# Algorithms for sparse and black box matrices over finite fields 

Erich Kaltofen
North Carolina State University
google->kaltofen


Factorization of an integer $N$ (continued fraction, quadratic sieves, number field sieves)

Compute a solution to the congruence equation

$$
X^{2} \equiv Y^{2} \quad(\bmod N)
$$

via $r$ relations on $b$ basis primes

$$
X_{1}^{2} \cdot X_{2}^{2} \cdots X_{r}^{2} \equiv\left(p_{1}^{e_{1}}\right)^{2} \cdot\left(p_{2}^{e_{2}}\right)^{2} \cdots\left(p_{b}^{e_{b}}\right)^{2} \quad(\bmod N)
$$

Then $N$ divides $(X+Y)(X-Y)$, hence $\operatorname{GCD}(X+Y, N)$ divides $N$

Relation computation
Step 1: Compute $s>r$ relations on $b$ basis primes

$$
\forall 1 \leq i \leq s: Y_{i}^{2} \equiv p_{1}^{c_{i, 1}} \cdot p_{2}^{c_{i, 2}} \cdots p_{b}^{c_{i, b}} \quad(\bmod N)
$$

Step 2: select $r$ relations $X_{1}=Y_{i_{1}}, \ldots, X_{r}=Y_{i_{r}}$ such that

$$
\forall 1 \leq j \leq b: c_{i_{1}, j}+c_{i_{2}, j}+\cdots+c_{i_{r}, j} \equiv 0 \quad(\bmod 2)
$$

One must compute non-zero solutions to the sparse homogeneous linear system modulo 2

$$
\left[\begin{array}{lll}
x_{1} & \ldots & x_{s}
\end{array}\right]\left[\begin{array}{cccc}
c_{1,1} & \bmod 2 & \ldots & c_{1, b} \\
\bmod 2 \\
c_{2,1} & \bmod 2 & \ldots & c_{2, b} \\
\vdots \bmod 2 \\
\vdots & & \vdots \\
c_{2,1} & \bmod 2 & \ldots & c_{2, b}
\end{array} \bmod 2 .\right]\left[\begin{array}{lll}
0 & \ldots & 0
\end{array}\right] \quad(\bmod 2)
$$

LDDMLtR's RSA-120 matrix modulo 2

Row nr. Columns with non-zero entries
1014811355 3b42 5cf6 c461 eda1 f0e7 15 d 19 199e0 2c317 33a50
2019 b4 f26 32147 f99 a146 bc7e 10087 175c5 1953a $320 b 539425$
$\vdots \quad \vdots$
24581101234689 bcdf10 121314161718 19 1d 1e 1f 202526 ... 3624a 364733690537727 395eb

There are $10-217$ non-zero entries/column, with 252222 columns and 11037745 non-zero entries total; in the above format the matrix occupies 48 Mbytes of disc space.
challenge-rsa-honor-roll@rsa.com
RSA-155
Factors:
102639592829741105772054196573991675900716567808038066803341933521790711307779
*
106603488380168454820927220360012878679207958575989291522270608237193062808643
Date: August 22, 1999
Method: the General Number Field Sieve, with a polynomial selection method of Brian Murphy and Peter L. Montgomery, with lattice sieving (71\%) and with line sieving (29\%), and with Peter L. Montgomery's blocked Lanczos and square root algorithms;
Time: * Polynomial selection:
The polynomial selection took approximately 100 MIPS years, equivalent to 0.40 CPU years on a 250 MHz processor.

* Sieving: 35.7 CPU-years in total,

124722179 relations were collected by eleven different sites,

* Filtering the data and building the matrix took about a month
* Matrix: 224 hours on one CPU of the Cray-C916 at SARA, Amsterdam; the matrix had 6699191 rows and 6711336 columns, and weight 417132631 ( 62.27 nonzeros per row) ;
calendar time: ten days
* Square root: Four jobs assigned one dependency each were run
in parallel on separate 300 MHz R12000 processors within a 24-processor SGI Origin 2000 at CWI.
One job found the factorisation after 39.4 CPU-hours,
* The total calendar time for factoring RSA-155 was 5.2 months (March 17 - August 22)
(excluding polynomial generation time)
We could reduce this to one month sieving time and one month processing time if we had more sievers and
had more experience with matrix-generation strategies.
Address: (of contact person)
Email: Herman.te.Riele@cwi.nl

Factorization of polynomial $f$ over finite field $\mathbb{F}_{p}$ (Berlekamp 1967 algorithm)

Note that since $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{F}_{p}$ we have

$$
x^{p}-x \equiv x \cdot(x-1) \cdot(x-2) \cdots(x-p+1) \quad(\bmod p)
$$

Compute a polynomial solution to the congruence equation

$$
w(x)^{p} \equiv w(x) \quad(\bmod f(x))
$$

Then $f$ divides $w \cdot(w-1) \cdot(w-2) \cdots(w-p+1)$, hence $\operatorname{GCD}(w(x)-a, f(x))$ divides $f(x)$ for some $a \in \mathbb{F}_{p}$

Solving $w^{p} \equiv w(\bmod f)$ by linear algebra
For $w(x) \in \mathbb{F}_{p}[x], \operatorname{deg}(w)<n=\operatorname{deg}(f):$

(Petr's 1937 matrix)

Black box matrix concept


Perform linear algebra operations, e.g., $A^{-1} b$ [Wiedemann 86, Kaltofen \& Saunders 91] with

$$
\begin{aligned}
O(n) & \text { black box calls and } \\
n^{2}(\log n)^{O(1)} & \text { arithmetic operations in } \mathbb{F} \text { and } \\
O(n) & \text { intermediate storage for field elements }
\end{aligned}
$$

Black box model is useful for dense, structured matrices

$$
\left[\begin{array}{ccccc}
1 & \ldots & & \ldots & \frac{1}{n} \\
& & \vdots & & \\
& & \frac{1}{i+j-1} & & \\
& & \vdots & & \\
\frac{1}{n} & \ldots & & \ldots & \frac{1}{2 n-1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

(Hilbert matrix)
Savings is in space, not time: $O(1)$ vs. $O\left(n^{2}\right)$.

Idea for Wiedemann's algorithm
$A \in \mathbb{F}^{n \times n}, \mathbb{F}$ a (possibly finite) field
$\phi^{A}(\lambda)=c_{0}^{\prime}+\cdots+c_{m}^{\prime} \lambda^{m} \in \mathbb{F}[\lambda]$ minimum polynomial of $A$
$\forall u, v \in \mathbb{F}^{n}: \forall j \geq 0:$

$$
u^{T r} A^{j} \phi^{A}(A) v=0
$$

$$
\Uparrow
$$

$$
c_{0}^{\prime} \cdot \underbrace{u^{T r} A^{j} v}_{a_{j}}+c_{1}^{\prime} \cdot \underbrace{u^{T r} A^{j+1} v}_{a_{j+1}}+\cdots+c_{m}^{\prime} \cdot \underbrace{u^{T r} A^{j+m}}_{a_{j+m}}=0
$$

$$
\Uparrow
$$

$\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is generated by a linear recursion

Theorem [Wiedemann 1986]: For random $u, v \in \mathbb{F}^{n}$,
a linear generator for $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is one for $\left\{I, A, A^{2}, \ldots\right\}$.

$$
\begin{gathered}
\forall j \geq 0: c_{0} a_{j}+c_{1} a_{j+1}+\cdots+c_{d} a_{j+d}=0 \\
\downarrow(\text { with high probability }) \\
c_{0} A^{j} v+c_{1} A^{j+1} v+\cdots+c_{d} A^{j+d} v=\mathbf{0} \\
\Downarrow(\text { with high probability }) \\
c_{0} A^{j}+c_{1} A^{j+1}+\cdots+c_{d} A^{j+d}=\mathbf{0}
\end{gathered}
$$

that is, with high probability $\phi^{A}(\lambda)$ divides $c_{0}+c_{1} \lambda+\cdots+c_{d} \lambda^{d}$

Algorithm homogeneous Wiedemann
Input: $A \in \mathbb{F}^{n \times n}$ singular
Output: $w \neq \mathbf{0}$ such that $A w=\mathbf{0}$

Step W1: Pick random $u, v \in \mathbb{F}^{n} ; \quad b \leftarrow A v ;$ for $i \leftarrow 0$ to $2 n-1$ do $a_{i} \leftarrow u^{T r} A^{i} b$.
(Requires $2 n$ black box calls.)

Step W2: Compute a linear recurrence generator for $\left\{a_{i}\right\}$, $c_{\ell} \lambda^{\ell}+c_{\ell+1} \lambda^{\ell+1}+\cdots+c_{d} \lambda^{d}, \quad \ell \geq 0, d \leq n, c_{\ell} \neq 0$.

Step W3: $\widehat{w} \leftarrow c_{\ell} v+c_{\ell+1} A v+\cdots+c_{d} A^{d-\ell}{ }_{v}$;
(With high probability $\widehat{w} \neq 0$ and $A^{\ell+1} \widehat{w}=0$.)
Compute first $k$ with $A^{k} \widehat{w}=0$; return $w \leftarrow A^{k-1} \widehat{w}$.
(Requires $\leq n$ black box calls.)

Step W2 detail
Coefficients $c_{0}, \ldots, c_{n}$ can be found by computing a non-trivial solution to the Toeplitz system

$$
\left[\begin{array}{cccccc}
a_{n} & a_{n-1} & \cdots & & a_{1} & a_{0} \\
a_{n+1} & a_{n} & & & a_{2} & a_{1} \\
\vdots & a_{n+1} & \ddots & & \vdots & a_{2} \\
& \vdots & & & & \vdots \\
a_{2 n-2} & & & & \ddots & a_{n-1} \\
a_{2 n-1} & a_{2 n-2} & \cdots & & a_{n} & a_{n-1}
\end{array}\right] \cdot\left[\begin{array}{c}
c_{n} \\
c_{n-1} \\
c_{n-2} \\
\vdots \\
\\
c_{0}
\end{array}\right]=\mathbf{0}
$$

or by the Berlekamp/Massey algorithm.
Cost: $O\left(n(\log n)^{2} \log \log n\right)$ arithmetic ops.

| Lambert [96], Teitelbaum [98], <br> Eberly \& Kaltofen [97] | relationship of Wiedemann <br> and Lanczos approach |
| :--- | :---: |
| Villard [97] | analysis of block Wiedemann <br> algorithm |
| Giesbrecht [97] and |  |
| Mulders \& Storjohann [99] | computation of diophantine <br> solutions |
| Chen, Eberly, Kaltofen, <br> Saunders, Villard \& Turner [2K] | butterfly network, sparse and <br> diagonal preconditioners |
| Villard [2K] \& Storjohann [01] | characteristic polynomial |
| Kaltofen \& Villard [04] | fast algorithm for determinant <br> of a dense integer matrix |
| Villard \& Jeannerod [04] | optimal algorithm for inverse <br> of a dense polyn. matrix |
| Eberly, Giesbrecht, Giorgi | faster rational solution <br> Storjohann, Villard [06] |
| of sparse systems |  |

LinSolve0: Given blackbox $A$, compute $w \neq 0$ such that $A w=0$.

NONSINGULAR $\leq$ LinSolve0: For $A x=b$ solve $[A \mid-b] w=0$ and compute $x=\frac{1}{w_{n+1}}\left[\begin{array}{l}w_{1} \\ \cdots \\ w_{n}\end{array}\right]$.

Harder (?) problem
LinSolve1: Given blackbox A (possibly singular) and b, compute $x$ such that $A x=b$.

Random sampling in the nullspace is equivalent to LinSolve1: select a random vector $y$ and solve $A x=b$ for $b=A y$.

LinSolve1 via preconditioning
Suppose the minpoly of $A$ is $1 \cdot \lambda+\cdots+c_{m} \lambda^{m}$
(the canonical form of $A$ has "no nil-potent blocks.")

$$
\begin{aligned}
\text { If } & A x=b \text { is consistent then } b=A \cdot y \\
\text { hence } & 1 \cdot b+\cdots+c_{m} A^{m-1} b=1 \cdot A y+\cdots+c_{m} A^{m} y=0 \\
\text { so } & b=A \cdot(\underbrace{-c_{2} b-\cdots-c_{m} A^{m-2} b}_{x}) .
\end{aligned}
$$

In [Chen et al. 2000] it is shown that Wiedemann's random sparse matrix multipliers give $\widetilde{A}$ the above property:
$\widetilde{A}=L A R \quad$ where $L, R$ are certain sparse 0-1 matrices
Note: $L, R$ have $O\left(n(\log n)^{2}\right)$ non-zero entries.

Diophantine solutions

$$
\begin{aligned}
& A\left(\frac{1}{2} x^{[1]}\right)=b, \quad x^{[1]} \in \mathbb{Z}^{n} \\
& A\left(\frac{1}{3} x^{[2]}\right)=b, \quad x^{[2]} \in \mathbb{Z}^{n} \\
& \operatorname{gcd}(2,3)=1=2 \cdot 2-1 \cdot 3 \\
& A\left(2 x^{[1]}-x^{[2]}\right)=4 b-3 b=b
\end{aligned}
$$

Hensel lifting [Moenck and Carter 1979, Dixon 1982]:
1: For $j=0,1, \ldots, k$ and a prime $p$ Do
Compute $\bar{x}^{[j]}=x^{[0]}+p x^{[1]}+\cdots+p^{j} x^{[j]} \equiv x\left(\bmod p^{j+1}\right)$
1.a. $\widehat{b}^{[j]}=\frac{b-A \bar{x}^{[j-1]}}{p^{j}}=\frac{\widehat{b}^{[j-1]}-A x^{[j-1]}}{p}$
1.b. Solve $A x^{[j]} \equiv \widehat{b}^{[j]}(\bmod p)$ reusing the minpoly of $A \bmod p$

2: Recover denominators of $x_{i}$ by continued fractions of $\bar{x}_{i}^{[k]} / p^{k}$.

Coppersmith's 1992 blocking
Use of the block vectors $\mathbf{x} \in \mathbb{F}^{n \times \beta}$ in place of $u$

$$
\begin{aligned}
& \mathbf{z} \in \mathbb{F}^{n \times \beta} \text { in place of } v \\
& \mathbf{a}_{i}=\mathbf{x}^{T r} A^{i+1} \mathbf{z} \in \mathbb{F}^{\beta \times \beta}, \quad 0 \leq i<2 n / \beta+2
\end{aligned}
$$

Find a vector polynomial $c_{\ell} \lambda^{\ell}+\cdots+c_{d} \lambda^{d} \in \mathbb{F}^{\beta}[\lambda], d=\lceil n / \beta\rceil$ :

$$
\forall j \geq 0: \quad \sum_{i=\ell}^{d} \mathbf{a}_{j+i} c_{i}=\sum_{i=\ell}^{d} \mathbf{x}^{T r} A^{i+j} A \mathbf{z} c_{i}=\mathbf{0} \in \mathbb{F}^{\beta \times \beta}
$$



Then, analogously to before, with high probability

$$
\widehat{w}=\sum_{i=\ell}^{d} A^{i-\ell} \mathbf{z} c_{i} \neq \mathbf{0}, \quad A^{\ell+1} \widehat{w}=\sum_{i=\ell}^{d} A^{i} A \mathbf{z} c_{i}=\mathbf{0} \in \mathbb{F}^{n}
$$

Advantages of blocking

1. Parallel coarse- and fine-grain implementation


The $j^{\text {th }}$ processor computes the $j^{\text {th }}$ column of the sequence of (small) matrices.
2. Faster sequential running time: multiple solutions [Coppersmith; Montgomery 1994]; $1+\varepsilon$ matrix times vector ops [Kaltofen 1995]; determinant, charpoly, Smith form [Kaltofen \& Villard 2004]; charpoly of sparse matrix [Villard \& Storjohann 2001]
3. Better probability of success [Villard 1997]

Computation of the matrix linear generator
Explicitly in Popov form by block Berlekamp/Massey algorithm [Rissanen 1972, Dickinson et al. 1974, Coppersmith 1994, Thomé 2001, Kaltofen \& Yuhasz 2006] or implicitly in a block Lanczos version

Explicitly by a power Hermite-Padé approximation
[Beckermann \& Labahn 1994]

By a block Toeplitz solver [Kaltofen 1995]

## Implementations

By Coppersmith, Kaltofen \& Lobo, Montgomery, Dumas, Brent,...

The LinBox project [Canada: UWO, Calgary; France: ENS Lyon, IMAG Grenoble; USA: Delaware, NCSU, Washington Coll. MD]: A generic C++ library for black box linear algebra, including integer problems ("Symbolic MatLab" [www.linalg. org])

New abstraction mechanism black box matrix

Programming languages $\mathrm{C}++$, Maple, GAP, C (Saclib)

Design principle genericity through template parameter types (matrix entries) and black box matrix model (sparseness and structuredness)

## Open Problems

Large fields: Compute the characteristic polynomial Certify the minimal polynomial LinSolve $1 \leq$ LinSolve0

Small fields: Compute the determinant, rank of a sparse/blackbox matrix without $O(\log n)$ slowdown

