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ABSTRACT
We present algorithms that compute all irreducible factors
of degree ≤ d of supersparse (lacunary) multivariate poly-
nomials in n variables over an algebraic number field in de-
terministic polynomial-time in (l+d)n, where l is the size of
the input polynomial. In supersparse polynomials, the term
degrees enter logarithmically as their numbers of binary dig-
its into the size measure l. The factors are again represented
as supersparse polynomials. If the factors are represented
as straight-line programs or black box polynomials, we can
achieve randomized polynomial-time in (l + d)O(1). Our ap-
proach follows that by H. W. Lenstra, Jr., on computing
factors of univariate supersparse polynomials over algebraic
number fields. We generalize our ISSAC 2005 results for
computing linear factors of supersparse bivariate polynomi-
als over the rational numbers by appealing to recent lower
bounds on the height of algebraic numbers and to a special
case of the former Lang conjecture.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; F.2.2 [Theory of Com-

putation]: Analysis of Algorithms and Problem Complex-
ity—Nonnumerical Algorithms and Problems

General Terms
algorithms, theory

∗
This material is based on work supported in part by the National

Science Foundation under Grants CCR-0305314 and CCF-0514585
(Kaltofen).
Kaltofen’s permanent address: Dept. of Mathematics, North Car-
olina State University, Raleigh, North Carolina 27695-8205, USA,
kaltofen@math.ncsu.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’06, July 9–12, 2006, Genova, Italy.
Copyright 2006 ACM 1-59593-276-3/06/0004 ...$5.00.

Keywords
sparse polynomials, lacunary polynomials, multivariate poly-
nomials, polynomial factorization, polynomial-time complex-
ity, algebraic numbers, height, Lang conjecture

1. INTRODUCTION
The algorithms in this paper take as inputs “super”sparse

(lacunary) polynomials. A supersparse polynomial

f(X1, . . . , Xn) =
t

X

i=0

ai X
αi,1

1 · · ·X
αi,n
n (1)

is input by a list of its coefficients and corresponding term
degree vectors. One defines the size of f as

size(f) =
t

X

i=0

“

size(ai) + ⌈log2(αi,1 · · ·αi,n + 2)⌉
”

, (2)

where size(ai) is the bit-size of the scalar coefficients. In our
case, the coefficients are in an the algebraic number field F
that is represented as a ring of (dense) polynomial residues
F = Q[ζ]/(ϕ(ζ)) with a monic (dense) irreducible minimum
polynomial ϕ(ζ) ∈ Z[ζ]. The measure (2) accounts for very
high degrees, say with hundreds of digits as binary num-
bers, in distinction to the usual sparse representation [21,
12]. One cannot evaluate a supersparse polynomial at al-
gebraic numbers in polynomial-time in its size, because the
value of the polynomial can have exponential size, say 2100

digits. Important exceptions are evaluating at roots of unity.
A supersparse polynomial can be represented by a straight-
line program [8] of size O(sizef) via evaluating its terms with
repeated squaring. It is NP-hard to test if a supersparse pol-
ynomial over the rational numbers has a non-trivial content,
i.e., factors depending only on X1, . . . , Xn−1, cf. [18].

A breakthrough polynomial-time result is in [2]. Any in-
tegral root of a univariate supersparse polynomial with in-
tegral coefficients can be found in (sizef)O(1) bit operations.
H. W. Lenstra, Jr., [16, 17] has generalized the result to com-
puting factors of small degree over an algebraic extension, in
particular to computing rational roots in polynomial-time.
In [11] we generalize Lenstra’s results to computing linear
factors of bivariate supersparse polynomials over the ratio-
nal numbers in polynomial-time. We also give a Monte Carlo
randomized polynomial-time algorithm based on interpola-
tion for computing quadratic rational polynomial factors,
that under restrictions on the leading coefficient. For all
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problems that we consider there are deterministic algorithms
whose bit complexity is of order (size(f) + deg(f))O(n) [7,
10].

Here we present an algorithm that given a degree bound
d can compute all irreducible factors of degree ≤ d and
their multiplicities in (size(f)+ d)O(n) bit operations. Since
the irreducible factors are also represented as supersparse
polynomials of the form (1), the output size can be super-
polynomial in size(f)+d [3, Example 5.1]. If the irreducible
factors are represented as straight-line programs [9] or black
box polynomials [13], our algorithms become Monte Carlo

randomized of (size(f) + d)O(1) bit complexity.
The deterministic algorithms of [2, 16, 11] are based on

gap theorems. For instance, in [2, Proposition 2] it is shown

that if f̂(X) = g(X) + Xuh(X) ∈ Z[X] with g 6= 0, h 6= 0,

deg(g) ≤ k and u−k ≥ log2 ‖f̂‖1 then for an integer a 6= ±1,

we have f̂(a) = 0 =⇒ g(a) = h(a) = 0. In [11] we develop a
variant of the gap technique for high degree sums of linear
forms.

H. W. Lenstra, Jr. has used the gap method via the height
of an algebraic number for computing rational roots and
low degree factors of supersparse rational polynomials. The
algorithm presented in [16] receives as input a supersparse
univariate polynomial f̄(X) =

Pt
i=0 aiX

αi ∈ F [X] over the
algebraic number field F = Q[ζ]/(ϕ(ζ)). Furthermore, a
factor degree bound d is input. The algorithm produces a
list of all irreducible factors of f̄ over F of degree ≤ d and
their multiplicities in

(size(f̄) + d)O(1) (3)

bit operations. Here ‖ϕ‖ is the (infinity) norm of the co-
efficient vector of ϕ and ‖f̄‖ is the norm of the vector of
norms of the coefficients ai(ζ). We assume that a common
denominator has been multiplied through and all coefficients
of the ai(ζ) are integers. For example, for ϕ = ζ − 1, that
is, F = Q, and d = 1, Lenstra’s algorithm finds all rational
roots of a supersparse integral polynomial f̄ in polynomial-
time in size(f̄). We note that there are no more than

O(t2 · 2D · D · log(2D t)), where D = d · deg(ϕ) (4)

irreducible factors of f̄ of degree ≤ d [17, Theorem 1], each
of which, with the exception of the possible factor X, has
multiplicity at most t [16, Proposition 3.2]. The count (4)
is independent of deg f̄ and the coefficient size of f̄ . In
addition, by virtue of (3) the number of factors is always
polynomial in d + sizef̄ .

Here we generalize the gap techniques of [11] in three ways.
First, we allow n ≥ 2 variables. Second, we compute all fac-
tors of degrees ≤ d. Third, we allow algebraic numbers as
coefficients. In order to obtain a usable gap theorem, we ex-
ploit a special case of the Lang conjecture which essentially
limits factors on whose surfaces torsion points, i.e., cyclo-
tomic points, are dense to generalized cyclotomic polynomi-
als. The full Lang conjecture was proved by Faltings (see,
e.g, [5]). Arguing in reverse, we can prove that those factors
that are not generalized cyclotomic polynomials must have
suitable non-cyclotomic roots which we can plug in similarly
to the integer root above. Lastly, we need a lower bound on
the Weil height of the non-cyclotomic root, which we luckily
can lift from the recent literature [1]. For finding generalized
cyclotomic factors we develop our own techniques.

2. BACKGROUND FROM NUMBER THE-
ORY AND DIOPHANTINE GEOMETRY

A cyclotomic point of Cn is a point all of whose coordi-
nates are roots of unity. In group-theoretic language, they
are the torsion points of the multiplicative group (C∗)n. The
hypersurfaces on which cyclotomic points are (Zariski) dense
play a central role in this paper. Cyclotomic points are
clearly dense on any hypersurface defined by an equation of
the form

n
Y

i=1

Xai
i = θ, (5)

where θ is a root of unity and the exponents ai are in Z. For
future use (see in particular Lemma 6 in section 5), note that
such a hypersurface is irreducible iff the ai have no nontrivial
common divisor. As it turns out, those hypersurfaces (5)
are the complete list of irreducible hypersurfaces on which
cyclotomic points are dense, which constitutes a well-known
special case of the former Lang conjecture. We first state
the general Lang conjecture as given in [5]:

Theorem 1. Let A be an Abelian variety defined over C,
let X be a closed subvariety of A, and let Γ be a subgroup of
A(C) of finite rank (i.e., such that there exists a free finitely
generated subgroup Γ0 ⊆ Γ such that for every x ∈ Γ there
exists an integer n ≥ 1 such that nx ∈ Γ0). Then there
exist a finite number of points γ1, . . . , γr ∈ Γ and a finite
number of Abelian subvarieties B1, . . . , Br of A such that
γi + Bi ⊆ X for all 1 ≤ i ≤ r and

X(C) ∩ Γ =
[

1≤i≤r

γi + (Bi(C) ∩ Γ).

We will only need to apply this theorem when A is is the
multiplicative group (C∗)n. A proof of the Lang conjecture
in this special case was first given by Laurent [15]. For Γ
we will take the group of torsion points of A. In light of our
choice for A, Γ is the group of cyclotomic points of (C∗)n. By
Theorem 1, an irreducible hypersurface of (C∗)n on which Γ
is dense must be a translate of an algebraic subgroup Bi of
(C∗)n by a point γi ∈ Γ. We therefore need to know what
the Bi might look like. This is well known from the basic
theory of algebraic groups.

Lemma 1. Any proper algebraic subgroup G of (C∗)n is
included in a subgroup defined by an equation of the form

n
Y

i=1

Xai
i = 1 (6)

where the exponents ai are in Z and are not all zero.

For completeness, we sketch the proof of this lemma. Let
P be a non identically zero polynomial which vanishes on
G. The fact that P ≡ 0 on G shows that the monomi-
als occuring in P are linearly dependent (on G). However,
any monomial is a character of G, and distinct characters
are linearly independent (see for instance [6], p. 102). We
conclude that there must exist at least one pair (m, m′) of
distinct monomials of P such that m ≡ m′ on G. This
equality yields an equation of the required form. 2

In fact, by [6, p. 103], any algebraic subgroup of (C∗)n is
an intersection of groups of the form (6).

It follows from Lemma 1 and the discussion preceding it
that if V is an irreducible hypersurface of (C∗)n on which
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cyclotomic points are dense, it must indeed be defined by an
equation of the form (5). Note also that the n hypersurfaces
of the form Xi = 0, which lie in the complement of (C∗)n,
do not contain any cyclotomic point. We therefore arrive at
the following conclusion.

Corollary 1. Let V be an irreducible hypersurface of
Cn. The cyclotomic points are Zariski dense on V iff V is
defined by an equation of the form

n
Y

i=1

Xβi
i − θ

n
Y

i=1

Xγi
i = 0

where θ is a root of unity and βi, γi ∈ N.

We will also need to use a recent estimate on the height of
algebraic numbers (see Lemma 2 below). First, we recall
the construction of the height. For any prime number p, the
p-adic absolute value on Q is characterized by the following
properties: |p|p = 1/p, and |q|p = 1 if q is a prime number
different from p. For any x ∈ Q \ {0}, |x|p can be computed
as follows: write x = pαy where p is relatively prime to
the numerator and denominator of y, and α ∈ Z. Then
|x|p = 1/pα (and of course |0|p = 0). We denote by MQ the
union of the set of p-adic absolute values and of the usual
(archimedean) absolute value on Q.

Let d, e ∈ Z be two non-zero relatively prime integers. By
definition, the height of the rational number d/e is max(|d|,
|e|). There is an equivalent definition in terms of absolute
values: for x ∈ Q, H(x) =

Q

ν∈MQ
max(1, |x|ν). Note in

particular that H(0) = 1.
More generally, let K be a number field (an extension

of Q of finite degree). The set MK of normalized absolute
values is the set of absolute values on K which extend an
absolute value of MQ. For ν ∈ MK , we write ν|∞ if ν
extends the usual absolute value, and ν|p if ν extends the
p-adic absolute value. One defines a “relative height” HK

on K by the formula

HK(x) =
Y

ν∈MK

max(1, |x|ν)dν . (7)

Here dν is the so-called “local degree”. For every p (either
prime or infinite),

P

ν|p dν = [K : Q]. Sometimes, instead

of (7) one just writes HK(x) =
Q

ν max(1, |x|ν) if it is under-
stood that each absolute value may occur several times (in
fact, dν times) in the product. The absolute height H(x) of

x is HK(x)1/n, where n = [K : Q]. It is independent of the
choice of K. In Proposition 1 we will also use the product
formula:

Y

ν∈MK

|x|dν
ν = 1 (8)

for any x ∈ K \ {0}. More details on absolute values and
height functions can be found for instance in [14] or [20].
In the following lemma we work with the logarithmic height
h(x), which is defined as the logarithm of the absolute height
H(x).

Lemma 2. Let F be an algebraic number field of degree
δ over Q, and θ a root of unity. The logarithmic height of
any nonzero algebraic number α that is not a root of unity
satisfies

h(α) ≥
c

dδ

„

ln(2dδ)

ln ln(5dδ)

«−13

, (9)

where d is the degree of α over F (θ) and c > 0 a universal
constant.

Proof. Since F (θ) is of degree at most δ over Q(θ) α
is of degree at most dδ over Q(θ). The result follows from
Theorem 1.1 of Amoroso-Zannier [1] since the cyclotomic
extension L = Q(θ) is Abelian over Q (see for instance [19,
Section 8.4]).

3. A MULTIVARIATE GAP THEOREM
In the following, X denotes a tuple of variables (X1, . . .,

Xn), and V (P ) denotes the zero set of a polynomial P .
Let K be a number field and ν ∈ MK a normalized abso-

lute value. We extend ν to K[X] by setting |
P

i aiX
αj |ν =

maxi |ai|ν . We define a height function on Q[X] by the for-

mula H(f) =
Q

ν∈MK
|f |

1/[K:Q]
ν , where K is chosen so that

f ∈ K[X]. Note that H(f) is independent of the choice
of K. These definitions are natural generalizations of those
given by Lenstra for univariate polynomials.

Lemma 3. Let f ∈ Q[X] be a polynomial with k mono-
mials, and let θ1, . . . , θn−1 be roots of unity. The height of
the univariate polynomial p(X) = f(θ1, . . . , θn−1, X) satis-
fies the inequality H(p) ≤ (k − l + 1)H(f), where l denotes
the number of monomials in p. In particular, we always have
H(p) ≤ kH(f).

Proof. Choose the number field K so that θ1, . . . , θn−1 ∈
K and f ∈ K[X]. We have |θi|ν = 1 for any ν ∈ MK . As
a consequence we have |p|ν ≤ |f |ν for any ultrametric ab-
solute value in MK . For an archimedean absolute value, we
have |p|ν ≤ (k − l + 1)|f |ν (each monomial of p “comes”
from at most k − l + 1 monomials of f). The inequality
H(p) ≤ (k − l + 1)H(f) follows since there are [K : Q]
archimedean absolute values in MK . Hence H(p) ≤ kH(f)
if l ≥ 1. This inequality also holds true for l = 0 since
H(0) = 0.

Theorem 2 (multivariate gap theorem). Let F be
an algebraic number field of degree δ over Q, and f ∈ F [X]

a multivariate polynomial of the form f(X) =
Pt

j=0 ajX
αj .

Let P ∈ F [X] be a multivariate polynomial of degree d,
irreducible in F [X]. Assume moreover that the cyclotomic
points are not dense in V (P ).

Let βj be the exponent of variable Xn in the monomial

X
αj . We assume without loss of generality that the sequence

(βj) is nondecreasing, and assume also that there exists l
such that

βl+1 − βl >
dδ

c

„

ln(2dδ)

ln ln(5dδ)

«13

log(t(t + 1) H(f)), (10)

where c > 0 is the absolute constant from Lemma 2.
If P is a factor of f , it is also a factor of the two polyno-

mials g =
Pl

j=0 ajX
αj and h =

Pt
j=l+1 ajX

αj .

Proof. We first consider the case where P does not de-
pend on variable Xn. This case is completely elementary: if
P is a factor f , there are polynomials Qi such that

f(X1, . . . , Xn) = P (X1, . . . , Xn−1)×
“

X

i

Qi(X1, . . . , Xn−1)X
i
n

”

.
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Clearly, g =
P

i≤βl
P (X1, . . . , Xn−1)Qi(X1, . . . , Xn−1)X

i
n,

h =
P

i>βl
P (X1, . . . , Xn−1)Qi(X1, . . . , Xn−1)X

i
n, and P is

a factor of both polynomials.
The case where P = aXn for some constant a ∈ F is also

easy: if Xn is a factor of f this variable must occur in all
monomials of f , so P is obviously a factor of g and h.

The remainder of the proof is devoted to the case where
P actually depends on Xn, but P is not of the form aXn.
In C[X], P factors as a product of absolutely irreducible
polynomials P1, . . . , Ps. Since the cyclotomic points are not
dense in V (P ) there exists some Pi, for instance P1, such
that the cyclotomic points are not dense in V (Pi)

†.
Let E be the subspace of Cn spanned by the first n − 1

coordinate vectors, and π : Cn → E the orthogonal projec-
tion on E. Since P depends on Xn the same is true of P1,
and π(V (P1)) is therefore dense in E. We may view P1 as a
polynomial in Xn with coefficients in C[X1, . . . , Xn−1]. Let
Q1[X1, . . . , Xn−1] be its leading monomial. Note that Q1 is
not identically zero. Since the cyclotomic points are dense
in E but not in V (P1), there exists in E a dense set of cy-
clotomic points (θ1, . . . , θn−1) such that Q1(θ1, . . . , θn−1) 6=
0 and π−1(θ1, . . . , θn−1, 0) contains a non-cyclotomic point
(θ1, . . . , θn−1, α) ∈ V (P1) with α 6= 0 (the condition α 6= 0
can be enforced thanks to the hypothesis that P is not of
the form aXn).

The algebraic number α is of degree at most d over F (θ1, . . .,
θn−1) since it is a root of X 7→ P1(θ1, . . . , θn−1, X) (note
that this polynomial is not identically zero since Q1(θ1, . . .,
θn−1) 6= 0). Moreover, by construction α is nonzero and is
not a root of unity. Its height therefore satisfies inequal-
ity (9). We also have f(θ1, . . . , θn−1, α) = 0 since P1 is a
factor of f . Let us now apply Proposition 1 below to the
univariate polynomial p(X) = f(θ1, . . . , θn−1, X). We have
H(p) ≤ (t+1)H(f) by Lemma 3. In view of (9) and (10), we
conclude that g(θ1, . . . , θn−1, α) = h(θ1, . . . , θn−1, α) = 0.

We have shown that g(θ1, . . . , θn−1, α) = 0 for a set of
points (θ1, . . . , θn−1, α) that is dense in V (P1). This implies
that V (P1) ⊆ V (g), and that P1 is a factor of g since P1

is squarefree. The polynomials g and P therefore have a
nontrivial common divisor. Since P is irreducible over F ,
P must be a factor of g and it is also of course a factor of
h.

Remark 1. In the above theorem the hypothesis that P
is irreducible in F [X] is stronger than needed: it is sufficient
to assume that P is squarefree. 2

The proof of the following proposition is essentially the
same as the proof of Proposition 2.3 of [16].

Proposition 1. Let p ∈ Q[X] be a polynomial with at
most t + 1 non-zero terms. Assume that p can be written as
the sum of two polynomials q and r where each monomial of
q has degree at most β and each monomial of r has degree
at least γ. Let x ∈ Q

∗
be a root of p that is not a root of

unity. If γ − β > log(t H(p))/ log H(x) then x is a common
root of q and r.

Proof. We may assume that each of the two polynomials
q and r collects at most t of the t + 1 terms of p (otherwise,
the result is clear). Assume by contradiction that q(x) 6=

†
the irreducibility of P in F [X] implies that the cyclotomic points

are not dense on any of the varieties V (Pi), but we do not need to
explicitly use this fact.

0. Pick a number field K which contains x as well as the
coefficients of p, and let ν ∈ MK . If |x|ν ≥ 1, each term
ajx

βj of q(x) satisfies |ajx
βj | ≤ |p|ν |x|

β
ν , therefore

|q(x)|ν ≤ max(1, |t|ν)|p|ν |x|
β
ν if |x|ν ≥ 1.

A similar argument shows that

|r(x)|ν ≤ max(1, |t|ν)|p|ν |x|
γ
ν if |x|ν ≤ 1.

We have |q(x)|ν = |r(x)|ν , so we can combine these two
statements in

max(1, |x|ν |)
γ−β · |q(x)|ν ≤ max(1, |t|ν) · |p|ν · |x|γν .

Raise this to the power dν/[K : Q] and take the product
over ν ∈ MK . Using the fact that H(t) = t, and applying
the product formula to q(x) and x (which are both supposed
to be nonzero) one finds that H(x)γ−β ≤ t ·H(p). This is in
contradiction with the hypothesis on γ − β.

4. FACTORS FOR WHICH CYCLOTOMIC
POINTS ARE NOT DENSE

In this section we describe an algorithm based on the mul-
tivariate gap theorem which, given a supersparse polynomial
f ∈ F [X] and an integer d, finds (up to a constant factor)
all the factors P of f such that P is irreducible in F [X],
deg(P ) ≤ d, and the cyclotomic points are not dense on
V (P ). The algorithm also finds the multiplicities of these
factors and runs in time polynomial in (d + l)n, where l
denotes the length of the input data.

In order to actually implement the algorithm, an explicit
knowledge of the real number c of our multivariate gap The-
orem 2 above is needed. In [1] no explicit estimate is pro-
vided, and if an explicit analysis brings c too close to zero
our algorithm would be quite impractical. For the case of
linear factors of bivariate polynomials with integer coeffi-
cients, reasonable explicit estimates are provided in [11].

Like Lenstra [16] we will use an upper bound for H(f) in
Theorem 2. The coefficients ai of the input polynomial

f(X1, . . . , Xn) =
t

X

i=0

ai X
αi,1

1 · · ·X
αi,n
n (11)

are from a number field F = Q[ζ]/(ϕ(ζ)). We shall multiply
the coefficients of all residue polynomials by the common
rational integer denominator and thus assume without loss
of generality that all ai(ζ) have integral coefficients. Since
ϕ (of degree δ) is assumed monic, any root ζ is an algebraic
integer. Therefore all ai(ζ), which are now members in the
ring of algebraic integers, are themselves algebraic integers
in F .

Lemma 4. Let ai =
Pδ−1

j=0 ai,jζ
j for all 0 ≤ i ≤ t, where

ai,j ∈ Z and let B be an upper bound for the absolute value
of any complex root of ϕ. Then

H(f) ≤ max
i

δ−1
X

j=0

|ai,j |B
j . (12)

Proof. The proof is an immediate multivariate general-
ization of Proposition 3.6 in [16].

The algorithm proceeds in three steps.

1. Compute an integer G that is an upper bound for the
right side gap estimate in (10) using (12).
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2. Split f into g[1] + · · · + g[s] such that for all k with
1 ≤ k ≤ s the summand

g[k] =
t[k]
X

i=0

aki
X

αki,1

1 · · ·X
αki,n

n

has the following property for all j with 1 ≤ j ≤ n: If
the term degrees of variable Xj ,

αk0,j , αk1,j , αk2,j , . . .

are sorted in ascending order, any two adjacent degrees
are apart by no more than the gap estimate G.

We can determine all g[k] by first splitting at degree
gaps ≥ G in Xn, and then proceeding iteratively with
the remaining variables Xn−1, . . . , X1 on all parts pro-
duced.

3. Compute all irreducible factors over F of degree ≤ d
of

ḡ[k] = g[k]
.

`

X
mini(αki,1)

1 · · ·X
mini(αki,n)
n

´

.

Return those irreducible factors that are common to
all ḡ[k].

Theorem 3. The above algorithm returns all irreducible
factors of f over F that are not divisible by a polynomial of
the form

Qn
i=1 Xβi

i − θ
Qn

i=1 Xγi
i , where θ is a root of unity,

in (size(f)+d)O(n) deterministic bit operations. The factors
themselves are represented as supersparse polynomials.

Proof. Referring to Lemma 4, let η = max(‖f‖∞, ‖ϕ‖∞),
where ‖f‖∞ = maxi,j |ai,j |. Note that log(η) = O(size(f)).
We have the rough estimate B ≤ (δ + 1)η, hence by The-

orem 2 we can compute a G with G = (size(f) + d)O(1).

Because for all j we have degXj
(ḡ[k]) ≤ tG the factorization

Step 3 can be carried out in (size(f) + d)O(n) bit operations
by algorithms for dense polynomials.

Remark 2. We assume that our algorithm returns the
factors in supersparse representation (11). For that repre-
sentation, it is known that the size of the output cannot be
bounded by (size(f) + d)O(1) [3, Example 5.1]. However,

(size(f) + d)O(1) bit complexity is achievable if the factors
are returned in straight-line program [9] or black box rep-
resentation [13]. The algorithm is then randomized of the
Monte Carlo kind.

By contrast, the algorithm of Section 5 has bit complexity
(size(f) + d)O(1) without appealing to randomization, and
outputs factors in supersparse representation. 2

Remark 3. The multiplicities of all irreducible factors
can be determined by computing the factors of generalized
partial derivatives as in [16, Proposition 3.2]: for f as in
(11), let

D
[1]
j (f) =

∂

∂Xj

“ f

X
mini αi,j

j

”

, D
[k]
j (f) = D

[1]
j (D

[k−1]
j f).

Then an irreducible factor h 6= Xj of multiplicity µ with

degXj
(h) ≥ 1 must divide all D

[k]
j (f) for 1 ≤ k ≤ µ − 1.

Let tj ≤ t + 1 be the number of distinct term degrees in

the list α0,j , α1,j , . . . , αt,j . The polynomial D
[tj−1]

j (f) has
a single power of Xj in its terms and is not divisible by h.

Therefore we must have µ < tj , and µ can be computed by

factoring the additional supersparse polynomials D
[k]
j (f) for

k = 1, . . . , tj − 1. 2

5. FACTORS FOR WHICH CYCLOTOMIC
POINTS ARE DENSE

In this section we describe an algorithm which, given a
supersparse polynomial f ∈ F [X] and an integer d, finds (up
to a constant factor) all the factors P ∈ F [X] of f such that
P is irreducible in F [X], deg(P ) ≤ d, and the cyclotomic
points are dense on V (P ). The algorithm also finds the
multiplicities of these factors and runs in time polynomial
in d + l, where l denotes the length of the input data. It
proceeds by reduction to the univariate case.

Let P ∈ C[X] be an absolutely irreducible factor of f such
that cyclotomic points are dense on V (P ). By Corollary 1,
up to a constant multiplicative factor P must be of the form

Pβ,γ,θ = P (X1, . . . , Xn) =
n

Y

i=1

Xβi
i − θ

n
Y

i=1

Xγi
i (13)

where θ is a root of unity and βi, γi ∈ N. We have that

∀i, 1 ≤ i ≤ n : βi = 0 ∨ γi = 0
and GCD1≤i≤n(βi − γi) = 1,

ff

(14)

for otherwise P would be reducible.
First, we shall assume that (βn, γn) 6= (0, 0), i.e., P ac-

tually depends on Xn. The following lemma shows how to
determine candidate degree vectors (β, γ).

Lemma 5. Let P of the form (13) be an absolute irre-
ducible factor of f and let ατ = (ατ,0, . . . , ατ,n) be the de-
gree vector of the τ -th term in f , where 0 ≤ τ ≤ t. Sup-
pose that (βn, γn) 6= (0, 0). Then there must exist an in-
teger index j with 1 ≤ j ≤ t and an integer k with k =
±GCD1≤i≤n(α0,i − αj,i) such that α0,n 6= αj,n and ∀i, 1 ≤
i ≤ n : γi − βi = (α0,i − αj,i)/k.

Proof of Lemma 5. Let λ be such that λβn−γn = θ.
From (13) and the assumption that P is a factor of f we
obtain

Xn = λ
“

n−1
Y

i=1

Xγi−βi
i

”

1
βn−γn (15)

as a root of f in the algebraic closure of F [X1, . . . , Xn−1].
Expanding the 0-th term

Qn
i=1 X

α0,i

i of f in the Puiseux
series field in X1, . . . , Xn−1 at that root, we obtain α0,i +
γi−βi

βn−γn
α0,n as the fractional exponent of Xi, where 1 ≤ i ≤

n − 1. That term must be cancelled by another term, say
term j with 1 ≤ j ≤ t, since (15) is a root of f . The
fractional exponents must agree, so we have for all i with
1 ≤ i ≤ n − 1

α0,i − αj,i =
βi − γi

βn − γn
(α0,n − αj,n). (16)

Now α0,n 6= αj,n because α0,i 6= αj,i for some i, for otherwise
all degrees of the j-th term would agree with those of term 0.
Immediately, we conclude that then we also have βi = γi if
and only if α0,i = αj,i. Let k = (α0,n −αj,n)/(βn − γn). We
have

∀i, 1 ≤ i ≤ n : k(βi − γi) = α0,i − αj,i. (17)

Identity (17) implies that k is integral, for if k were not, its
denominator would be a common divisor of βi−γi, but those

166



are relatively prime as by (14). Furthermore, k is a divisor
of all α0,i − αj,i, and again by the relatively primeness of
βi − γi we conclude from (17) that it must be the greatest
common divisor.

Clearly, Lemma 5 yields a straight-forward method to
compute candidate factor exponent vectors (β, γ). Factors
P with (βn, γn) = (0, 0), i.e., those that do not depend on
Xn, are also covered by Lemma 5. In that case, for a given
j there exists an i such that α0,i 6= αj,i and Xi can assume
the role of Xn. Overall, there are at most 2t candidate vec-
tors, including the case (βn, γn) = (0, 0). As a side remark,
note that if (β, γ) is one of the pairs, the second pair asso-
ciated to the same j ∈ {1, . . . , t} is equal to (γ, β). Since
Pγ,β,θ = −θPβ,γ,1/θ the second pair does not contribute a
new factor. The 2t pairs can be determined in time polyno-
mial in l′, where l′ denotes the length of the representation
of the tuples of exponents α0, . . . , αt of f . In particular, the
algorithm is completely independent of the field of definition
of f , or of the actual values of its coefficients a0, . . . , at.

Now, for each pair (β, γ) we would like to obtain more
information on the (possibly empty) set of complex num-
bers θ such that Pβ,γ,θ is a factor f . This can be done by
building on the idea of Lemma 5. Namely, perform the same
substitution of variables as in the proof of that lemma, and
express the fact that the resulting (finite) Puiseux series is
identically zero. After substitution, each monomial of f be-
comes a monomial in the variables Xi (1 ≤ i ≤ n − 1) with
coefficient equal to ajλ

αj,n . We therefore obtain a system of
at most t sparse polynomial equations in the indeterminate
λ with coefficients in F . Each polynomial in this system is
a sum of at most t + 1 monomials.

Lemma 6. A complex number λ 6= 0 is a solution of the
above system if and only if Pβ,γ,θ is a factor of f , where
θ = λβn−γn .

Proof. By construction, λ is a solution iff f vanishes
on V (Pβ,γ,θ) ∩ (C∗)n. The hypothesis λ 6= 0 implies that
(C∗)n is dense in V (Pβ,γ,θ), so in fact λ is a solution iff f
vanishes on V (Pβ,γ,θ). Since Pβ,γ,θ is irreducible, f vanishes
on V (Pβ,γ,θ) iff Pβ,γ,θ is a factor of f .

Now we would like to determine the roots of unity θ such
that θ is of degree at most d over F , and Pβ,γ,θ is a factor
of f . As usual, we “determine a root” by computing its
minimal polynomial over F . Since we are interested only in
roots of unity, our minimal polynomials will be cyclotomic
polynomials, that is, factors of polynomials of the form Xr−
1 that are monic and irreducible in F [X] (this definition of a
cyclotomic polynomial, borrowed from [16], agrees with the
traditional definition in the case F = Q). This can be done
as follows:

1. Construct the sparse system defined before Lemma 6,
and for each polynomial in the system find all its cy-
clotomic factors in F [X] which are of degree at most
d · |βn − γn|.

2. From the set of factors computed at step 1, keep only
those polynomials that are factors of all polynomials
in the system. Call I the set of remaining factors.

3. For each polynomial m ∈ I compute the minimal pol-
ynomial M ∈ F [X] of θ = λβn−γn , where λ denotes a
root of m. Output M if it is of degree ≤ d.

We call weight of a pair (β, γ), and denote by w(β, γ), the
quantity max(

Pn
i=1 βi,

Pn
i=1 γi). This is nothing but the

degree of Pβ,γ,θ, for any θ 6= 0.

Proposition 2. The above algorithm computes the min-
imal polynomials of all roots of unity θ such that Pβ,γ,θ is a
factor of f , and θ is of degree at most d over F . Its running
time is polynomial in d + l + w(β, γ), where l denotes the
length of the sparse representation of f .

Proof. If θ is of degree at most d over F and θ = λβn−γn ,
λ is of degree at most d|βn − γn| over F . The correctness of
the algorithm therefore follows from Lemma 6. Step 1 can
be performed within the claimed time bound by [16, Propo-
sition 3.5]. In step 2 we simply compute an intersection of
sets, and step 3 is standard.

We will appeal to this proposition only for pairs of weight
at most d (otherwise, the resulting factors of f would be of
degree higher than d). For such pairs, the algorithm runs in
time polynomial in d + l.

By appealing to Lenstra’s main theorem instead of his
Proposition 3.5 [16], we could as easily compute the set of
all complex numbers θ 6= 0 such that θ is of degree at most
d over F , and Pβ,γ,θ is a factor of f . There would be some
overlap with the factors computed in section 4.

Generalized cyclotomic polynomials
In order to fulfill our goal of finding factors for which cy-
clotomic points are dense, it is useful to know what those
factors can possibly look like. We already know what the
absolutely irreducible factors look like: they are of form (13),
and the auxiliary algorithm described above supplies us with
a list of candidates for the pair (β, γ). We are, however,
looking for factors that are only irreducible over F . Let P
be an absolutely irreducible polynomial of form (13), and
let m be the minimal polynomial of θ over F . From now
on we assume that θ is a root of unity. The polynomial m
is therefore a cyclotomic polynomial, i.e., as explained after
Lemma 6, a factor of a polynomial of the form Xr − 1 that
is irreducible in F [X].

We have the following:

Proposition 3.

Qβ,γ = NormF (θ)/F (Pβ,γ,θ) =
Y

θi : m(θi)=0

Pβ,γ,θi

is an irreducible factor of f in F [X].

Proof. The norm of an irreducible polynomial over an
algebraic extension is a pure power of an irreducible polyno-
mial over the ground field. Since the argument is brief, we
shall give it. Suppose Qβ,γ = Q1Q2 where Q1 and Q2 are
relatively prime polynomials over F , and suppose Pβ,γ,θ is
a factor of Q1 over F (θ). There exists a j such that Pβ,γ,θj

is a factor of Q2 over F (θj), which is an isomorphic copy
of F (θ), in the latter of which the division of Q2 by Pβ,γ,θ

leaves again no remainder. Thus Q1 and Q2 have a common
factor Pβ,γ,θ and cannot be relatively prime.

Now suppose without loss of generality that βn > 0 and
let Q̄(Xn) = Qβ,γ(1, . . . , 1, Xn) =

Q

θi : m(θi)=0(X
βn
n − θi).

Since m(X) divides Xr − 1, Q̄(Xn) divides Xβnr
n − 1, which

is squarefree, and therefore Qβ,γ cannot have a multiple fac-
tor.
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Note that Qβ,γ is of degree deg(m) · w(β, γ) and can be
computed from m via a substitution. Let m(z) be the min-
imal polynomial of θ over F . Then

Qβ,γ =
“

n
Y

i=1

Xγi
i

”deg(m)

· m
“

n
Y

i=1

Xβi
i

.

n
Y

i=1

Xγi
i

”

. (18)

We can finally describe the main algorithm of section 5.

1. Enumerate all candidate pairs (β, γ).

2. For each candidate pair of weight w(β, γ) ≤ d, use the
algorithm of Proposition 2 to compute the minimal
polynomials of all roots of unity θ such that Pβ,γ,θ is
a factor of f , and θ is of degree at most d over F . For
each such minimal polynomial m, if deg(m) ·w(β, γ) ≤
d output the factor Qβ,γ of f defined by (18).

As explained after Lemma 5, there are at most 2t candidate
pairs and they can be computed in time polynomial in the
input size. The correctness of the algorithm and the running
time claimed at the beginning of section 5 then follow from
Propositions 2 and 3.

The multiplicities of all generalized cyclotomic factors can
again be determined as in Remark 3.
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Note added February 3, 2006: On January 24, 2006,
Teresa Krick and Martin Sombra have sent us a paper of
theirs that contains polynomial-time algorithms similar to
ours for the case of two variables. In June and September of
2005, we had by email kept Teresa appraised about the re-
sults in this paper, which were also mentioned in Kaltofen’s
talk in July 2005 at ISSAC in Beijing.
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