
The Art of Symbolic Computation

Erich Kaltofen
North Carolina State University

Department of Mathematics
www.kaltofen.us

Caviness’s foreword to the Computer Algebra Handbook

Two ideas lie gleaming on the jeweler’s velvet. The first is the cal-
culus, the second, the algorithm. The calculus and the rich body of
mathematical analysis to which it gave rise made modern science
possible; but it has been the algorithm that has made possible the
modern world.

—David Berlinski, The Advent of the Algorithm

Caviness’s foreword to the Computer Algebra Handbook

Two ideas lie gleaming on the jeweler’s velvet. The first is the cal-
culus, the second, the algorithm. The calculus and the rich body of
mathematical analysis to which it gave rise made modern science
possible; but it has been the algorithm that has made possible the
modern world.

—David Berlinski, The Advent of the Algorithm

So, gentle reader, I recommend this volume and all its concepts,
symbols, and algorithms to you.

—Bob Caviness, Computer Algebra Handbook

Where it began

1960s-early 70s: MIT project MAC [Moses]
∫

1+(x+1)ndx = x+(x+1)n+1/(n+1), n 6= −1

S. C. Johnson, “Tricks for Improving Kronecker’s Method,” Bell
Laboratories Report 1966.

Berlekamp/Zassenhaus’s, Risch’s algorithms
∫ x+1

x4 e1/xdx = −x2− x+1
x2 e1/x

B. G. Claybrook, “A new approach to the symbolic factorization of
multivariate polynomials,” Artificial Intelligence, vol. 7, (1976),
pp. 203–241.

Important algorithms: “classical” computer algebra

Euclid, Chinese remainder

Sturm chains, Seidenberg’s algorithm

Gauss’s distinct degree factorization, Berlekamp/Zassenhaus

Berlekamp/Massey

Gröbner, Macaulay resultants, Wu triangular sets

Risch integration and transcendence theory of special functions

FFT-based polynomial arithmetic

Gosper and Karr

Collins cylindrical algebraic decomposition

. . .

Information Department, PO Box 50005, SE-104 05 Stockholm, Sweden, webbsite: www.kva.se
Tel: +46-8-673 95 95, Fax +46-8-15 56 70, e-mail: info@kva.se

THE NOBEL PRIZE IN PHYSICS 1999

PRESS RELEASE 12 OCTOBER 1999
The Prize I Further reading I The laureates

The Royal Swedish Academy of Sciences has awarded
the 1999 Nobel Prize in Physics
jointly to

Professor Gerardus ’t Hooft, University of Utrecht, Utrecht, the Netherlands,
and
Professor Emeritus Martinus J.G. Veltman, University of Michigan, USA,
resident in Bilthoven, the Netherlands.

The two researchers are being awarded the Nobel Prize for having placed particle
physics theory on a firmer mathematical foundation. ...

The Academy’s citation:
"for elucidating the quantum structure of electroweak interactions in physics."

...
One person who had not given up hope of being able to renormalize non-abelian
gauge theories was Martinus J.G.Veltman. At the end of the 1960s he was a
newly appointed professor at the University of Utrecht. Veltman had developed
the Schoonschip computer program which, using symbols, performed algebraic
simplifications of the complicated expressions that all quantum field theories
result in when quantitative calculations are performed. Twenty years earlier,
Feynman had indeed systematised the problem of calculation and introduced
Feynman diagrams that were rapidly accepted by researchers. But at that time
there were no computers. Veltman believed firmly in the possibility of finding a
way of renormalizing the theory and his computer program was the cornerstone
of the comprehensive work of testing different ideas.

Important algorithms: “middle earth”

Zippel and Ben-Or-Tiwari sparse interpolation

Singer and Kovacic differential equation solvers

Lattice basis reduction [LLL]

Zeilenberger

Wiedemann, block Wiedemann/Lanczos, matrix Padé

Straight-line and black box polynomial factorization

Baby steps/giant steps algorithms for lin. and polynomial algebra

Tellegen’s principle

Real roots of polynomial systems

Noda-Sasaki approximate GCD, Sasaki approx. factorization

Corless et al. SVD methods

. . .

Important algorithms: “modern” symbolic computation

Sparse resultants, A- and J-resultants

Giesbrecht/Mulders-Storjohann diophantine linear solvers

Fast bit complexity in linear algebra over the integers

Black box matrix preconditioners, early termination

Sasaki/van Hoeij power sums, Bostan et al. logarithmic deriva-
tives

Sparsest shift of polynomials

Villard-Jeannerod optimal polynomial matrix inverse

Skew, Ore and differential polynomial factorization

Approximate polynomial factorization via differential equations

Barvinok-Woods and De Loera et al. short rational functions

Lenstra/Kaltofen-Koiran lacunary polynomial factorization

. . .

Factorization of “noisy” polynomials over the complex numbers

81x4 +16y4−648z4 +72x2y2−648x2−288y2 +1296 = 0

(9x2 +4y2 +18
√

2z2−36)(9x2 +4y2−18
√

2z2−36) = 0

81x4 +16y4−648.003z4 +72x2y2 + .002x2z2 + .001y2z2

− 648x2 − 288y2 − .007z2 + 1296 = 0

The Approximate Factorization Problem [Kaltofen, Sasaki 1989]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] such that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

The Approximate Factorization Problem [Kaltofen, Sasaki 1989]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] such that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of distance norm ‖ · ‖, and
notion of degree.

We use Euclidean-norm, and multi-degree: mdeg f =(degx f ,degy f)

The Approximate Factorization Problem [Kaltofen, Sasaki 1989]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] such that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of distance norm ‖ · ‖, and
notion of degree.

We use Euclidean-norm, and multi-degree: mdeg f =(degx f ,degy f)

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

Status of the Approximate Factorization Problem

• No polynomial time algorithm (except for constant degree fac-
tors [Hitz, Kaltofen, Lakshman ’99])

Status of the Approximate Factorization Problem

• No polynomial time algorithm (except for constant degree fac-
tors [Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby factorizable
f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

Status of the Approximate Factorization Problem

• No polynomial time algorithm (except for constant degree fac-
tors [Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby factorizable
f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds for min‖ f − f̃‖ (“irreducibility radius”)
[Kaltofen and May ISSAC 2003; Nagasaka CASC 2004, 2005]

Our ISSAC’04 Results [Gao, Kaltofen, May, Yang, Zhi]

An algorithmically-engineered practical algorithm to find the
factorization of a nearby factorizable polynomial given any f .

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̂1, f̂2 such that ‖ f1 f2− f̂1 f̂2‖ ≈ ‖ fnoise‖
even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3

Verschelde’s Stewart-Gouch Platform Benchmarks

Josh Targownik’s bypass surgery motorized manipulator

What is an algorithm?

– finite unambiguous list of steps (“control, program”)

– computes a function from D −→ E where D is infinite
(“infinite Turing tape”)

Ambiguity through randomization

– Monte Carlo (BPP): “always fast, probably correct”.
Examples: isprime

Lemma [DeMillo&Lipton’78, Schwartz/Zippel’79]
Let f ,g ∈ F[x1, . . . ,xn], f 6= g,S ⊆ F.

Probability(f (a1, . . . ,an) 6= g(a1, . . . ,an) | ai ∈ S)

≥ 1−max{deg(f),deg(g)}/cardinality(S)

sparse polynomial interpolation, factorization, minimal polyno-
mial of a sparse matrix

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas (RP): “always correct, probably fast”.
Examples: polynomial factorization in Zp[x], where p � 2.
Determinant of a sparse matrix

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas (RP): “always correct, probably fast”.
Examples: polynomial factorization in Zp[x], where p � 2.
Determinant of a sparse matrix

De-randomization: conjectured slow-down is within polynomial
complexity.

M. Agrawal, N. Kayal, N. Saxena, “PRIMES is in P,” 2002.

Zeev Dvir and Amir Shpilka, “Quasi-polynomial polynomial iden-
tity testing for depth-3 circuits with bounded top fan-in,” 2005.

Kabanets and Impagliazzo [STOC 2003]
If Schwartz/Zippel can be de-randomized (subexponentially), then
there do not exist polynomial-size circuits for NEXP or the per-
manent.

Kabanets and Impagliazzo [STOC 2003]
If Schwartz/Zippel can be de-randomized (subexponentially), then
there do not exist polynomial-size circuits for NEXP or the per-
manent.

Efficiency dilemma: the higher the confidence in the result, the
more time it takes to compute it.

Black box polynomials

x1, . . . ,xn ∈ F
−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F
−−−−−−−−−−−−−−→

f ∈ F[x1, . . . ,xn]
F an arbitrary field, e.g., rationals, reals, complexes

Perform polynomial algebra operations, e.g., factorization with

(n ·deg(f))O(1)







black box calls,
arithmetic operations in F and
randomly selected elements in F

Black box matrices

y ∈ F
n

−−−−−−→
A · y ∈ F

n

−−−−−−−−→

A ∈ F
n×n singular

F an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., A−1b [Wiedemann 86]
with

O(n) black box calls and
n2(logn)O(1) arithmetic operations in F and

O(n) intermediate storage for field elements

LinBox Release 1.0 [www.linalg.org]: an exact Matlab

Black box manipulation (“functional programming”):
Factorization [Kaltofen and Trager 1988]

p1, . . . , pn ∈ F−−−−−−−−−−−→

Precomputed data including e1, . . . ,en.
Program makes “oracle calls”:

a1, . . . ,an−−−−−−−−−→

f (x1, . . . ,xn)

f (a1, . . . ,an)−−−−−−−−−−→

b1, . . . ,bn−−−−−−−−−→

f (x1, . . . ,xn)

f (b1, . . . ,bn)−−−−−−−−−−→

...
c1, . . . ,cn−−−−−−−−−→

f (x1, . . . ,xn)

f (c1, . . . ,cn)−−−−−−−−−−→

. . .

f (x1, . . . ,xn) = h1(x1, . . . ,xn)
e1 · · ·hr(x1, . . . ,xn)

er

hi ∈ F[x1, . . . ,xn] irreducible.

h1(p1, . . . , pn)−−−−−−−−−−−−−→
h2(p1, . . . , pn)−−−−−−−−−−−−−→

...

hr(p1, . . . , pn)−−−−−−−−−−−−−→

Given a black box

p1, . . . , pn ∈ F
−−−−−−−−−−−→

f (p1, . . . , pn) ∈ F
−−−−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F[x1, . . . ,xn]
F a field

compute by multiple evaluation of this black box the
sparse representation of f

f (x1, . . . ,xn) =
t

∑
i=1

aix
ei,1
1 · · ·xei,n

n , ai 6= 0

Many algorithms that are polynomial-time in deg(f),n, t :

Zippel 1979, 1988; Ben-Or, Tiwari 1988
Kaltofen, Lakshman, Wiley 1988, 1990
Grigoriev, Karpinski, Singer 1988
Kaltofen, Lee, Lobo 2000, 2003
Mansour 1992; Giesbrecht, Lee, Labahn 2003: numerical method

Show Wen-shin Lee’s Maple worksheet

FoxBox [Dı́az, Kaltofen 1998] example: determinant of symmet-
ric Toeplitz matrix

det(













a0 a1 . . . an−2 an−1

a1 a0 . . . an−3 an−2
...

an−2 an−3 . . . a0 a1

an−1 an−2 . . . a1 a0













)

= F1(a0, . . . ,an−1) ·F2(a0, . . . ,an−1).

over the integers.

Serialization of factors box of 8 by 8 symmetric Toeplitz matrix
modulo 65521

15,8,-1,1,2,2,-1,8,1,7,1,1,20752,-1,1,39448,33225,984,17332,53283,
35730,23945,13948,22252,52005,13703,8621,27776,33318,2740,
4472,36959,17038,55127,16460,26669,39430,1,0,1,4,20769,16570,
58474,30131,770,4,25421,22569,51508,59396,10568,4,20769,16570,
58474,30131,770,8,531,55309,40895,38056,34677,30870,397,59131,
12756,3,13601,54878,13783,39334,3,41605,59081,10842,15125,
3,45764,5312,9992,25318,3,59301,18015,3739,13650,3,23540,44673,
45053,33398,3,4675,39636,45179,40604,3,49815,29818,2643,16065,
3,46787,46548,12505,53510,3,10439,37666,18998,32189,3,38967,
14338,31161,12779,3,27030,21461,12907,22939,3,24657,32725,
47756,22305,3,44226,9911,59256,54610,3,56240,51924,26856,52915,
3,16133,61189,17015,39397,3,24483,12048,40057,21323

Serialization of checkpoint during sparse interpolation

28, 14, 9, 64017, 31343, 5117, 64185, 47755, 27377, 25604,
6323, 41969, 14, 3, 4, 0, 0, 3, 4, 0, 1, 3, 4, 0, 2, 3, 4, 0, 3, 3,
4, 0, 4, 3, 4, 1, 0, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 3, 3, 4, 2, 0, 3, 4, 2,
1, 3, 4, 2, 2, 3, 4, 3, 0, 3, 4, 3, 1, 14, 59877, 1764, 59012, 44468,
1, 19485, 25871, 3356, 2, 58834, 49014, 65518, 15714, 65520, 1,
2, 4, 4, 1, 1

Numerical Randomized (Monte Carlo)
more efficiency, but more efficiency, but
approximate result uncertain result
ill-conditionedness unfavorable inputs:
near singular inputs pseudo-primes,

∑i ∏ j(xi− j),
Coppersmith’s “pathological” matrices

convergence analysis probabilistic analysis
try algorithms on try algorithms
unproven inputs with limited randomness

Numerical + randomized, e.g., approximate factorizer:
all of the above (?)

Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result of
possibly unknown validity

Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result of
possibly unknown validity

– Is a proven complete solution in a more stringent setting, for
example, by restricting the inputs or by slowing the algorithm

Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result of
possibly unknown validity

– Is a proven complete solution in a more stringent setting, for
example, by restricting the inputs or by slowing the algorithm

– Has an experimental track record, for example, works on 50%
of cases

Ron Rivest’s lessons learned (2002 Turing Award lecture)

– Try to solve “real-world” problems

– Moore’s law (#transistors/in2 doubles every year) matters

– Theory matters

– Organizations matter

Moore’s law and asymptotically fast algorithms

Strassen matrix multiplication
Knuth/Schönhage half GCD
baby-steps/giant-steps polynomial factorization
Tellegen’s principle,. . .

are practical on today’s problem sizes

Moore’s law and asymptotically fast algorithms

Strassen matrix multiplication
Knuth/Schönhage half GCD
baby-steps/giant-steps polynomial factorization
Tellegen’s principle,. . .

are practical on today’s problem sizes

Abstract model vs. actual computer:
PRAM has Ω(3

√
n) memory access time [D. Bernstein]

Turing algorithms have no cache faults [A. Schönhage]
O(loglogn) factors are model specific [E. Kaltofen]

Organizations

WRI and Maplesoft
ACA/ISSAC
JSC/AAECC
SIGSAM/Fachgruppe/JSSAC
W3C MathML committee

Real-world problems

Macdonald’s Microwave antenna system: 4 equations in 4 vari-
ables of total degree 6 and 146 terms in total

The many medium size computations are real world applications

