On the complexity of factoring sparse polynomials

Erich Kaltofen
North Carolina State University www.kaltofen.us

Joint work with Emmanuel Jeandel and Pascal Koiran (ENS-Lyon)

Supersparse (lacunary) polynomials
The supersparse polynomial

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{t} c_{i} X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}
$$

is input by a list of its coefficients and corresponding term degree vectors.

$$
\operatorname{size}(f)=\sum_{i=1}^{t}\left(\operatorname{size}\left(c_{i}\right)+\left\lceil\log _{2}\left(\alpha_{i, 1} \cdots \alpha_{i, n}+2\right)\right\rceil\right)
$$

Term degrees can be very high, e.g., $\geq 2^{500}$

Supersparse (lacunary) polynomials
The supersparse polynomial

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{t} c_{i} X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}
$$

is input by a list of its coefficients and corresponding term degree vectors.

$$
\operatorname{size}(f)=\sum_{i=1}^{t}\left(\operatorname{size}\left(c_{i}\right)+\left\lceil\log _{2}\left(\alpha_{i, 1} \cdots \alpha_{i, n}+2\right)\right\rceil\right)
$$

Term degrees can be very high, e.g., $\geq 2^{500}$
Over \mathbb{Z}_{p} : evaluate by repeated squaring
Over \mathbb{Q} : cannot evaluate in polynomial-time except for $X_{i}=0, \pm 1$

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in \mathbb{Z}[z]$
Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(X)=\sum_{j} g_{j}(X) X^{\alpha_{j}}$ and $\alpha_{j+1}-\alpha_{j}-\operatorname{deg}\left(g_{j}\right) \geq \chi$.

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in \mathbb{Z}[z]$
Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(X)=\sum_{j} g_{j}(X) X^{\alpha_{j}}$ and $\alpha_{j+1}-\alpha_{j}-\operatorname{deg}\left(g_{j}\right) \geq \chi$.

Write $f(X)=\underbrace{g(X)}_{\operatorname{deg}(g) \leq k}+X^{u} h(X), \quad\|f\|_{1}=\left|c_{1}\right|+\cdots+\left|c_{t}\right|$.

For $a \neq \pm 1, h(a) \neq 0: \quad|g(a)|<\|f\|_{1} \cdot|a|^{k}$

$$
\left|a^{u} h(a)\right| \geq|a|^{u}
$$

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in \mathbb{Z}[z]$
Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(X)=\sum_{j} g_{j}(X) X^{\alpha_{j}}$ and $\alpha_{j+1}-\alpha_{j}-\operatorname{deg}\left(g_{j}\right) \geq \chi$.

$$
\text { Write } f(X)=\underbrace{g(X)}_{\operatorname{deg}(g) \leq k}+X^{u} h(X), \quad\|f\|_{1}=\left|c_{1}\right|+\cdots+\left|c_{t}\right| .
$$

For $a \neq \pm 1, h(a) \neq 0: \quad|g(a)|<\|f\|_{1} \cdot|a|^{k}$ $\left|a^{u} h(a)\right| \geq|a|^{u}$
$u-k \geq \chi=\log _{2}\|f\|_{1} \Longrightarrow|a|^{u} \geq 2^{\chi} \cdot|a|^{k} \geq\|f\|_{1} \cdot|a|^{k} \Longrightarrow f(a) \neq 0$.

Polynomial time root-finder uses the fact that for

$$
g_{j}(X)=c_{1}+c_{2} x^{\beta_{2}}+\cdots+c_{s} x^{\beta_{s}}, \quad \beta_{i}-\beta_{i-1}<\chi, \quad s \leq t
$$

we have

$$
\beta_{i} \leq(i-1)(\chi-1),
$$

SO

$$
\operatorname{deg}\left(g_{j}\right) \leq(t-1)(\chi-1)
$$

Generalization by H. W. Lenstra, Jr. 1999

Input: $\quad \varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K=\mathbb{Q}[\zeta] /(\varphi(\zeta))$ a supersparse $f(X)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} \in K[X]$ a factor degree bound d

Output: a list of all irreducible factors of f over K of degree $\leq d$ and their multiplicities (which is $\leq t$ except for X)

Let $D=d \cdot \operatorname{deg}(\varphi)$
There are at most $O\left(t^{2} \cdot 2^{D} \cdot D \cdot \log (D t)\right)$ factors of degree $\leq d$
Bit complexity is $(\underline{t+\log (\operatorname{deg} f)}+\log \|f\|+\log \|\varphi\|)^{O(D)}$

Special case $\varphi=\zeta-1, d=D=1$: Algorithm finds all rational roots in polynomial-time.

Linear and quadratic bivariate factors
Input: \quad a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2 \text {; }
$$

a list of corresponding multiplicities.
The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Linear and quadratic bivariate factors
Input: \quad a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2 \text {; }
$$

a list of corresponding multiplicities.
The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(t+\log (\operatorname{deg} f)+\log \|f\|+\log 1 / \varepsilon)^{O(1)}$

Algorithm
Step 0: compute all factors of f that are in $\mathbb{Q}[Y]$ by Lenstra's method on the coefficients of $X^{\alpha_{i}}$

Step 1: compute linear and quadratic factors in $\mathbb{Q}[X]$ of $f(X, 0)$, $f(X, 1)$ and $f(X,-1)$ by Lenstra's method

Step 2: interpolate all factor combinations;
Test if $g(X, Y)$ divides $f(X, Y)$ by
$0 \equiv f(X, a) \bmod (g(X, a), p)$ where $a \in \mathbb{Z}, p$ prime are random

Leading coefficient problem
If the leading (trailing) coefficient in X does not vanish for $Y=0, \pm 1$, then one can impose a factor of the leading (trailing) coefficient on g.

Cannot interpolate factors of $\sum_{i}\left(X^{2 d_{i}}-1\right)\left(Y^{2 e_{i}}-1\right) f_{i}(X, Y)$

But we can compute all factors $Y-a X-b$ of all supersparse polynomials deterministically

Generalized gap theorem
$Y-a X-b$ divides $f(X, Y) \Longleftrightarrow 0=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}}(a X+b)^{\beta_{i}}$

Write $f(X, Y)=g(X, Y)+Y^{u} h(X, Y)$ with $\operatorname{deg}_{Y}(g) \leq k$.
If

$$
u-k>\chi=15.45 \cdot \log _{2}(t \cdot \operatorname{Height} f)
$$

where
Height $f=\max _{i}\left|c_{i}\right| \quad$ provided $\quad \operatorname{GCD}_{i}\left(c_{i}\right)=1$,
then for rational $(a, b) \neq(0,0),(\pm 1,0),(0, \pm 1)$

$$
f(X, a X+b)=0 \Longrightarrow g(X, a X+b)=0 \text { and } h(X, a X+b)=0 .
$$

Generalized gap theorem
$Y-a X-b$ divides $f(X, Y) \Longleftrightarrow 0=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}}(a X+b)^{\beta_{i}}$

Write $f(X, Y)=g(X, Y)+Y^{u} h(X, Y)$ with $\operatorname{deg}_{Y}(g) \leq k$.
If

$$
u-k>\chi=15.45 \cdot \log _{2}(t \cdot \operatorname{Height} f)
$$

where
Height $f=\max _{i}\left|c_{i}\right| \quad$ provided $\quad \operatorname{GCD}_{i}\left(c_{i}\right)=1$,
then for rational $(a, b) \neq(0,0),(\pm 1,0),(0, \pm 1)$

$$
f(X, a X+b)=0 \Longrightarrow g(X, a X+b)=0 \text { and } h(X, a X+b)=0 .
$$

Note: $1 / \log _{2} \min _{d \geq 5}\left(1+\cos \frac{2 \pi}{5}\right)^{\frac{\lfloor d / 5\rfloor}{d-1}}<15.45$

Key idea in proof
Assume $g(X, a X+b)=-(a X+b)^{u} h(X, a X+b) \neq 0$.
Evaluate at roots of unity θ and use absolute values v and Weil height H :

$$
\begin{aligned}
& \max \left(1,|a+b \theta|_{v}\right)^{u-k} \cdot|g(\theta, a+b \theta)|_{v} \\
& \leq \max \left(1,|t|_{v}\right) \cdot|f|_{v} \cdot|a+b \theta|_{v}^{u}
\end{aligned}
$$

Taking a fractional power $d_{v} /[K: \mathbb{Q}]$ and product over all v, using the product formula $\prod_{v}|\eta|_{v}^{d_{v}}=1(\eta \neq 0)$,

$$
H(a+b \theta)^{u-k} \leq t \cdot H(f)
$$

The Bogomolov property for algebraic number fields implies that

$$
H(a+b \theta)>1.045, \quad(a, b) \neq(0,0),(\pm 1,0),(0, \pm 1)
$$

Polynomial time algorithm for unknown a, b uses the facts

1. gap is independent of $a, b \in \mathbb{Q}$
2. first splits into segments $g_{j}(X, Y)$ with $\operatorname{deg}_{Y}\left(g_{j}\right) \leq(t-1)(\chi-1)$
3. switches roles of X, Y in each g_{j} and splits into segments $g_{j, \ell}$ with $\operatorname{deg}_{X}\left(g_{j, \ell}\right) \leq(t-1)(\chi-1)$

Generalization via Bogomolov properties of algebraic numbers
Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}.
For any algebraic $\eta \neq 0$ that is not a root of unity

$$
\log H(\eta) \geq \frac{C_{1}}{D}\left(\frac{\log (2 D)}{\log \log (5 D)}\right)^{-13}
$$

where $C_{1}>0$ and $D=[L(\eta): L]$.
Thus, for coefficients in $\mathbb{Q}(\zeta)$ we have a gap bound

$$
[\mathbb{Q}(\zeta): \mathbb{Q}]^{1+o(1)} \cdot \log (t \cdot \operatorname{Height}(f))
$$

Further generalizations via Lang conjecture (Faltings's theorem, etc.).

Hard problems for supersparse polynomials in $K[X, Y]$

Theorem

The set of all monic (in X) irreducible supersparse polynomials in $K[X, Y]$ is co-NP-hard for $K=\mathbb{Q}$ and $K=\mathbb{F}_{q}$ for all p and all sufficiently large $q=p^{k}$, via randomized reduction.

Corollary

Suppose we have a Monte Carlo polynomial-time irreducibility test for monic supersparse polynomials in $\mathbb{F}_{2^{k}}[x, y]$ (for sufficiently large k).
Then large integers can be factored in Las Vegas polynomial-time.

Supersparse integers
$2^{2^{2478782}}+1$ is divisible by $6 \cdot 2^{2478784}+1 \quad$ [Cosgrave et al. 2003]

The factors of $2^{2^{n}}+1$ are primes of the form $k \cdot 2^{n+2}+1$ $641=5 \cdot 2^{7}+1$ divides $2^{2^{5}}+1 \quad$ [Euler 1732]

