is not a factor of } \quad \prod_{i=1}^{n}\left(z^{b_{i}}-1\right)
$$

2. Given a set $\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{Z}$ determine whether

$$
\int_{0}^{2 \pi} \cos \left(a_{1} \theta\right) \cdots \cos \left(a_{m} \theta\right) \mathrm{d} \theta \neq 0
$$

Hard problems for supersparse polynomials in $K[X, Y]$

Theorem

The set of all monic (in X) irreducible supersparse polynomials in $K[X, Y]$ is co-NP-hard for $K=\mathbb{Q}$ and $K=\mathbb{F}_{q}$ for all p and all sufficiently large $q=p^{k}$, via randomized reduction.

Corollary

Suppose we have a Monte Carlo polynomial-time irreducibility test for monic supersparse polynomials in $\mathbb{F}_{2^{k}}[X, Y]$ (for sufficiently large k).
Then large integers can be factored in Las Vegas polynomial-time.

Another hard problem for supersparse polynomials in $\mathbb{F}_{2^{k}}[X]$
Theorem [Kipnis and Shamir CRYPTO '99]
The set of all supersparse polynomials in $\mathbb{F}_{2^{k}}[X]$ that have a root in $\mathbb{F}_{2^{k}}$ is NP-hard for all sufficiently large k.

Corollary (cf. Open Problem in our ISSAC'05 paper)
It is NP-hard to determine if a polynomial in X over $\mathbb{F}_{2^{k}}$ given by a division-free straight-line program has a root in $\mathbb{F}_{2^{k}}$.

Grazie mille!

