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Supersparse (lacunary) polynomials

The supersparse polynomial

f (X1, . . . ,Xn) =
t

∑
i=1

ci X
αi,1
1 · · ·Xαi,n

n

is input by a list of its coefficients and corresponding term degree
vectors.

size( f ) =
t

∑
i=1

(

size(ci)+ dlog2(αi,1 · · ·αi,n +2)e
)

Term degrees can be very high, e.g., ≥ 2500
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Over Zp : evaluate by repeated squaring
Over Q : cannot evaluate in polynomial-time except for Xi = 0,±1



Easy problems for supersparse polynomials f = ∑i ciXαi ∈ Z[z]

Cucker, Koiran, Smale 1998: Compute root a ∈ Z : f (a) = 0.

Gap idea: if f (a) = 0,a 6= ±1 then g1(a) = · · · = gs(a) = 0
where f (X) = ∑ j g j(X)Xα j and α j+1−α j −deg(g j) ≥ χ.
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For a 6= ±1, h(a) 6= 0: |g(a)| < ‖ f‖1 · |a|k

|auh(a)| ≥ |a|u
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Cucker, Koiran, Smale 1998: Compute root a ∈ Z : f (a) = 0.

Gap idea: if f (a) = 0,a 6= ±1 then g1(a) = · · · = gs(a) = 0
where f (X) = ∑ j g j(X)Xα j and α j+1−α j −deg(g j) ≥ χ.

Write f (X) = g(X)
︸︷︷︸

deg(g) ≤ k

+Xuh(X), ‖ f‖1 = |c1|+ · · ·+ |ct|.

For a 6= ±1, h(a) 6= 0: |g(a)| < ‖ f‖1 · |a|k

|auh(a)| ≥ |a|u

u−k≥ χ = log2‖ f‖1 =⇒|a|u ≥ 2χ · |a|k ≥‖ f‖1 · |a|k =⇒ f (a) 6= 0.



Polynomial time root-finder uses the fact that for

g j(X) = c1 + c2xβ2 + · · ·+ csxβs, βi−βi−1 < χ, s ≤ t

we have
βi ≤ (i−1)(χ−1),

so
deg(g j) ≤ (t −1)(χ−1)



Generalization by H. W. Lenstra, Jr. 1999

Input: ϕ(ζ) ∈ Z[ζ] monic irred.; let K = Q[ζ]/(ϕ(ζ))
a supersparse f (X) = ∑t

i=1 ciXαi ∈ K[X ]
a factor degree bound d

Output: a list of all irreducible factors of f over K of degree ≤ d
and their multiplicities (which is ≤ t except for X)

Let D = d ·deg(ϕ)
There are at most O(t2 ·2D ·D · log(Dt)) factors of degree ≤ d

Bit complexity is
(

t + log(deg f )+ log‖ f‖+ log‖ϕ‖
)O(D)

Special case ϕ = ζ−1,d = D = 1: Algorithm finds all rational
roots in polynomial-time.



Linear and quadratic bivariate factors

Input: a supersparse f (X ,Y ) = ∑t
i=1 ci XαiY βi ∈ Z[X ,Y ]

that is monic in X ;
an error probability ε = 1/2l

Output: a list of polynomials g j(X ,Y )
with degX(g j) ≤ 2 and degY(g j) ≤ 2;

a list of corresponding multiplicities.

The g j are with probability ≥ 1− ε all irreducible
factors of f over Q of degree ≤ 2 together with
their true multiplicities.
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Bit complexity:
(
t + log(deg f )+ log‖ f‖+ log1/ε

)O(1)



Algorithm
Step 0: compute all factors of f that are in Q[Y ] by Lenstra’s
method on the coefficients of X αi

Step 1: compute linear and quadratic factors in Q[X ] of f (X ,0),
f (X ,1) and f (X ,−1) by Lenstra’s method

Step 2: interpolate all factor combinations;
Test if g(X ,Y ) divides f (X ,Y ) by

0 ≡ f (X ,a) mod (g(X ,a), p) where a ∈ Z, p prime are random



Leading coefficient problem

If the leading (trailing) coefficient in X does not vanish for
Y = 0,±1, then one can impose a factor of the leading (trailing)
coefficient on g.

Cannot interpolate factors of ∑
i
(X2di −1)(Y 2ei −1) fi(X ,Y )

But we can compute all factors Y −aX −b of all supersparse poly-
nomials deterministically



Generalized gap theorem

Y −aX −b divides f (X ,Y ) ⇐⇒ 0 =
t

∑
i=1

ci Xαi(aX +b)βi

Write f (X ,Y ) = g(X ,Y )+Y uh(X ,Y ) with degY(g) ≤ k.
If

u− k > χ = 15.45 · log2(t ·Height f )
where

Height f = maxi |ci| provided GCDi(ci) = 1,

then for rational (a,b) 6= (0,0),(±1,0),(0,±1)

f (X ,aX +b) = 0 =⇒ g(X ,aX +b) = 0 and h(X ,aX +b) = 0.
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f (X ,aX +b) = 0 =⇒ g(X ,aX +b) = 0 and h(X ,aX +b) = 0.

Note: 1
/

log2 min
d≥5

(1+ cos 2π
5 )

bd/5c
d−1 < 15.45



Key idea in proof

Assume g(X ,aX +b) = −(aX +b)uh(X ,aX +b) 6= 0.
Evaluate at roots of unity θ and use absolute values v and
Weil height H :

max(1, |a+bθ|ν)u−k · |g(θ,a+bθ)|ν
≤ max(1, |t|ν) · | f |ν · |a + bθ|uν.

Taking a fractional power dν/[K : Q] and product over all v, using
the product formula ∏ν |η|

dν
ν = 1 (η 6= 0),

H(a+bθ)u−k ≤ t ·H( f ).

The Bogomolov property for algebraic number fields implies that

H(a+bθ) > 1.045, (a,b) 6= (0,0),(±1,0),(0,±1).



Polynomial time algorithm for unknown a,b uses the facts

1. gap is independent of a,b ∈ Q

2. first splits into segments g j(X ,Y ) with degY(g j)≤ (t−1)(χ−1)

3. switches roles of X ,Y in each g j and splits into segments g j,`

with degX(g j,`) ≤ (t −1)(χ−1)



Generalization via Bogomolov properties of algebraic numbers

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of Q.
For any algebraic η 6= 0 that is not a root of unity

logH(η) ≥
C1

D

(
log(2D)

loglog(5D)

)−13

,

where C1 > 0 and D = [L(η) : L].

Thus, for coefficients in Q(ζ) we have a gap bound

[Q(ζ) : Q]1+o(1) · log(t ·Height( f )).

Further generalizations via Lang conjecture (Faltings’s theorem,
etc.).



Hard problems for supersparse polynomials in K[X ,Y ]

Theorem
The set of all monic (in X) irreducible supersparse polynomials
in K[X ,Y ] is co-NP-hard for K = Q and K = Fq for all p and all
sufficiently large q = pk, via randomized reduction.

Corollary
Suppose we have a Monte Carlo polynomial-time irreducibility
test for monic supersparse polynomials in F2k[x,y] (for sufficiently
large k).
Then large integers can be factored in Las Vegas polynomial-time.



Supersparse integers

222478782
+1 is divisible by 6 ·22478784 +1 [Cosgrave et al. 2003]

The factors of 22n
+1 are primes of the form k ·2n+2 +1

641 = 5 ·27 +1 divides 225
+1 [Euler 1732]


