Tellegen’s principle and the synthesis of algorithms

Erich Kaltofen
North Carolina State University
www.kaltofen.us

Tellegen’s principle (Bordewijk’s theorem)

23x1+40x2-21x3= |yl y2| =(-8)x1 +6x2+6x3

Tellegen’s principle (Bordewijk’s theorem)

23yl -8y2= =(=21)y2 +6y2

A first application: weighted power sums

Input: x1,..., %, V1,...,y, (Weights)
Output: b; = xiy; +---+x'y,foralli=0,1,...,n—1

1 ... 1 Vi b |
X1 ... Xp . V2 b2

x’ll_l I Y b,

A first application: weighted power sums

Input: x1,..., %, V1,...,y, (Weights)
Output: b; = xiy; +---+x'y,foralli=0,1,...,n—1

Y1
2

Yn

b
by

b,

= transposed multipoint polynomial evaluation
(transposed Vandermonde-matrix times a vector)

[CO c1 ...

Cn—l}'

n—1

X

. X

n—1
n

where f(X)=co+c1 X+ +c, X" L.

Needed in our 1989 sparse polynomial multiplication algorithm
[see also J. van der Hoeven, Proc. ISSAC 2004]
and Shoup’s polynomial factorization algorithm.

Direct solution: V.V = [ka;fj } T H 1s Hankel, so
VIr.viv-ly=H({V"ly)=0b.
Uses interpolation V "y,

plain power sums via Newton’s identities,
and polynomial multiplication.

Multipoint evaluation

Letn=2":
Compute
l: (X—xl)(X—xz), (X—Xg)(X—)M),...
2: (X —=x1) (X —x4), (X —x5)-- (X —xg),...

m—1: .(X—xl)---(X—xn/z), (X —xp/241) - (X —xp)
then
1: £(X) mod (X —x1) - (X —xp2),
£X) mod (X —xy211) (X —)

m—2: f(X) mod (X —x1)-- (X —x4),
f(X)mod (X —xs5)--- (X —xg),- ..
m—1: f(X) mod (X —x1)(X —x3), f(X) mod (X —x3)(X —x4),...
m: f(x;)=f(X) mod (X —x1), f(x2) = f(X) mod (X —x3),...

Complexity is parameterized by polynomial multiplication/division
algorithm:

O(M(n)logn) arithmetic operations

M(n) = O(n*) classical for small n

M(n) = O(n'*°) [Karatsuba]

M(n) = O(n(logn)(loglogn)) [Cantor and Kaltofen]
M(n) = O(n(logn)) with primitive roots

Complexity is parameterized by polynomial multiplication/division
algorithm:

O(M(n)logn) arithmetic operations

M (n) = O(n?) classical for small n

M (n) = O(n'*?) [Karatsuba]

M(n) = O(n(logn)(loglogn)) [Cantor and Kaltofen]
M(n) = O(n(logn)) with primitive roots

Practically efficiently reverse all those algorithms [Bostan, Lecerf
and Schost, Proc. ISSAC 2003]

Ostrowski, Wolin, and Borisow (1971) automatic differentiation
(reverse mode)

Consider straight-line program
Vi X, 1 <j<n,
Vi<V, 0iVg, h+1<i<n+s.

Compute all dy(v,15) by unravelling from the back:

gic1vi, -y yie1) ==&y, Yie1, VL, YR,))i =n+s,...,n+ 1.

By chain rule for j # L;, j # R;
(angi—l)(yla ey Yie1) = (angi)()’la coosYie1,hi(YL YR;))
and for j =L; or j = R;

(angi—l)(yh s 7yi—1) — (angi)(yla K 7yi—17hi(yLi7yRi))
T (ayigi) (yh - 7yi—17hi(yLi7yRi))) (ayjhi) (yLiayR,-)-

y3 yn y[n+1] y[n+2] y[n+s—I] y[n+s]

d[g[n+s-2]]

dlyl] dly2] d[y3] dlyn] d[y[n+1]] d[y[n+2]]

Ostrowski et al. *71: Size (= sequential time) of circuit for df /dx;
< 4s

Kaltofen & Singer ’91: Depth (= parallel time) of circuit for d f /dx;
= O(depth of circuit for f).

Transformation is numerically stable.

Inverted transposition principle by automatic differentiation

The problems A~!-b and (AT)~!. b, given A € F"*" non-singular
and b € [f"*, have the same asymptotic circuit complexity: Let

e, ex) = ([x1 .o xa] - (A7) b €Flxy,...,x).
Then

Ox, f

9.f

Note: Transposition principle may not apply due to divisions.

= (A" "'b.

Inverted transposition principle by automatic differentiation

The problems A~!-b and (AT)~!. b, given A € F"*" non-singular
and b € [f"*, have the same asymptotic circuit complexity: Let

e, ex) = ([x1 .o xa] - (A7) b €Flxy,...,x).
Then

Ox, f

9.f

Note: Transposition principle may not apply due to divisions.

= (A" "'b.

Used for:

e (Vandermonde’")~!- b for sparse polynomial interpolation (Kaltofen
and Lakshman ’88).

e Constant improvements to interpolation via the transposed al-
gorithm [Bostan, Lecert, Schost 03].

Reduction: Matrix Inverse < Determinant (Baur, Strassen *83)

Consider a circuit for the determinant,

a1 Ay ... Aig
flayy,... a.,) = det(a%,l a%,z a%,n)
al/l,l an72 . o an,n
Then 5
(—1)i+j_f — det(A)(A_l)i,j.
aaj’i

—> Circuit for partials computes adjoint matrix. Used for:

e Division-free computation of adjoint of A in O(n*%’) arithmetic
operations (Kaltofen and Villard 01/°04).

Villard 2003: automatic differentiation does not preserve
bit complexity

x"yc where x,y are vectors with constant entries,
c a large constant
takes O(n+log|c|) bit operations,
yc takes O(nlog |c|) bit operations

My ECCAD’98 open problem 6

Leto € Fla,B|/(f,g) where f(a,3) =0and g(p) =0.
Eg.0=V1+vV2—-vV2=0a-B, f=0>—B—1,and g =p>—2.

Task: Compute the minimum polynomial 4(c) =0

h(x)=x"—cpiX" ' — . —cy € Flx], m<deg(f)-deg(g)

—

The coefficient vectors 6' of ¢' mod (f (o, B),g(B)) satisfy

Vji>0: ot = C,,_10" +J—|—"'—|—C()(5]

—
Any non-trivial linear projection £(') preserves the linear recur-

sion because /1 1s 1rreducible.

Power Projections = Transposed Modular Polyn Composition

Linear projections of powers

£() L)L) .| =[uo ur ...][] ot | S| -]

\

-~

A

Modular polynomial composition

w(z) = wo+wiz+ w2’ +--- — w(c) mod (f(o,B),g(B))

o

_ >

w(o) = [co\ol\cz\ } Wi
A :

By Tellegen’s Principle [1960] the problems can be solved equally
fast

Transposed Modular Polynomial Multiplication in NTL

1. 71 «+ FFT 1 (REDy(g))

2. Tz < T1 . SQ

3.V« —CRTOn_Q(FFT(Tz))

4. T, «— FFT Y(RED;,; (x"~!-v))

5. T2 < T2 g S3

6. T1 < T1 . S4

7.Replace T; by the 2¥!-point residue table whose j-th column
(0 < j<2¥ 1) is 0if j is odd, and is column number j/2 of T}
if j 1s even.

8.1, — 1 +T

“we offer no other proof of correctness other than the validity of
this transformation technique (and the fact that it does indeed work
in practice)” [Shoup 1994]

Open Problem 6

With inputs A € F"*" and y € " you are given an algorithm for
A -y that uses T (m,n) arithmetic field operations and S(m,n) aux-
iliary space.

Show how to construct an algorithm for A" - z where z € F™ that
uses O(T (m,n)) time and O(S(m,n)) space.

Your construction must be applicable to practical problems.

Pebble game by J. C. Gilbert, G. Le Vey, and J. Masse '91

When computing v; <— vy 0;vg., values of v;, and vg. must be stored
in memory or recomputed.

— not clear how to use the same number of “pebbles” for reverse
program.

Use inplace operations: x += y;
Pebble for one operand can be used for result, which is reversible.

Not clear how to reverse the address computation (space unifor-
mity of reverse circuit)

