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1. INTRODUCTION

The applications of the generalization of the Berlekamp/Massey algorithm for com-
puting linear generators of scalar sequences [Berlekamp 1968; Massey 1969] to matrix
sequences are manifold. The algorithm is originally introduced in multivariable control
theory [Rissanen 1972b; Dickinson et al. 1974]. A recent application is to sparse lin-
ear system solving over finite fields by the Block Wiedemann algorithm [Coppersmith
1994]. Table I gives a summary of references to algorithms that compute minimal lin-
ear generators of scalar and matrix sequences. We loosely categorize the methods into
approaches based on the original Berlekamp/Massey design, the extended Euclidean
algorithm, the computation of a Padé approximant, a o-basis, and the solution of the
underlying linear system in Toeplitz/Hankel form. We mark those methods that reduce
the time complexity from quadratic in the dimension of the linear system to essentially
linear (up to poly-logarithmic factors) by use of fast polynomial arithmetic by a “*.”
Clearly, all methods are related by virtue that the solve the same linear algebra
problem. However, for the scalar case it was not until Dornstetter [1987] that the
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33:2 E. Kaltofen and G. Yuhasz

Table I. Algorithms for Computing Minimal Linear Generators

Style of algorithm Scalar case Matrix case
Berlekamp/Massey Berlekamp 1968] Rissanen 1972b]
Massey 1969] Dickinson et al. 1974]
Dornstetter 1987] Coppersmith 1994]
Giesbrecht et al. 2002], §2 Thomé 2002]*

This article

[
[
[
[

Extended Euclidean [Sugiyama et al. 1975] [Kaltofen and Villard 2004], §3.1*
[Dornstetter 1987]
Padé approximant [Brent et al. 1980]* [Van Barel and Bultheel 1991]

[Van Barel and Bultheel 1992]
[Giorgi et al. 2003]*

o-basis [Kaltofen and Lee 2003], §2.2 | [Beckermann and Labahn 1994]*
[Villard 1997a]*, [Turner 2002]
Toeplitz/Hankel solver | [Levinson 1947] [Cabay et al. 1990]
[Durbin 1959] [Kaltofen 1995], Appendix A*

*of essentially linear complexity in the degree.

Euclidean algorithm-based approach by Sugiyama et al. [1975] was reduced to the ac-
tual Berlekamp/Massey algorithm via a now classical unraveling of the doubly nested
polynomial remainder chain-polynomial division loops to the single Berlekamp/Massey
loop. We give a fraction-free version of the original Berlekamp/Massey algorithm in
Giesbrecht et al. [2002] and in Kaltofen and Lee [2003] we give a re-interpretation
as a specialized o-basis algorithm. The first quadratic algorithm for computing linear
generators in the generic case is Levinson’s 21 years before Berlekamp and Massey. An
essentially linear time randomized algorithm for the block Levinson-Durbin problem
based on the theory of displacement rank and that is valid for all inputs and over any
field is in Kaltofen [1995]. The theory of oc-bases [Beckermann and Labahn 1994] in a
different manner converts the matrix-Padé problem to a scalar linear algebra problem
and, as has been observed by Villard [1997a] and worked out in Turner [2002], can
be employed for the computation of minimal linear generators of matrix sequences.
Van Barel and Bultheel [1991, 1992] give algorithms to compute a matrix Padé
approximant along a diagonal path [Van Barel and Bultheel 1991] and along any path
[Van Barel and Bultheel 1992] in the Padé table. Giorgi et al. [2003] give a polynomial
matrix multiplication based algorithm to compute a matrix Padé approximant.

Here we revisit the Matrix Berlekamp/Massey algorithm as described in Dickinson
et al. [1974] and Coppersmith [1994]. We only consider the quadratic-time version; see
Thomé [2002] for a variant of essentially linear complexity. Our objective is to give a
stand-alone correctness proof based on explicit loop invariants for the algorithm which
makes no restrictions: arbitrary rectangular sequences of matrices whose rank can
gradually increase. Our main invariants on certain nullspace properties of the inter-
mediate matrix polynomials (see Theorem 4.14) are reminiscent of those for o-bases
[Beckermann and Labahn 1994] and M-bases [Giorgi et al. 2003]. The arguments in
Giorgi et al. [2003, Lemma 3.7], based on irreducible descriptions in Kailath [1980], are
applied to Padé approximants, whereas only the approximant on the diagonal yields
the minimal generator. A main difficulty is to prove that the minimal generators for
sequences that are truncated at any order eventually converge to the untruncated
minimal generator, for which we offer an apparently new justification (see Lemma 4.16
and its proof). We also give an explicit early termination criterion that adapts to the
relation of the bound on the determinantal degree of the generator, which has to be
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On the Matrix Berlekamp-Massey Algorithm 33:3

input, and the intermediately computed generator vector degrees (see Theorem 4.19).
We assume the determinantal degree bound is correct, and when possible the algorithm
may diagnose an insufficient degree bound. However, since verifying the correctness
of the degree bound requires any algorithm to process infinitely many sequence ele-
ments, no algorithm can certify that the degree bound is large enough. An analysis of
how an insufficient degree bound affects the Matrix Berlekamp/Massey algorithm is
given. Using the termination criterion, we give a worst case complexity analysis that
is applicable to any input. We also include a comparison of our algorithm and a method
based on the fast power hermite padé solver of Beckermann and Labahn [1994]. The-
orem 2.8 in Section 2 gives an absolute description of any linearly generated matrix
sequence that seems to have never been shown before.

The remainder of this article will proceed in this order. Section 2 gives definitions
and properties of linearly generated matrix sequences and their generators. Section 3
describes a version of the Matrix Berlekamp/Massey algorithm that is restricted to
square matrix sequences. Section 4 gives properties and proofs of the intermediate
computations of the algorithm in Section 3 culminating in a correctness proof for the
algorithm. Section 5 describes the adjustments that need to be made to the algorithm
in Section 3 for rectangular matrix sequences and gives justification for these changes.
Performance issues such as complexity analysis and comparison with other methods
are contained in Section 6.

2. LINEARLY GENERATED MATRIX SEQUENCES

Linearly generated matrix sequences are an extension and generalization of linearly
generated scalar sequences. We will begin with a definition of a linearly generated
matrix sequence and a scalar generator. We will then extend the notion of a gener-
ator to include vector and matrix generators. Using results from module theory and
linear control theory we define minimal matrix generators. Finally, we will show the
relationship between minimal matrix generators and scalar generators.

The following defines both a linearly generated matrix sequence and the scalar
polynomial generator of such a sequence. Both definitions are simple generalizations
of results from the theory of linearly generated scalar sequences.

Definition 2.1. A sequence of matrices {M;};>, with M; e KNewwxNeal ig linearly
generated if there exists a polynomial F(2) = > ;¢;2' € K[z] with F # 0 where the
following holds:

n
VIl >0): ZciMJrl — ONrowXNcol'
i=0
The polynomial F is called a scalar generator of the sequence {M;};°,. The unique
minimal scalar generator of the sequence {M,};°, is the monic generator of minimal
degree.

This definition can be generalized by changing the coefficients from scalars into
vectors in K™, Making such a change leads to the following definition.

Definition 2.2. F(z) =Y j_,crz" # 0 € KN«[z] is a right vector generator of a matrix
sequence {M};° , if the following holds:

(VL1 =0): Y Mycp = 0N,

k=0
The sequence is said to be linearly generated from the right by the vector polynomial.
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33:4 E. Kaltofen and G. Yuhasz

An analogous definition can be made for left vector generators. We will only consider
right generators and so will drop the term “right” and all generators will be right
generators unless specified.

The introduction of vector generators allows us to define a matrix generator and a
minimal matrix generator. We first describe the K[z] module structure of the set of
vector generators of a linearly generated matrix sequence.

Facr 1. Assume that {M};2, is linearly generated, and let W = {F € KNel[z] | F is
a vector generator of M} U {0}.

(1) W is a Klz] submodule of KN [z].
(2) W has rank N,,.
(3) W has a basis.

Proor. Let g € Klz], g # 0 be the linear generator for {M,};° ). That W is a submod-
ule is straight forward. To prove that W has rank Ny, consider the following vector
polynomials. For all 1 < i < N let g; = g - e;, where e; is the standard coordinate
vector. Each g; is a vector generator of the sequence and the N, vectors are linearly
independent. Thus, the submodule W has rank at least N, but since W is a submod-
ule of FNel[z], it can have rank no larger than N, [Dummit and Foote 1991, p. 371].
Therefore, W has rank N.

The fact that W has a basis is a classic result of module theory [Dummit and Foote
1991, p. 371]. Any submodule of a free module over a principal ideal domain is also a
free module and so any submodule has a basis. The result proves that any submodule
of a free module over a P.I.D. has a basis with certain properties. The basis is defined

by vectors wi, we, ..., wn,, € KNe[z] and elements g1, g9, . .. 8Ny € Klz]l where the
following properties hold. The vectors g1 - w1, g2 - we, ..., gnN,, - WN,, form a basis of W;
the vectors wy, ws, ..., wy,, form a basis of K¥[z]; and gy, | gn,y-1 | --- | 82 | 1. This

basis is related to the Smith Normal form of the submodule W. O

We give an example of a matrix sequence that is not linearly generated and how such

sequences violate Fact 1. Let M = [0 (I'k]/€2] )], were (Mp)1.2 is the center element of the

k" row of Pascal’s triangle. This scalar sequence is is not linearly generated [Kaltofen
1992] and so the matrix sequence is not linearly generated. The matrix sequence has a
nonzero vector generator, given by F = [1 0]7. So the submodule W defined in Fact 1
is non trivial with rank at least 1. As in this proof, W is a K[z] submodule of K2[z] and
W has a basis. Since the center Pascal numbers are not linearly generated, then any
vector generator of the sequence must have 0 in the second row, and so the rank of W
is equal to 1. Thus, linearly generated matrix sequences ensure that the annihilator
submodule W is full rank. We will now use the facts that W is full rank and has a basis
to define right matrix generators and right minimal matrix generators.

Definition 2.3. F = Y 7_,Cr2t # 0 € KNoXNei[z] det(F) # 0, is a right matrix
generator of a matrix sequence {M,};2, if the following holds:

n
(Vl,1 > 0): Z Mk+le — ONrowXNcol'
=0
The sequence is said to be linearly generated from the right by the matrix polynomial.
Definition 2.4. The matrix polynomial F € KNew*Nel[2] is said to be a minimal right

matrix generator of {M}}°, if F' is a right matrix generator and the columns of F' form
a basis of the K[z] submodule W defined here.
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This definition describes a minimal matrix generator. Similar to integral bases of
algebraic number rings, the determinant of a minimal matrix generator has minimal
degree.

THEOREM 2.5. F € KNe*Nei[2] is @ minimal matrix generator of {Mp}32, if and only
if deg(det(F)) is minimal over all right matrix generators of {Mp};2,.

Like the scalar generator case, there are many different minimal matrix generators.
In the scalar case, the monic generator of minimal degree is defined to be the unique
minimal generator. For the matrix generator case, we use the following definition.

Definition 2.6. The unique minimal right matrix generating polynomial of the
sequence {M;}?°, is the matrix polynomial F € KM«*Nel[z] such that F is a minimal

matrix generator and F is in Popov form [Popov 1970].

The next theorem shows the connection between our definition of linearly generated
matrix sequences and matrix generators.

TueoreM 2.7. If F e KNoNei[z] is @ minimal matrix generator of {My}32,, then
{Mp}2, is linearly generated. Further, the first invariant factor of F is the unique
minimal scalar generator of {My}3° .

Proor. Let fi be the first or largest invariant factor of ', such that the Smith Normal
form of F' is given by the matrix diag(fi, ..., fy), with f; dividing f;_; forall N >i > 1.
There exists a matrix polynomial F € KV*N[z] such that F~! = (1/f;) - F. Further,
we know that for any H € KN*N[z], F - H is a right matrix generator of the sequence
{Mp}32,- Therefore, the sequence has a matrix generator F' - F = f; - F - F1=Ff Iy.
This means that f; must be a scalar generator of {M,}7° .

To see that fi is a unique minimal generator, use the additional fact that f; is the
least common denominator of the entries of F~1.

Now let g be the unique minimal scalar generator of {M}};°,. Since f; is a scalar
generator of the sequence, then g | f1. Further, the matrix polynomial g - Iy is a matrix
generator of {M}}7° .. Because F is a minimal matrix generator, there exists a G such
that F- G = Iy -g. Sothen F~! = 1/g - G and so from the previous paragraph, f; | g.
But fiismonicandso fi=g. O

An important motivation for studying linearly generated matrix sequences is the
fact that the sequence {M,};? is linearly generated if the sequence is defined by M, =
UT . Bt.V, where U, B, and V are matrices over K. Such matrix sequences are block
bilinear projections of matrix powers. These projections arise in the analysis of the
block Wiedemann and block Lanczos algorithms. The results in Kaltofen [1995], Villard
[1997b], and Kaltofen and Villard [2004] detail properties of the matrix sequences
generated by random bilinear projections and their minimal matrix generators. We
will now demonstrate that all linearly generated matrix sequences can be viewed as a
bilinear projection of a matrix power sequence.

TuroreM 2.8. The sequence {My}72 is linearly generated if and only if there exists
matrices U, Band V with entries in K such that M, =UT . B*. V.

Proor. Proving one direction is simple. If M, = UT - B*.V and f is the characteristic
polynomial of B, then f is a scalar generator of {M;};°,. Thus, {M,};2, is linearly
generated.

To prove the other direction, we begin by proving the 1 x 1 or scalar case. Suppose
{Mp};2, is a linearly generated 1 x 1 matrix (scalar) sequence and let / be a monic
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33:6 E. Kaltofen and G. Yuhasz

scalar generator of degree m. Let By be the companion matrix of f:

0o 1 o ... 0
0 0 1

By=| - s ) :
0 0 ... 0 1
__fO _fl--~_fm—2 _fm—l_

Let B = By and define U, V € K™ as:
1 My T
0 M
U=|p|=e1 and V = .

Mm—l_

Since [ is assumed to be a monic generator the following is true:
m—1
V1= 0): My =Y —fi - Miyy.
i=0

Therefore, we know the following is true about the action of B’ on the vector V:
M,
. M
(vl,1>0):B".V = .

Mm+lfl

Since the action of U7 is to select the top row of the vector B'-V,then M, = UT - Bt. V.

Let {M,};2 , be a linearly generated matrix sequence of Nyow x Ngo matrices and let
f be the unique minimal scalar generator of the sequence of degree m. Let Bf be the
companion matrix of f as defined previously. We will generalize the scalar construction
above to define the matrices U, B and V. Since {M};°, is linearly generated by f, we
can fix an i and j and see that the scalar sequence defined by {(M}); ;172 is a linearly
generated scalar sequence and f is a generator. As previously mentioned, let us define
the vector V; ; to be the following:

(Mo);, ;
(M),
Vij= :
(Mp—2);
(My—1)i,

We can now define the matrices U, Band V as block matrices. Bwill be a (IN,ow - m) X
(Nyow - m) block diagonal matrix of the form:

B= diag(Bf, ey Bf).
U is a sparse (Nyow - m) X Nyow matrix given by:

U = diag(ey, ..., e1).
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On the Matrix Berlekamp-Massey Algorithm 33:7

V is an (Vo - m) x N matrix defined in the following block form:

Vl’l Vl,2 e quNcol
VQ’]_ V2’2 e quNcol
V=1 . o .
VNI‘OWvl .‘/]\7r0w~2 ct VNrow-Ncol

Due to the block nature of the matrices U, B and V, and the fact that the scalar
sequences embedded in the i, j entries of the matrices in {M}};° , are linearly generated

by f,then M}, =UT . B*. V. O

3. MATRIX BERLEKAMP/MASSEY ALGORITHM

In this section, we present a version of the Matrix Berlekamp/Massey algorithm that
will compute a minimal (right) matrix generating polynomial of a matrix sequence.
Other versions of this algorithm can be found in Lobo [1995], and Coppersmith [1994].
The algorithm given here removes a condition found in the versions previously. Both
Coppersmith [1994] and Lobo [1995] require that the initial matrix in the sequence be
full rank, but by changing the initialization and updating procedure, we have removed
this requirement.

In the previous section, the matrix sequences were generically rectangular. There
were no assumptions made on the relationship between the row dimension N, and the
column dimension N, . All of the properties of minimal matrix generators are valid over
all linearly generated matrix sequences of all possible dimensions. The row and column
dimension of the matrix sequence will define the dimension and number of variables
needed during the Matrix Berlekamp/Massey algorithm. Further, the invariants and
proof of the Matrix Berlekamp/Massey algorithm are dependent on the dimensions
of the matrix sequence. For the purpose of simplification, we present a description
and proof of the Matrix Berlekamp/Massey algorithm for square matrix sequences, ie
Nyow = Neoi. In a later section, a description and proof of the rectangular algorithm will
be given. Because we are assuming Nyow = Neoi, we will drop the subscripts and just
let N be the row and column dimension of the matrix sequence.

In the algorithm description, we will refer to the following matrix rank, which is
computed implicitly (see Lemma 4.5 on page 11).

Definition 3.1. By r; we denote the rank of [My M; --- M;], and we set r_; = 0.

If My is singular, r; can increase beyond ¢ = 0. The algorithm then performs an
“on-the-fly” initialization (see step GE24 on page 9).

3.1. Algorithm Matrix Berlekamp/Massey

Input. M(z) € KN*N[[z]] with M; € KN*N the coefficient of 2/

8 > 0 an upper bound on the determinantal degree of the matrix generator.

Output. F(z) € KN*N[z] a minimal matrix generator.

In the case that the input § is not an upper bound for the determinantal degree,

the algorithm may return “insufficient bound” or an incorrect F.

Variables. f(z) € KN*?N[z] where the first N columns fi, ..., fy represent the
reversal of the current generator and the last N columns fyy1,..., foy are
what we call the auxiliary polynomials.
di,dy, ...,daNn. the nominal degree of each column. We have throughout the
algorithm that deg(f;) < d;. Since f; are reversed polynomials, d; are upper

bounds for the degrees of their reversals 2% fiz™h.
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33:8 E. Kaltofen and G. Yuhasz

T € K2N*2N 3 linear transformation

A € KN*2N_ the discrepancy matrix

B. the minimum of the nominal degrees of the auxiliary polynomials
o. the sum of the nominal degrees of the generator polynomials

. the maximum of the nominal degrees of the generator polynomials

MBM1 f « [Iy 0NV*N]
dl (—dz .. (—dN<—O;dN+1 <—dN+2 <« .- (—dz]v(—]_
t <~ -1
B <1
o<« 0
u < 0.

MBM2 while 8 < § — o 4+ u + 1 do steps MBM3 through MBM9

MBMS3 ¢t «t+1

MBM4 A <« Coeff(t; M(z) - f(2))
Note that A = [C L¥~1] where C, L~ € KN*N and LY~ is lower triangular
with rank r;_; computed in the previous step MBM5 below. By definition, we
set LI = oNV*N,

MBM5 Call Algorithm 3.2 below to compute 7. As a side-effect, di, ..., dsy are up-
dated.
Let A - t = [Z L"]. We have that Z € KN*N has r, — r;,_; nonzero columns
and if j is the index of a nonzero column of Z, then d; = ¢ + 1. Furthermore,
L® ¢ KN*N is lower triangular of rank r;.

MBM6 dyy; =dyyi +1foralli =1,2,... N

MBM7 g < minyyi<i<ondi; < maxisoyd; o < Yo, d;
These updates are most efficiently performed during Algorithm 3.2.

MBMS if o > § + 1, then return “insufficient bound”

MBM9 f(z) < f(2) -t -diag(Iy, z - Iy)

MBM10 F <« [z% fi(z™1) 2% folz™1) ... 2™ fn(z~1)]
MBM11 return F

3.2. Auxiliary Gaussian Elimination Algorithm

Input. A € KN*2N where A has rank R and the last N columns of A have rank r.
di,ds, ..., dpny nominal degrees of the columns.

Output. v € K?N*2N 3 transformation such that At = [Z L]. Z will be a matrix
with R — r nonzero columns. L is a lower triangular matrix of rank R.

di,dy, ..., dan a reordering of the nominal degrees. Note that nod; for1 < j < N
is decreased.

GEl1l 7 « IZN

GE2 T «{1,2,...,N}

GE3 fori =1 to N do steps Ge4 through 24
In Dickinson et al. [1974, p. 36] four types of eliminations and updates are
distinguished. We will annotate which steps of our Gaussian elimination
algorithm correspond to each case. Except for Case 1 of Dickinson et al. [1974],
the updates defined in each case can be performed as i ranges from 1 to N. For a
fixed i however, only one type of update will be performed. Case 1 in Dickinson
et al. [1974] requires the same type of update for each i.

GE4 I1; < {j €T and A #0}U{N +1i}

GEb [ <1l € Hl‘ |dl :minienidi
There may be different choices for the column index [ of the pivot element A;;.
Our current implementation employs the following rules. Assume that d. and
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d; are equal and minimal withr,s e [1; andr <s. If 1 <r <s < N,thenl =r.
Ifl<r<Nand N+1<s<2N,thenl=s.
GE6 IT; < IT; \ {1}
GE7 for all j € I1; do steps Ge8 through ce24
Case 1 of Dickinson et al. [1974] occurs if I1; is empty for all 1 < i < N. Then
t = I and so none of the generating vectors are updated. This situation only
occurs when C defined in step mBm4 is 0V*V,
GE8 ifl = N + i do steps Ge9 and Ge10
These steps perform a minor change of the generating vectors, as defined in
Case 3 of Dickinson et al. [1974]. The nominal degrees of all the generating
vectors are unchanged.

GE9 Perform the column operation A; < A; — f—;i_A N+i
Now Ai, j= 0.
GE10 Perform the column operation 7; < t; — Aé}"’vi TN

GE11 ifl < N +i do steps Ge12 through 24
At this stage, the pivot column is a previous generator column, and so o will
be increased by step Ge20 or step Ge23. If 0 — d; + dny; > §, then any further
calculations are unnecessary since step MBM8 will return “insufficient bound”.

GE12 if j < N +1i, do steps Gel3 and 14

GE13 Perform the column operation A; < A; — %Al
Now Ai,j =0.

GE14 Perform the column operation 7; < 7; — %n

GE15 if j = N + i, do steps GE16 through ce24

GE16 if A; Ny # 0, do steps GE17 through Ge20

The update performed here is defined as a major change in Case 4 of
Dickinson et al. [1974]. The nominal degree of one vector generator
will be increased and an auxiliary vector will be replaced by a former
generating vector.

GE17 Perform the column operation Ay,; <« A_iLN“:iA N+i + A
GE18 Perform the column operation 7y; <« ;ifviji Ny + T
GE19 Switch column  with column N +i in A and ©
GE20 Switch d; and dy.;.
Now A;; = 0 and dy,; is minimized.
GE21 if Aj i = 0, do steps GeE22 through 24
GE22 Perform the column operation ty,; < Tny + T
GE23 Switch d; and dy.;.
GE24 I <~ T\ {}

Note that steps GE22 through Ge24 initialize a new column in
the auxiliary polynomials. If A; y,; =0, then a new component as
defined by Case 2 of Dickinson et al. [1974] has been found and a
new auxiliary vector must be added. The corresponding discrepancy
is skipped over via d; = ¢ + 1, necessitated by an increase of r;. If M
is nonsingular [Coppersmith 1994], the initialization only occurs
fort = 0.
GE25 Return r and di, ds, ..., don.

4. PROPERTIES AND CORRECTNESS OF THE MATRIX BERLEKAMP/MASSEY ALGORITHM

We now establish several properties of the computed quantities that remain invariant
during the iterations. In order to distinguish the values of variables at different
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33:10 E. Kaltofen and G. Yuhasz

iterations, we will use the superscript [¢] for the value of a variable for a given loop
index ¢ at step MBM2.

LeEMMA 4.1. For each iteration at step MBM2 deg( fj[”) < dj[-”.

ProoF. Assuming deg(0") < 0, then this is true by construction on initialization.

We proceed by induction. Suppose ¢ > —1 and deg( fj[t]) < dj[-t] forall 1 < j < 2N.
Steps MBM5 and MBM6 update the nominal degrees while step MBM9 updates f. These
steps can be performed within the iteration steps Ge3 and Ge7. Note that each auxiliary
column fy,; is updated only once after which multiplication by z and incrementing dy;
can be performed. So we can analyze each column operation performed by Algorithm 3.2
to prove the property is maintained.

During each iteration of Ge7, [ is the index of the pivot column. Algorithm 3.2
performs two types of column operations, adding a scalar multiple of the pivot col-
umn into another column and switching column [/ with column N + i. The latter
operation preserves the property, since the column switch in step Gel9, is followed
by a nominal degree switch in step GE20. Since / is minimal in nominal degree,
then steps cel0, cel4, cel8, and ceE22 preserve the property in the following man-
ner: deg(f"') < max{deg(f”"), deg(f;)} < max{d;.d;} = d;. Step cE23 minimizes
the nominal degree of the auxiliary polynomial but it preserves the property since
deg(f;) <d; < dny;. Finally, when column N + i is multiplied by z, its degree increases
by 1, but its nominal degree is also incremented by 1 and so the property is maintained.
So for 1 < j < 2N, deg(f"*") <d¥*!. O

LemMmA 4.2. For each iteration at step MBM2, one has Z?ivl di=N-({t+2).

Proor. For ¢ = —1, the property is true by the initialization in step MBM1. Because
the last N columns of f(z) have their nominal degrees incremented by 1 in step MBMG,
the summation holds by induction for all ¢ > 0. O

LEmMA 4.3. For each iteration at step MBM2, one has
det([f1(0) f2(0) -+ fn(O)) #0.

Proor. This is true by construction on initialization. At step MBM9, the elementary
column operations encoded in t are applied to the constant coefficient, thus leaving it
nonsingular. O

LeEmMA 4.4. For each iteration at step MBM2 the following equivalence is true for each
matrix L produced by Algorithm 3.2 in step MBM5:

(Vi,1<i <N): Lj; #0 & L; # 0" < fnyi # 07,
where L; is the ith column of L.

Proor. At every stage, L;; # 0 = L; # 0V is apparent. Also, since Ly,; = Coeff(t +
L,M2) - fnei(2), Li # 0N = fyyi # 0V. We will show by induction that at every stage
t> -1, fnu # OV = Li; #0.

Ift = —-1,thenforalll <i <N, flbjrli] = OV, By definition LI"" = 0>V and so the
induction basis is immediate.

Suppose ¢ > —1 and fzglﬂ- #+ 0N —= L{f} # 0 for all ;. Let 1 <i < N be such that
frh £ ONIf fitl = 2. £l then L™ = L # 0 by the induction hypothesis. So now

we consider the possibility that f][\fj;.l] *z- fglﬂ..
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On the Matrix Berlekamp-Massey Algorithm 33:11

If fit1 # 2. £, then we know that £l = z- Y (e f). Since auxiliary
columns are never interchanged in Algorithm 3.2, then there exists 1 < j < N such that
a; # 0. Because column N+ of f  was replaced then at stage i of Algorithm 3.2, there
wasan 1 <[ < N such that A[”l # 0 and column / had minimal nominal degree. Noted
that A1 here is not the orlgmal matrix passed to Algorithm 3.2, but the eliminated
form being computed by the algorithm. So for all 1 < m < i, we have A[t” = 0. Since
column [ of A1 has a discrepancy in row i and has minimal nominal degree, then

either step 19 or step ce22 will place the contents of column / into column N + i of
Al 2 +11 At the completion of Algorithm 3.2, column i of L+ is equal to column N+i

of A1 41 Thus, L™ £ 0 since A/} # 0, completing the induction argument. 0

Lemma 4.5. For each iteration at step MBM2 the nonzero columns of L form a basis
for the column space of [My M; --- M.

Proor. Suppose ¢ = —1. By definition, L= = 0¥*N meaning there are no nonzero
columns. Since the matrix M_; is empty, its column space is empty. Therefore the
invariant holds.

Suppose ¢ > —1 and suppose the lemma holds for t. Step MBM4 defines Al =
[+l LI1]. The induction hypothesis allow us to write C**1! as

t+1
CU Y = Myl £10)... fv(O)] + Y My Coeff(; [ f1(2) ... fn(2))
i=1
=M, 1[£0)... fy(O)] +LPE for some 8 € KNV,

By hypothesis and Lemma 4.3 we deduce that the columns of A+ span the
columnspace of [My - -- M;,1]. Algorithm 3.2 performs elementary column operations
so the columns of [Z L¥*1] span the columnspace of [My--- M, 1] as well. We need
to argue that the nonzero columns in Z are not needed. In Step GE21, any nonzero
column of Z replaces by Lemma 4.4 a zero column of L and is then removed from
further updates in Step GE24. Therefore, the remaining columns in Z and the columns
of L still span [My--- M;,1]. However, at the conclusion of Algorithm 3.2 all remain-
ing columns in Z are zero. Since L1 is triangular, its nonzero columns are linearly
independent. O

LeEmMmA 4.6. Foreach iteration at step MBM2, we have ry (see Definition 3.1 on page 7) =
HWIN+1<j<2Nand f; # 0N}| (the number of nonzero auxiliary polynomials).

Proor. For all N+ 1 < j < 2N, Lemma 4.4 implies that fj[t] # 0N if and only if

Lﬁ.ﬂ_N # 0N, Lemma 4.5 implies that L has exactly 7, nonzero columns. So there are
exactly r; indices j suchthat N+ 1 < j < 2N and fj[t] 0N, O

Lemma 4.7. Foreach iteration at step MBM2 for all l such that N+1 <1 < 2N, f; =
ifand only if d =t + 2.

Proor. Ift = —1,thend " =1=¢+2and £ = 0V,
Let ¢ > —1 and suppose the invariant holds for ¢.
The update of f performed in step MBM9 dependent on the computation of r!#+1

by Algorithm 3.2 in step MBM5 forces two possibilities for the update of fl[t“]. Either
A =z 1 or Y = 205 (- f7) where i <1, ¥ £ 0V and «; # 0 for all i. The
proof of Lemma 4.4 illustrates that Algorithm 3.2 adjusts the column Ll[ﬂ y if and only
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33:12 E. Kaltofen and G. Yuhasz

if L # 0N, So LMW = L% = 0N implies that £ = 2. 9. L7V = 0N implies that
fi 1l =z-Y (i f [t]) Further Lemma 4.4 implies L)"') = 0 if and only if £ = 0V.

So £ = 0¥ if and only if LW = 0V if and only if L, = 0¥. By Lemma 4.4 and
the previous paragraph, £*! = 0V implies that £/ = 0¥ and £ = 2. £, Thus,
d"V =d"¥ +1=1¢+2+1=t+ 3 by the induction hypothesis.

Conversely, £ # 0V if and only LI"Y # 0V. So £ = 2. ¥".(e; - ) and the
induction hypothesis implies that d' < ¢ + 2 for all i. Thus, the d/™! £ ¢ +3. O

LEmMA 4.8. For each iteration at step MBM2 we have

> dj=r-(t+2).

1<j<2N and f;#0N

Proor. The invariant holds at ¢ = —1 by initialization. By definition r_; = 0 and
the N nonzero columns of f!-1 are the first N columns and each column has nominal
degree 0.

By Lemma 4.5, there are N — r; zero columns, each of which by Lemma 4.7 has
nominal degree ¢ + 2. Therefore, by using Lemma 4.2, we have the following equation:

2N
> dj:(Zdj)—(N—rt)-(t+2)
j=1

1<j<2N and f;#0N
=N-t+2)-(N—-r)-¢t+2)=r.-t+2). O

LEmMMA 4.9. For each iteration at step MBM2, one has
(Vj,1<j<2N)Vl,d;j <l <t): Coeff(; M(2) - fi(2)) = OV. (1)

Proor. This invariant is one of the main conditions in Coppersmith [1994, p. 338].
The invariant is true by default at initialization, that is, # = —1 since every column

J has dJ[._H > —1 and so the range is empty.
Let £ > —1 and assume the invariant holds at ¢. Let j be such that 1 < j < 2N. We
consider two cases, j < N and j > N.

If j > N, then f""" = z. ¥, o;f" and d/™Y = d¥ + 1 where m is the column
of maximal nominal degree in the linear combination. The induction hypothesis im-
plies that for all  in the linear combination and all / such that d,%] <[ < t we have

Coeff(l; M(2) - f(2)) = ON. Therefore, for all / such that dJ[-tH] <1l <t+1, we have
Coeff(; M(2) - {1 (2)) = Coeff(l — 1; M(2) - Y, o £ (2)) = OV.

If j < N, then f“" = ¥ ;- 1. 1fd¥*" = £+ 2, then the condition holds trivially as
in the base case. If djl-”l] <t+1, then dj[”l] = d!", where m is the column in the linear
combination with maximal nominal degree. The induction hypothesis implies that for
alli in the linear combination and allZ such that d¥ < < ¢ then Coeff(l; M(2)- ! (2)) =
0V, Therefore, Coeff(l; M(2)- }”J[t+1](z)) = 0N for all/ such that dJ[-H” <1 < t. Further, since
di* < t+2, then column j of ZI*! is ON. Thus, Coeff(t + 1; M - {1 (2)) = ZI*1 = o¥.
So for all I such that d“*" <7 <t + 1, we have Coeff(l; M - f"*!(2)) = O¥

Thus, (1) holds at stage ¢ + 1 and by induction the invariant is true for every t. O

We will make use of the following vectors.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 33, Publication date: September 2013.



On the Matrix Berlekamp-Massey Algorithm 33:13

Definition 4.10. If v € K[zIY = Y7 vz, v; € KV, then let CoeffVec(d;v) where
d > mbe a block vector in KNV of the following form:

OV
: d — mblocks
ON
CoeffVec(d;v) = | vm
Um—1
m+ 1 blocks
L Vo |

These vectors are generalizations of coefficient vectors. One can think of them as
embedding the coefficient vector of a vector polynomial into a larger coefficient vector.
Further, the block entries of the coefficient vector are vectors in K.

Lemma 4.11. For each iteration at step MBM2 for d = min{maxi<;j<on{d;},t + 1}, the
set of vectors in KNV defined by

U, = {Coef}‘Vec(d;zifj) |1<j<2Nand fj # oV 0<i< d—d;},
is linearly independent.

Proor. We proceed by induction on ¢.

So for t = —1 at initialization, d = 0 and the vectors in U_; are the columns of the
matrix Iy.

Let t > —1 and suppose the invariant holds at stage ¢. After the ¢ + 1 stage of the
algorithm, we can construct a matrix ¢ that is derived from ¥ and is a product of
the corresponding elementary column operations on the shifted coefficient vectors of
the generator and the auxiliary polynomials. Let U1 = U,t. Here, U, is considered
to be a matrix with the appropriate columns. By hypothesis, the columns of U,,; are
linearly independent.

If d is unchanged at the ¢+ 1 stage, then U, 1 C Uy;,1. So U, is linearly independent.

If d changes, then it can only increase by one. Further, since N polynomials did not
increase in nominal degree, we must have |U;, 1| = |Uy| + N. We can reconstruct U; 1
as the following matrix:

ONxN 0t+1
F ON><|Ut\ ’
where
F e KNN — [CoeffVec(d — 1; f7™) ... CoeffVec(d — 1; fr"1)].

We leave out the proof that this is in fact Uy, 4.
Now consider the following linear system:

C o
NxN 7
0 Ui CN — oN@+D
F oVt CN+1
L CN+U;| |
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33:14 E. Kaltofen and G. Yuhasz

By Lemma 4.3, we know that ¢c; = ¢c3 = --- = ¢y = 0 and the induction hypothesis
tells us that cy11 = - - - = ey, = 0. Further, since Uy, is equal to the columns of the
matrix above, Uy, is linearly independent. O

- CoroLLARY 4.12. Let d' < d as defined in Lemma 4.11. The set of vectors CoeffVec(d';
2" fi(2)), where 1 < j <2N and f; # oN,o<i<d-— dj, is linearly independent.

Proor. The vectors are formed from vectors in U; by removing top segments that are
zero. 0O

Lemma 4.13. For each iteration at step MBM2 for all j.d,iwith1 < j <2N,d; <d <t
and 0 < i < d —dj, CoeffVec(d;?z" fi(2)) is in the right nullspace of the following block
Hankel matrix:

My My --- My
My M - Mg
H=\| . . . .
M, g - - M,
Proor. This proof relies on Lemma 4.9. First, let co, c1, ..., cq; be the coefficients of
f;. Then, the following holds:
- o
: d—dj—i - 4 -
oN > My i
=0
Cdj dj
. Cd;—1 Mii1-ic
H - CoeffVec(d;z' f;) = H - . di+1 = g(:) i
Co d;
ov > M
. . L =0 _
: i
ON

Coeff(d — i; M(2) fi(2))
Coeff(d+1—1; M(z) f;(2)

Coeff(t —i; M(2) fi(2))

Sinced; <d—i <d+1—i <--- <t—i <t+1, Lemma 4.9 implies that every coefficient
in this vector is 0V. O

TuEOREM 4.14. For each iteration at step MBM2, let d = min{max{u, 8 — 1}, ¢}. Then,
the right nullspace of the block Hankel matrix given by
MO ][4'1 . Md

My My --- Mg
. ) (2)
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has a basis defined by the set
V, = {CoeffVec(d;2' fj(2)) |1 < j <2Nand d; <d,0 <i <d —d;}. 3)

Further, for all l with N+ 1 <1 < 2N and d < d; < t, any wider and shallower block
Hankel matrix given by

My My - My
My My - My, "

Mg - - M,
has a right nullspace basis
Vi = {CoeffVec(di; 2 f(2) | 1 < j < 2N and d; < d;,0 <i < d; — d;}. (5)

Proor. By Corollary 4.12 on page 14 the vectors in V; and V, 4 are linearly inde-
pendent, and by Lemma 4.13 on page 14 they are in the nullspace of H; and H; g4,
respectively. We proceed by induction to show that the vectors indeed span the corre-
sponding nullspaces.

If ¢ = —1, then the invariant is trivially true. Obviously, since we may set H_; = [0]
whose nullspace basis is the empty set. But d = ¢t = —1 and dJ[._l] > —1 for all j, so
V_1=40.

The case t = 0 can be proven as a base case as well. Such a proof would be a
specialized version of the proof for any ¢ > 0 where d = ¢t. Thus, we will use ¢t = —1 as
our base case for induction.

Suppose ¢ > —1 and the theorem holds for ¢. To prove the theorem holds at ¢ + 1, we
must break the update of the algorithm into the various cases which can take place. Let
w1 and 41 as computed by Algorithm 3.1 and d as stated in the theorem. The first
separation of cases is a condition on d. The case d = ¢t + 1 can be viewed as an extension
of the base case. If d < ¢ + 1, we will then break the proof down into two cases, each
based on p*t1 and ¥V, These cases are: plttl + 1 < g+l L+l 4 1 > gl+1l The
latter has two subcases, u! = ul“+1 and u!¥ # u#+1. The four cases are exhaustive.

Case 1.d =t + 1. Then Hyy = [My My --- M;;1]. By Lemma 4.6, H;;; has rank
ri+1. We show that |V, 1] = N(¢ 4+ 2) — ry;1, which is the full dimension of the nullspace
of H,,1 and proves that case. Obviously, the cardinality of V;,; depends on counting
the non-negative integers in the range from O to ¢ + 1 — dJ[-”l] for each nonzero column

fj[””. This is true even for any j such that d}”l] >t+ 1. If dj[“l] > t + 1, then

d}”u = t 4+ 2 and the number of non-negative integers in the range of this theorem

ist+1— dj[»“’l] +1=t+2—-(+2) =0, and so can be included in a full summation
without causing problems. By Lemma 4.3 on page 10 and Lemma 4.6 on page 11, there
are N + ;.1 nonzero columns of f+1, These facts and Lemma 4.8 on page 12 give us
the following:

Vil = > (t+1-di+1)
1<j<2Nand fI""!z0N
=(N+re1)t +2) - > !

1<j<2Nand fI*15£08

=(N+r3 1)+ 2) —re1(E+3) = NE+ 2) — rpq.
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Case 2.d < t+1and ut +1 < g+ Then, d = g“t1 — 1. The condition x4+ 1 <
1 implies that At = [0N*N I for otherwise Algorithm 3.2 would have made a
corresponding update on the nominal degrees. Therefore, 11 = ;!4 and the first N
columns of f(z) are unchanged during the update. Furthermore, i+l = gl + 1 and d
is incremented by 1, so H;; is formed from H; by adding on right block column. Now,
forall jwith1l < j < Ntherange0 <i < d—d}”“ has increased in cardinality by 1, so
there are N more vectors in V;,1. Since that is the maximal increase for the nullspace,
V;y1 forms a basis.

The same proof applies to all H;;1,, whered < n = dJ[»tH] = dj[-ﬂ + 1 < t + 2 for some
N+1<j<2N.

Case 3. d < t + 1, puttt1 41 > g+l gnd U = ¥ Then, d = u¥ and has
not changed, so H;;; is formed from H; by adding at the bottom one block row. Let
w € KN@+D be an element of the right nullspace of H;,;. Consider w to be a degree
d coefficient vector with a corresponding zero constant coefficient. By Lemma 4.3 on
page 10, we may assume that the corresponding constant coefficient of w is zero.

Then w is also in the right nullspace of H;. From the induction hypothesis, w can be
written as a linear combination of vectors from V;. Therefore let

w= Zapvp, (6)

where for all p, v, € V;. Thus v, = CoeffVec(d;z f}t](z)), for some j with 1 < j < 2N
and some i in the proper range. We first show that for all p we have i > 1. The
constant coefficients of the auxiliary polynomials are always zero, so by Lemma 4.3
the generating polynomials must be shifted by at least z so the corresponding con-

stant coefficient of w can be zero. For Jwith N+1 < j <2N and f; 1 2 0 we know
that Coeff(t + 1; M(z) - f 1(2)) = L which are nonzero and linearly 1ndependent (see

Lemma 4.4). Because the shlfted Vectors corresponding to the columns of £ by hy-
pothesis zero the new block row in Hy.1, if any CoeffVec(d; f; ) were in the linear
combination, then w could not be a nullspace element of H;, ;. Note that the argument
shows that at least one vector of V; cannot be in the nullspace of H;;, hence the rank
of Hy,1 is at least one more than the rank of H;.

We can carry out the steps MBM9 and MBM6 in Algorithm 3.1 within the iteration steps
GE3 and GE7 in Algorithm 3.2. Note that each column fy,; is updated only once, after
which multiplication by z can be performed. We shall show that at each iteration at step
GE7 the vector w in (6) remains in the span of V in (3). We shall use the superscripts
[old] and [new] for the contents of variables before and after each iteration in step GE7.
From the updates f; [newl — =f ol 4, in steps GE10 and GE14, we obtain

CoeffVec(d; 2" f}old]) = CoeffVec(d;z' fj[”e"’]) — yCoeffVec(d; z' f;). (7

Since d; < d][-"ld] = d][-”e"’], for alli in therange 1 <i <d — d][-"ld] the two vectors on the

right-side of (7) are in the new set V,, of (3). Hence, all vectors in V,;; of (3) are still
spanned by V., and w remains in the span of V.
From the updates

[new] __ 1 plold] [old] [new] [old] [new] [old] [new] [old
fl — y/IN+i + ﬁ ’ dl dN+l’ fN+z - ﬁ dN+z d

in steps GE18-GE20 and subsequent multiplication with z, we obtain CoeffVec(d;
2 f%9) = CoeffVec(d; 2~ /) and

CoeffVec(d; 2" f0%) = y CoeffVec(d; 2" ;") — y CoeffVec(d; 2 ~* firs"). (8)
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Again since dl["ld] d][\‘}i‘i], the required old range for i is included in the ranges of i and

i — 1 of the new right-side vectors in (8).

Finally, steps GE22—GE24 cannot occur because u*1! = d < ¢ + 1. Therefore, at the
conclusion of all updates for f, the vector w remains the linear span of V1, as was to
be shown.

We now show that for all 5 such that ! =d < 5 = d[”l] <t+2where N+1 <
J < 2N, the set defined in (5) on page 15 is a nullspace bas1s of (4). We know that
n = olJ[t+1 = d[t] + 1 for some 1 < & < 2N. Further, since d[t] +1 > ptttl =
then ds[t] > u[”. Therefore, j = & and f}”u =z fj[t], for otherwise we would have
d=ptt >l Sop = dj[-t“] = dj[-t] +1 > pul+Y Since n — 1 > u!, then the induction
hypothesis implies that the set V;,_; is a nullspace basis of the matrix H;,_;. Note
that H;,_1 = H; and V;,_1 = V; is possible. H;;;, has one more block column than
H,;,_: and so the nullspace of H, , has dimension at most |V, ,_1| + N. It is sufficient
then to show that |V;11,| = |V ,—1l + N.

The definition of V;,_; in (5) implies the following:

Vo= ¥ G-1-dft)
{¢1d <n-1}

For all1 < k < N, d,£t+1] = dg](k) < pu < 5 — 1 where @ is an bijection from
{1,2,...,2N} into {1,2,...,2N}. So for each %, the range between n and d[”l] is one
more than the range between n — 1 and dg](k) = d,EtH]. Also for any auxiliary column s
with d*1 < 5, then the range between dg](s) and n — 1 is equal to the range between
RES dg](s) + 1 and 5. Thereforem, we have the following equation:

Vienal= Y (=& +1) =N+ > (n-1-di,+1)=V,al+N.
{¢1d M <n) {c1dY  <n-1)
Thus, V;;1,, exhausts the nullspace of H;1 .
Case4.d <t+ 1.ttt 41 > gttt and Y > 48 Then, d = pl+Y = dit for some /
with N+1 <[ <2N.Letn = d[t] We know that n > max;- J’SN{dJ[t]}. By the induction
hypothesis, we have a right nullspace basis V;, of the block Hankel matrix H; ,, which

is H, .1 without the last block row. So we may use the same argument as in Case 3,
replacing H; and V;, with H; ,, and V; ,,.

Finally, forall A = dj[-”u > d = n, theset V;, 1, exhausts the nullspace of H;; ;. Again,
we use the same argument in Case 3 by replacing u*t! = 4 with » and n with ». O

LemMA 4.15. For each iteration at step MBM2 we have the following. Consider M, =
M, ..., My = M, F(z) = 2*[fiz™D) ... fn(@ D] € KN*N[z] and

n—1
My = (Z MHMHCoeff(i;F>> (A A(OT foro=1.2. ...

i=0

Then F(z) = [z fiz™!) 2% fo(z™1) - - - 2% fy(z™1] is the minimal matrix generator for
My, My, ...

Proor. Since [£1(0)--- fn(0)] = Coeff(u; F) the polynomial F is a matrix generator in
the sense of Definition 2.3. In particular, Ct*+! = Ct+2 = ... = V<V in step mBM4. Now
let n be the degree of the minimal generator, denoted by G. If w + 1 > 8 or d < n, then
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continue the algorithm until d > n and 8 > n + 1. Because the generator polynomials
do not change any further on the sequence {/;}, min{8 — 1, ¢} will eventually catch up
with both. Let G, be any column of G, let e = deg(G}) and let g(2) = 2¢G(z~1). Because
g is a generator vector of {M;}, CoeffVec(d;g(z)) is in the nullspace of H; on page 14.
Sinced > nand u < 8 — 1, by Theorem 4.14, we have

N d—dj
CoeffVec(d; 2% °g(z)) = Z Z a;;CoeffVec(d;2' fi(z)) for some o; ; € K.

j=1 i=0

Hence, Gi(2) = )_; Y ; @iz % ' Fj(2), where F; is the jth column of F. Hence, every
column of G is in the K[z] submodule of F' and F' is a minimal generator. O

LEmMA 4.16. Suppose that {M;} is linearly generated. In Algorithm 3.1, there exists
a T such that for all t > T the matrix polynomial

F(z) =[5 fiz™)) 2% folz7) -+ 2 (D)
is the minimal matrix generator for {M;}.

Proor. We introduce the notion of defect (cf. Beckermann and Labahn [1994]) for
each1 < j < 2N: dfcty] =t— dJ[”. We now follow the defect of each vector polynomial
f; throughout the algorithm. When a column is placed into the auxiliary part of f and
shifted in steps GE19 and MBM9 its defect remains unchanged when reaching step MBM5
again, because the nominal degree is incremented in step MBM6 and ¢ is incremented in
step MBM3. The corresponding column that is switched into the generator part has its
defect incremented by 1 due to the increment of ¢, as have all other generator vectors.

Now let v be the degree of the first invariant factor of the minimal matrix generator,
which by Theorem 2.7 is the scalar minimal generator. We claim that the defects of
the generator columns eventually grow to v. The minimal defect min;;- N{dfct?]} is

t — u!. When u grows, in Case 1 or 4 in the proof of Theorem 4.14, the minimal defect
can shrink. However, the corresponding column f; used in the update has its defect
incremented. Since initially the defects are —1 and —2, after at most N(v + 2) cases
where pt1 > ;1 the defects of all generator columns must be at least v. In particular,
then u < ¢.

Suppose now that at ¢ = T' the defect of all generator polynomials is at least v. We
complete the proof by showing that in Lemma 4.15 we have My = My, forall > 1.
For t = T in Theorem 4.14, we have d > u and T' > u + v. Furthermore, from (3) on
page 14,

n—1
My [f1(0)- - fn(O] + > Mrp_4iCoeff(i; F) = 0NN forkc =0,1,....v - 1.
=0

Let 2" — Y ",_5 cz2"~* be the minimal scalar generator for {};}. Then
v—1 v—1pu-1 B
0NN =3 e, My [1(0)- - fxnO]+ > > eeMp_,_,.4iCoeff(i; F)
x=0 k=0 i=0
n—1

= My 1[£1(0)--- fn(0)] + Z Mri1_,4:Coeff(i; F).
i=0

Therefore, My, 1 = My, 1. For larger 6, we use induction. O
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Lemma 4.17. After each iteration of steps MBM3 through MBM7 of Algorithm 3.1,
Bl | gle+11 5 gltl | Il

Proor. During each iteration of steps MBM3 through MBM7, o can never decrease so
that o1 > o for all ¢ > —1.

If ot = o1 then steps GE20 and Ge23 will not be performed by the call to
Algorithm 3.2 in step MBM5. So g1 = gl 4+ 1, and thus g1 + 41 > gl 1 514,

If o1 > 58 then during step MBM5, step GE20 or step GE23 were performed at
least once. Therefore, g+ = gl 41, or g+l = dJ[.t] + 1 for some 1 < j < N. In the
former case, then g+ 4+ g+l = gltl 1 1 4 50+ 5 gl 4 51 n the latter case, then
B 4ol = @ 4 1 4 ol > g + 1461 — g 4 gl > gl 1 61

LemmA 4.18. Given any input matrix sequence {Mp};2, and any bound 8, Algo-
rithm 3.1 returns “insufficient bound” or a candidate minimal generator F after pro-
cessing at most 28 elements.

Proor. Suppose that Algorithm 3.1 is run until £ = 2§ — 1, thus processing the first
28. Since g1 4+ ¢-11 = 1, then Lemma 4.17 implies that -1 4 ¢20-11 > 925 4 1. If
o > §+1, then “insufficient bound” is returned. If o < §, then g1 5251 > 95 4 1 >
8§ + u-1 1 1 since u < o by definition. Thus, g fails the condition of MBM2 and so
Algorithm 3.1 will return a candidate minimal generator F. 0O

THEOREM 4.19. Suppose {My};2, is linearly generated by a minimal matrix generator
with minimal degree d and determinantal degree 8y < 8. Then, Algorithm 3.1 returns a
minimal generator of {My};2 , after processing at most d+ 8 elements. Otherwise, {My}7°
is not linearly generated or has minimal generator of determinantal degree 5y > 8. In
either case, Algorithm 3.1 returns “insufficient bound” or an incorrect generator after
processing at most min(d, §)+ 8 elements where d is the degree of the generator candidate
computed at t = 25 — 1 (see Lemma 4.15).

Proor. We will show that Algorithm 3.1 returns a minimal matrix generator of a
linearly generated sequence if the bound § is large enough. We also give a tighter bound
on the number of elements that need to be processed before terminating.

We begin by assuming the sequence is linearly generated and 83 < §. Since
Lemma 4.16 states that Algorithm 3.1 will find a minimal generator, we can assume
that u < d for all £. We proceed as in Lemma 4.18 and assume the algorithm is run
untilt=d+8 —1.Then,B+0c>d+d5+1andsoo >8or>8§—oc+u+1.Ifo > 4,
then step MBM8 returns “insufficient bound”. If o < §, then the condition of step MBM2
is violated. So the algorithm will terminate and return either “insufficient bound” or a
candidate minimal generator.

If “insufficient bound” is returned, then ¢ > § + 1. Lemma 4.16 implies that there
exists a T' such that if Algorithm 3.1 is computed to stage T' > ¢ = d + § — 1 or beyond,
then F(z) is a minimal matrix generator. Since ¢”! is an increasing sequence, then
ol > ¢ > 4. If we can show that 8, = deg(det(F(z))) = o'T! > §, then we have
proven 8y > & and reached a contradiction. The upper bound deg(det(F(z))) < o7 is
straightforward since Lemma 4.1 and Lemma 4.3 imply that deg(F;(z)) = d; for all
1 < j < N. The multilinear property of the determinant allows us to write det(F'(z)) in
the following manner:

det(F(z)) = 2°" - det([£1(0) - - - fy(0)]) + lower order terms.
By Lemma 4.3, we know det([ /1(0) --- fn(0)]) # 0 and so deg(det(F(2))) = o''T). There-

fore, 83 > 6 and so we have a contradiction.
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If “insufficient bound” is not returned, then we have § > o, F(z) a possible minimal
generator and 8 — 4 > § — 0. Since § — o > 0, then 8 > w. Suppose F(z) is not the
minimal generator of {M,}7°,. Lemma 4.16 proves that thereisa T' > ¢t = d+4§ — 1 such
that Algorithm 3.1 returns a minimal generator. Since F'(z) is not a generator, then as
the algorithm is run until 7', there must be a nonzero discrepancy. Since 8 > i, then o
will be increased such that o!”! > ¢ + 8 — 1 > 8. As in the previous case, this implies
that §;; > § and a contradiction has been found. Therefore, F(z) is a minimal generator
of {M}32,-

Othe};'vgise, assume {M,}7°, is not linearly generated or is linearly generated with
determinantal degree 8, > §. Suppose Algorithm 3.1 is run until ¢ = min(d, §) + § — 1.
So B+0 > min(d,8) + 8 + 1. If o > §, then “insufficient bound” is returned. If ¢ < §
then we know that 1 < min(d, §) by definition of x and d and so 8 > 8§ —o + u + 1. So
Algorithm 3.1 will return a possible generator F with determinantal degree o. Since
{Mp}32,, is not linearly generated or is linearly generated with determinantal degree
38y > 8 > o, then F is an incorrect generator. O

Remark 4.20. Note that Theorem 4.19 is also applicable in the scalar case for the
classical Berlekamp/Massey algorithm: if a degree bound § for the linear generator
is given, the Berlekamp/Massey algorithm can stop after processing d + § sequence
elements, where d is the actual degree of the generator. That early termination property
is useful, for example, in the Wiedemann algorithm for solving sparse linear systems
over finite fields [Wiedemann 1986; Kaltofen and Saunders 1991].

Theorem 4.19 gives an exhaustive analysis of the way Algorithm 3.1 terminates for
all possible input. If the the bound § is sufficient, then a minimal generator is returned.
If the bound § is too small, then the algorithm may return “insufficient bound” or an
incorrect candidate generator. We ignore the possibility that the sequence is not linearly
generated since only a finite number of sequence elements are processed and the
sequence can always be extended to a linearly generated sequence (see Lemma 4.15).
It is important to note that no algorithm, including Algorithm 3.1, can determine if the
bound $ is sufficient. Such verification requires infinitely many sequence elements be
processed, since the determinantal degree can increase at any stage. The correctness
of the output of Algorithm 3.1 is dependent on §, and the algorithm must assume
the bound § is sufficient. If “insufficient bound” is returned, then the algorithm has
proven that the bound § is too small since the proof of Theorem 4.19 shows that the
sequence can have no matrix generator of determinantal degree less than or equal to §.
Otherwise, Algorithm 3.1 returns a minimal generator of the completed sequence from
Lemma 4.15 and assumes that the input sequence and the completed sequence are the
same, which is true if the bound § is sufficient. The output of Algorithm 3.1 is always
correct for a given input § that is assumed to be sufficient.

5. MATRIX BERLEKAMP/MASSEY AND RECTANGULAR MATRIX SEQUENCES

Algorithms 3.1 and 3.2 and the subsequent proofs assume that the matrix sequence
{Mp}32, consists of square matrices. In this section, we will detail the necessary changes
that allow the algorithms to compute a minimal right generator of a rectangular matrix
sequence. We revive our notation N, and N, to denote the row and column dimen-
sions of the sequence. Rather than rewriting the algorithms, we only detail the differ-
ences between the square and rectangular algorithms. Finally, we give justification for
our changes by appealing to the square algorithm and its output given a special input.

The input to Algorithm 3.1 will now be M € KNew*Nel[[2]]. The output of the algorithm
will be F(z) € KNe*Ne[2]. The variable f(z) is now an Ny x (Neol + Nyow) matrix. For
the entire algorithm, the quantity 2N will be replaced by Nco + Nyow. The matrix A will
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now have dimensions Nyow X (Neol + Nyow). At Step MBM1, f is initialized to be the matrix
[Iy,, ONeo*Neow], The nominal degrees will be initialized thusly, d; = 0 for alli < N, and
d; = 1 otherwise. In steps MBM4 and MBM5, L € KNowxNow  Algo Cl, ZI) ¢ KNvow>Nea
The diagonal block matrix in Step MBM9 will be changed to diag(Iy,,, z - In., ). In steps
MBM6, MBM7, and MBM10, N is changed to N,.

The changes that must be made to Algorithm 3.2 are as follows. As previously men-
tioned, 2N becomes N, + Nyow. In Step ce3, N will be changed to Nyow. Everywhere
else, in Step GE2 and steps Ge4 through cE24, N is changed to Ng.

The specific changes given above are a result of the general changes that must
occur when moving from square the rectangular matrix sequences. As in Section 2,
the minimal right generator is a square matrix of dimension N,,. Thus, the algorithm
must reflect this dimension change. Because the sequence has row dimension Ny,
then the algorithm must maintain N, auxiliary vectors. This reflects the possible
rank of the columns of the matrix sequence. The number of generator columns and
auxiliary columns affects the initialization and computation of f and its associated
variables. The differentiation between generator and auxiliary columns also forces the
changes in Algorithm 3.2.

We now give justification for the changes listed previously. Rather than redo the com-
plete proof of the square algorithm, we will use the square algorithm to prove the rect-
angular algorithm. Given the rectangular matrix sequence {M;};°, we will construct
a square matrix {M,}7° . The square sequence will have dimension max{N;ow, Neor}. If
Neow > Neoi, then My, = [M), 0NeowxNeow—Nea)] - Otherwise M, is My, padded by Nyoi — Nrow
zero rows. Now we consider the execution and output of Algorithm 3.1 when the se-
quence {M};°, is given as input. We assume that the input 6 is the same for both
sequences.

Suppose N, > Nyow. Then, the square sequence contains the original sequence as
full column submatrices. Thus, any generator of {My};°, is a generator of {M;};°,. The
inverse is also true since the added rows are zero rows. Thus, the output of Algorithm 3.1
is a minimal generator of {M};° ), when {M;};° , is given as input. However, the square
algorithm contains too many auxiliary columns. At every stage ¢, the bottom N — Nyow
rows of A are zero. Thus, the last Ny — Nyow auxiliary columns will remain Qe
throughout the algorithm. It is therefore, unnecessary to compute those columns and
those rows of A, By changing the algorithms as listed here, these computations are
eliminated. B

If Niow > Nel, then the output of Algorithm 3.1 given {Mg};°, has incorrect
dimensions to be a minimal generator of {M;};°,. Since the last Nyow — Neoi columns

of the matrix sequence are zero columns, then the last Nyow — Nyt columns of C#! are
zero columns. This means that the column fi[t] is unchanged since initialization and so
di[” =0 for all Ny + 1 <i < Nyow. Therefore, if F is the output of Algorithm 3.1, when
given {M;}°, as input, we know that F = diag(F, Iy, n,,), with F € KNo*Nei[z],

F is a minimal right generator of {M,};°, since the deg(det(F)) = deg(det(F)). So
Algorithm 3.1 computes the minimal generator of {M;};°, when given {M;};2, as
input. The rectangular algorithm described above eliminates the computation of the
last Nyow — Neo generator columns. These columns do not need to be computed since
they are precomputed by the nature of the padded sequence.

The augmentations of Algorithm 3.1 and Algorithm 3.2 described here eliminate the
unnecessary computations performed when a rectangular matrix sequence is converted
to a square matrix sequence by padding the sequence with zeroes. The proof of the
original algorithm in Section 4 implies that the rectangular algorithm is correct. This
completely generalizes the Matrix Berlekamp/Massey algorithm and implies that given
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any linearly generated matrix sequence and a proper bound on the determinantal
degree of a minimal generator, the Matrix Berlekamp/Massey algorithm will compute
a minimal generator.

6. PERFORMANCE

We end with a discussion of the complexity of Algorithm 3.1 and empirical evidence of
its performance versus another method for computing minimal matrix generators. The
results of Lemma 4.18 and Theorem 4.19 on page 19 give a bound on the number of
elements Algorithm 3.1 processes before terminating. By amortizing the cost of each
iteration, the bound will lead to a worst case complexity for the algorithm. Finally, we
provide the results of a comparison between Algorithm 3.1 and a method based on the
fast power hermite padé solver of Beckermann and Labahn [1994].

THEOREM 6.1. Given any bound § and any matrix sequence {Mk}%‘i})l Algorithm 3.1

has a worst-case complexity of O(82N? + 8N?) field operations, where N is the matrix
dimension of the sequence.

Proor. We will analyze steps MBM4, MBM5, and MBM9 of Algorithm 3.1. These steps
represent the major field operation costs of each iteration. In step MBM4, we assume L
is computed by step MBM5 of the previous iteration, and so only C is computed. This
assumption allows the cost of steps MBM4 and MBM9 to be given in terms of §. The
results of Lemma 4.18 and Theorem 4.19 state that Algorithm 3.1 processes at most
25 elements of the sequence.

Since step MBM5 is Gaussian elimination, it has a complexity of O(N?®) field
operations. We will amortize the costs of steps MBM4 and MBM9 by analyzing the
computation cost column by column. Using matrix times vector products and matrix
column operations instead of matrix multiplication will result in the stated complexity.
Computing column j of C requires d; + 1 matrix times vector products and d; vector
additions for each 1 < j < N. By summing over the range of j, then step MBM4 has a
cost of N2 + N3 + o N field operations. Since o < 8, then each iteration of step MmBM4
has a complexity of O(8N? + N?) field operations. To analyze step MBM9, we use matrix
column operations instead of matrix multiplication. The transformation matrix t
computed in step MBM5 has two types of column operations. Each column operation is
either a column switch or an addition of one polynomial vector and a second polynomial
vector of a lesser degree times a scalar. Each generator column requires at most N of
the latter column operations and so t has at most N? of these column operations. Each
of these operations has a complexity of O(d;N + N) field operations where 1 < j < N.
So the total cost of computing column j of f has a complexity of O(d;N? + N?). The
auxiliary columns will be computed as a result of the computations of the generator
columns. By summing over 1 < j < N, then the total cost of step MBM9 has a complexity
of O(c N? + N?) field operations. During step MBM5, o is updated. If ¢ < 8, then the
total cost of step MBM9 has a complexity of O(8N? + N?3) field operations. If ¢ > §, then
step MBM8 will return “insufficient bound” and step MBM9 will not be performed.

Algorithm 3.1 processes each element of the sequence with worst case complexity of
O(8N? + N?) field operations and it processes at most 28 elements. So Algorithm 3.1
has a worst case complexity of O(§2N? + §N?) field operations. O

We now compare the performance of Algorithm 3.1 with an algorithm based on the
fast power hermite padé solver of Beckermann and Labahn [1994]. Turner [2002] de-
scribes the relationship between the minimal matrix generator of a linearly generated
matrix sequence and a o-basis of an associated Padé system. Turner implemented his
methods in Maple and provided a copy to the authors. We altered his original code
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Table II. Arithmetic Operation Comparison

Matrix Dimension Experiment 6 Experiment 6
Algorithm 3.1 | [Turner 2002] | Algorithm 3.1 | [Turner 2002]
1 29946 99034 30720 100155
2 64665 380339 64133 384443
3 101948 868197 104877 907893
4 143652 1562988 140967 1557380
5 185175 2450470 180659 2456240
6 228962 3559226 234787 3696432
7 280705 4871117 301006 5350720
8 327771 6373395 343334 6888984
9 394147 8061927 423928 9409654
10 433936 10009119 429072 9992999

to work over finite fields and added an operation count so the comparison could be
performed. A Maple implementation of Algorithm 3.1 was used for comparison.

We test the algorithms using random square matrix sequences over GF2 with matrix
dimensions varying from 1 to 10 and a fixed degree bound for each dimension. For each
dimension, 10 random sequences are constructed and the minimal matrix generator of
each sequence is computed. During each computation the number of arithmetic opera-
tions performed by each algorithm is calculated and an average for each dimension is
determined. The sequences are constructed using two methods described here.

Experiment A For each dimension i, the sequences are constructed from bilinear block
projections. A random 100 x 100 matrix A, and two random 100 x i
matrices X and Y are used to create the sequence {M;};2, = XT AFY .
The degree bound for each i is fixed at 100.

Experiment B For each dimension i, random matrix generators and initial sequences
are used to construct each sequence. A matrix generator of degree
[100/i] is constructed from random coefficients and a random ini-
tial sequence of length [100/:] is defined. Then using Definition 2.3,
the sequence is completed. The degree bound for each dimension i is
[100/:17: > 100.

The results of the comparison given in Table II show that Algorithm 3.1 performs
significantly faster than the o-bases methods of Turner [2002]. For most dimensions
the results for each experiment are similar. For some dimensions, such as dimension
9, the results of Experiment B are much larger than Experiment A. This is due to the
larger degree bound used in Experiment B, which in the case of dimension 9 is 108 as
compared to 100 for Experiment A.
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