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Term degrees can be very high, e.g., > 2°"
Over Z,: evaluate by repeated squaring
Over Q: cannot evaluate in polynomial-time except for X; =0, 4-1



Easy problems for supersparse polynomials f = Y ¢, X% € Z|7]

Cucker, Koiran, Smale 1998: Compute roota € Z: f(a) = 0.

Gap idea: if f(a) =0,a# +1then g (a) =--- = g4(a) =0
where f(X) =} ;g;(X)X% and otj. | — o; —deg(g;) > X
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deg(g) <k
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u—k >y =log,||fll=lal" = 2%|a| = || fl|-|a* = f(a) #0.



Polynomial time root-finder uses the fact that for

gj(X):Cl‘|‘02X[32+"'+CsXBS, Bi—Biii <y, s<t

we have
B:<(—-1Dx—1),
deg(gy)) < (r—1(x—1)



Generalization by H. W. Lenstra, Jr. 1999

Input:  ©(C) € Z|C] monic irred.; let K = Q|[C]/(¢o(C))
a supersparse [(X)=Y'  ¢;X% € K[X]
a factor degree bound d

Output: a list of all irreducible factors of f over K of degree < d
and their multiplicities (which 1s < 7 except for X)

Let D =d -deg(o)
There are at most O(¢*- 2P - D -log(Dt)) factors of degree < d

. . . 0 D
Bit complexity 1s (t+10g(d6gf)+10ngH—HOgH(PH) (D)

Special case ¢ = —1,d = D = 1: Algorithm finds all rational
roots in polynomial-time.



Linear and quadratic bivariate factors

Input:

Output:

a supersparse f(X,Y) =Y'  c;X%YPi c Z[X,Y]
that 1s monic in X;
an error probability € = 1/2!

a list of polynomials g ;(X,Y)
with degy(g;) <2 and deg,(g;) < 2;
a list of corresponding multiplicities.

The g, are with probability > 1 — € all irreducible
factors of f over (Q of degree < 2 together with
their true multiplicities.



Linear and quadratic bivariate factors

Input:  asupersparse f(X,Y)=Y'_ c;X%YPi c Z[X,Y]
that 1s monic in X;
an error probability € = 1/2!

Output: a list of polynomials g;(X,Y)
with degy(g;) <2 and deg,(g;) < 2;
a list of corresponding multiplicities.

The g, are with probability > 1 — € all irreducible
factors of f over (Q of degree < 2 together with
their true multiplicities.

Bit complexity: (7 + log(deg 1)+ log||f| +10g1/g)0<1)



Algorithm
Step 0: compute all factors of f that are in Q[Y| by Lenstra’s
method on the coefficients of X%

Step 1: compute linear and quadratic factors in Q[X]| of f(X,0),
f(X,1)and f(X,—1) by Lenstra’s method

Step 2: interpolate all factor combinations;
Test if g(X,Y) divides f(X,Y) by

0= f(X,a) mod (g(X,a),p) where a € 7Z, p prime are random



Leading coefficient problem

If the leading (trailing) coefficient in X does not vanish for
Y = 0,41, then one can impose a factor of the leading (trailing)
coefficient on g.

Cannot interpolate factors of Z(X i 1) (Y*—1)fi(X,Y)

But we can compute all factors ¥ —aX — b of all supersparse poly-
nomials deterministically



Generalized gap theorem

!
Y —aX — b divides f(X,Y) <= 0= Zcixai(ax+b)l3i
—1

l

Write f(X,Y) =g(X,Y)+Y"h(X,Y) with deg, (g) < k.
It
u—k>y=1545-log,(t - Height f)
where
Height f = max;|c;] provided GCD;(c;) =1,

then for rational (a,b) # (0,0),(£1,0),(0,4+1)

f(X,aX+b)=0= g(X,aX +b) =0and h(X,aX +b) = 0.
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. o L4/3]
Note: l/logzrg?(l +cos5) T < 15.45



Key 1dea in proof

Assume g(X,aX +b) = —(aX +b)"h(X,aX +b) # 0.
Evaluate at roots of unity 0 and use absolute values v and
Weil height H :

max(1,|a+b0|,)" - |g(8,a+b8)],
<max(l,t|y)-|flv-|a+DbB.

Taking a fractional power d,/|K : Q| and product over all v, using
the product formula [T, [n|% = 1 (n # 0),

H(a+b0)" " <t -H(f).

The Bogomolov property for algebraic number fields implies that
H(a+b0) > 1.045, (a,b)# (0,0),(£1,0),(0,+£1).



Polynomial time algorithm for unknown a, b uses the facts

1. gap is independent of a,b € QQ

2. first splits into segments g ;(X,Y ) withdeg,(g;) < (r—1)(x—1)

3. switches roles of X, Y 1n each g; and splits into segments g,
with degy(g;.) < (1 —1)(x — 1)



Generalization via Bogomolov properties of algebraic numbers

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of Q.
For any algebraic 1 # 0 that is not a root of unity

Ci [ log(2D) \ "
D \ loglog(5D) ’
where C; > 0and D = [L(n) : L].

logH(M) >

Thus, for coefficients in (Q({) we have a gap bound
() : Q)" V- log(1 - Height(f)).

Further generalizations via Lang conjecture (Faltings’s theorem,
etc.).



Hard problems for supersparse polynomials in K[X, Y|

Theorem

The set of all monic (in X) irreducible supersparse polynomials
in K|X,Y| is co-NP-hard for K = Q and K = ¥, for all p and all
sufficiently large ¢ = p*, via randomized reduction.

Corollary

Suppose we have a Monte Carlo polynomial-time irreducibility
test for monic supersparse polynomials in [F,:|x, y| (for sufficiently
large k).

Then large integers can be factored in Las Vegas polynomial-time.



Supersparse integers

24778782
22

+ 1 is divisible by 6-2**7¢7* 1 [Cosgrave et al. 2003]

The factors of 22" + 1 are primes of the form k- 2> + 1
641 =5-27+ 1 divides 2> +1 [Euler 1732]



