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École Normale Supérieure de Lyon
46, Allée d’Italie,

69364 Lyon Cedex 07, France
Pascal.Koiran@ens-lyon.fr

ABSTRACT
We present algorithms that compute the linear and quadratic
factors of supersparse (lacunary) bivariate polynomials over
the rational numbers in polynomial-time in the input size.
In supersparse polynomials, the term degrees can have hun-
dreds of digits as binary numbers. Our algorithms are Monte
Carlo randomized for quadratic factors and deterministic for
linear factors. Our approach relies on the results by H. W.
Lenstra, Jr., on computing factors of univariate supersparse
polynomials over the rational numbers. Furthermore, we
show that the problem of determining the irreducibility of
a supersparse bivariate polynomial over a large finite field
of any characteristic is co-NP-hard via randomized reduc-
tions.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; F.1.2 [Theory of Com-
putation]: Analysis of Algorithms and Problem Complex-
ity—Nonnumerical Algorithms and Problems

General Terms
algorithms, theory

Keywords
sparse polynomials, lacunary polynomials, multivariate poly-
nomials, polynomial factorizations, polynomial-time com-
plexity, NP-hardness

1. INTRODUCTION
The algorithms in this paper take as inputs “super”sparse

polynomials, which A. Schinzel and H. W. Lenstra, Jr., call
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lacunary† polynomials. A supersparse polynomial

f(X1, . . . , Xn) =
t

∑

i=1

ai X
αi,1

1 · · ·X
αi,n
n

is input by a list of its coefficients and corresponding term
degree vectors. One defines the size of f as

size(f) =
t

∑

i=1

(

size(ai) + dlog2(αi,1 · · ·αi,n + 2)e
)

, (1)

where size(ai) is the bit-size of the scalar coefficients. One
thus allows very high degrees, say with hundreds of digits
as binary numbers, in distinction to the usual sparse repre-
sentation [28, 16]. If the coefficients are integers, one can-
not evaluate a supersparse polynomial at integer values in
polynomial-time in its size, because the value of the poly-
nomial can have exponential size, say 2100 digits. Impor-
tant exceptions are evaluating at 0 or ±1. A supersparse
polynomial can be represented by a straight-line program
[13] of size O(sizef) via evaluating its terms with repeated
squaring. It is NP-hard to test if two integral univariate su-
persparse polynomials have a non-trivial greatest common
divisor [22].

A breakthrough polynomial-time result is in [3]. Any in-
tegral root of a univariate supersparse polynomial with inte-
gral coefficients can be found in (sizef)O(1) bit operations.
H. W. Lenstra, Jr., [19, 20] has generalized the result to
computing factors of fixed degree in an algebraic extension
of fixed degree, in particular to computing rational roots in
polynomial-time. Using interpolation and divisibility testing
à la [1] in connection with Lenstra’s algorithm, in section 3
we present an algorithm for computing linear and quadratic
rational factors of integral bivariate (n = 2) supersparse

polynomials in (sizef)O(1) bit operations. Our algorithm is
randomized of the Monte Carlo kind, and in section 4 we
show how the linear bivariate factors can be found deter-
ministically.

Several hardness results for supersparse polynomials over
finite fields have been derived from Plaisted’s approach [7,
17]. For example, Plaisted’s hardness of GCD 6= 1 extends
to polynomials over Zp [7] and can be used to show NP-
hardness (via randomized reduction) of the irreducibility of
supersparse bivariate polynomials for sufficiently large p (cf.
[17, Proof of Theorem 1]). In section 5 we summarize those

†
A lacuna is a hole as in the word ‘lake;’ the polynomials have, so to

speak, “lagoons of zero coefficients.”
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results and generalize them to finite fields of any character-
istic.

For all problems that we consider there are deterministic
and/or probabilistic algorithms whose bit complexity is of

order (size(f) + deg(f))O(1) [14, 15]. We remark that our
representation of the coefficients of f and the modulus p is
by dense vectors of digits, not by supersparse lists of non-
zero digits and their positions in the integers (cf. [25]).

We note that Barvinok’s representation by short ratio-
nal generating functions [2] is related to our supersparse
representation, and short rational functions have been suc-
cessfully employed to solve combinatorial counting problems
[4].

2. THE RESULTS BY CUCKER ET AL. AND
LENSTRA

In [3] it is shown how to compute an integer root of a
supersparse polynomial f(X) = a1 +a2X

α2 + · · ·+atX
αt ∈

Z[X] in polynomial time in the size of the polynomial. The
result has a short proof based on finding gaps: suppose that
f(X) = g(X) + Xuh(X) with g 6= 0, h 6= 0, deg(g) ≤ k and
let u − k ≥ δ = log2 ‖f‖1 = log2(|a1| + · · · + |at|). For an
integer a 6= ±1, we have f(a) = 0 =⇒ g(a) = h(a) = 0.
Assume the contrary, namely that a 6= 0,±1 and h(a) 6= 0.
Then

|g(a)| < ‖f‖1 · |a|
k ≤ 2u−k · |a|k ≤ |a|u ≤ |auh(a)|, (2)

thus |f(a)| ≥ |auh(a)| − |g(a)| > 0. Note the similarity of
(2) with the proof of Cauchy’s root bound. The estimate
for δ can be sharpened [3, Proposition 2]. The polynomial
time algorithm can now proceed by computing the integer
roots of those polynomial segments aiX

αi + · · ·+ajX
αj in f

whose terms have degree differences αl − αl−1 < δ, for all
i < l ≤ j. After dividing out Xαi , we have polynomials
of degree ≤ (t − 1)(δ − 1), whose common integer roots are
found by p-adic lifting [21]. In section 4 we give a variant of
the gap technique for high degree sums of linear forms.

H. W. Lenstra, Jr. has used the gap method to computing
rational roots and low degree factors of supersparse ratio-
nal polynomials via the height of an algebraic number (see
section 4). The algorithm presented in [19] receives as in-
put a supersparse polynomial f(X) =

∑t
i=1 aiX

αi ∈ K[X],
where the algebraic number field K is represented as K =
Q[ζ]/(ϕ(ζ)) with a monic irreducible minimum polynomial
ϕ(ζ) ∈ Z[ζ]. Furthermore, a factor degree bound d is in-
put. The algorithm produces a list of all irreducible factors
of f over K of degree ≤ d and their multiplicities. Let
D = d · deg(ϕ). There are at most

O(t2 · 2D · D · log(2D t)) (3)

irreducible factors of degree ≤ d [20, Theorem 1], each of
which, with the exception of the possible factor X, has mul-
tiplicity at most t [19, Proposition 3.2]. The algorithm fin-
ishes in

(

t + log(deg f) + log ‖f‖ + log ‖ϕ‖
)O(D)

(4)

bit operations. Here ‖ϕ‖ is the (infinity) norm of the co-
efficient vector of ϕ and ‖f‖ is the norm of the vector of
norms of the coefficients ai(ζ). We assume that a common
denominator has been multiplied through and all coefficients
of the ai(ζ) are integers. We note that by standard factor
coefficient bound techniques [6], all factors have coefficients

of size
(

t + log ‖f‖ + log ‖ϕ‖
)O(D)

, which is independent of
deg(f).

For example, for ϕ = ζ−1, that is, K = Q, and d = 1 = D,
Lenstra’s algorithm finds all rational roots of a supersparse
integral polynomial f in polynomial-time in size(f).

3. LINEAR AND QUADRATIC FACTORS
We now present our randomized algorithm for comput-

ing linear and quadratic factors (and their multiplicities)
of bivariate supersparse polynomials. For simplicity, we
shall consider polynomials with rational coefficients only, al-
though our method would allow coefficients in an algebraic
number field. Our algorithm calls the univariate algorithm
by H. W. Lenstra, Jr. [19]. For simplicity (see Remark 1
below), we assume that the input polynomial is monic in X.

Algorithm Supersparse Factorization
Input: a supersparse f(X, Y ) =

∑t
i=1 ai XαiY βi ∈ Z[X, Y ]

that is monic in X and an error probability ε = 1/2l.
Output: a list of polynomials gj(X, Y ) with degX(gj) ≤ 2
and degY (gj) ≤ 2 and corresponding multiplicities, which
with probability no less than 1−ε are all linear and quadratic
irreducible factors of f over Q together with their true mul-
tiplicities.

Step 0. Factor out the maximum powers of X and Y that
divide f . The non-zero coefficients of f do not change.
Compute all linear and quadratic irreducible factors
of f that are in Q[Y ] by applying Lenstra’s method
to the coefficients of Xαi . The multiplicities are also
provided by Lenstra’s algorithm.

Step 1. Compute all linear and quadratic irreducible fac-
tors in Q[X] of f(X, 0), f(X, 1) and f(X,−1) by Len-
stra’s method. The algorithm will also provide the
multiplicities of those factors.

Step 2. Interpolate all factor combinations.
Test if a factor candidate g(X, Y )µ of candidate multi-
plicities µ divides f(X, Y ) by testing if 0 ≡ f(X, a) mod
(g(X, a)µ, p) where a ∈ S ⊂ Z, and p ≤ B a prime in-
teger are randomly selected. The cardinality |S| of S
and the bound B are chosen in dependence of f and
the input error probability ε (see below). The algo-
rithm may fail to sample a prime p ≤ B and return
“failure,” which is interpreted as an incorrect answer
in the output specification of the probability of cor-
rectness. 2

We now show that our algorithm Supersparse Factoriza-
tion can be implemented as to run in

(

t + log(deg f) + log ‖f‖ + log 1/ε
)O(1)

(5)

bit operations. Note that the measure (5) is polynomial in
size(f) and l = − log ε.

By (3) in section 2 and our restriction to D ≤ 2, the poly-
nomials f(X, 0), f(X,−1) and f(X, 1) each have no more
than O(t2 log t) linear or irreducible quadratic factors. In
Step 2, one interpolates factors that are monic in X and
whose coefficients have size (t + log ‖f‖)O(1). There are
O(t4(log t)2) combinations of linear factors and O(t12(log t)6)
combinations of quadratic factors, the latter because we
must also consider products of univariate linear factors as
images of bivariate quadratic factors. In practice, of course,
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the number of combinations can be much smaller. At least
one of the univariate factors in each combination is 6= X in
the linear case and 6= X2 in the quadratic case, because the
interpolated bivariate factor cannot be X or X2. Therefore
the multiplicity m of one of the univariate factors satisfies
m ≤ t, and we need to check all µ ≤ m.

For each candidate factor G(X, Y ) = g(X, Y )µ we con-
sider the division with remainder in X,

f(X, Y ) − q(X, Y )G(X, Y ) = h(X, Y ),

where degX(h) < degX(G). (6)

By considering (6) as a (unimodular) linear system over
Q(Y ) with degX(f) + 1 equations and variables, we obtain
bounds for degY (h) and ‖h‖ [8]:

degY (h) ≤ degY (f) + degY (G)×

(degX(f) + 1 − degX(G)) = O(t deg(f)) (7)

and

‖h‖2
∞ ≤ t · ‖f‖2

1×

((degX(G) + 1) · ‖G‖2
1)

degX (f)+1−degX (G). (8)

From (7) and ε we derive a bound for |S| in Step 2, and
from (8) and ε a bound for B in Step 2. Suppose G does not
divide f , that is there is a coefficient hi(Y ) 6= 0 of Xi in h.

First, we wish to have 0 6= hi(a) with probability ≥
1 − η/3, where η = ε/A with A = O(t13(log t)6) being the
number of factor combinations and multiplicities that have
to be tested. The probability to pick a root of hi(Y ) among
the elements in S ⊂ Z is no more than degY (h)/|S|. By (7),
for a set S of cardinality

|S| = (t + deg f + 1/ε)O(1) (9)

we can succeed with probability ≥ 1 − η/3. Let H = hi(a)
for a ∈ S. We get by (9) and again by (7) and (8) that

H = (t + deg f + ‖f‖ + 1/ε)O(t deg f).
Second, we choose B such that 0 6≡ H (mod p) with prob-

ability ≥ 1 − η/3. By facts on the prime number distribu-
tion (see [23] for explicit estimates), there is a constant γ1

such that H has at most γ1 log H/ loglog H distinct prime
factors. Since there are no fewer than γ2B/ log B primes
≤ B, the probability that 0 ≡ H (mod p) is no more than
γ3(log H/ loglog H)/(B/ log B) for some constants γ2 and
γ3. Because one has

γ3
log H/ loglog H

B/ log B
≤

ε

3 A
⇐⇒ γ3

3A log H

ε loglog H
≤

B

log B
,

one may choose

B = (A · log H · 1/ε)O(1) (10)

and achieve failure probability ≤ η/3. Note that the number

of digits in p is of order (t+log(deg f)+log ‖f‖+log 1/ε)O(1).
The algorithm must succeed to pick a prime p ≤ B. By it-

erating the prime selection process O(log(A/ε) · log B) times
we can assume that to happen with probability ≥ 1 − η/3.
Thus a single false factor combination is eliminated with
probability ≥ (1 − η/3)3 ≥ 1 − 1/η. Therefore no false fac-
tor combination or multiplicity is accepted with probability
≥ (1 − η)A ≥ 1 − Aη ≥ 1 − ε.

The bit complexity measure (5) follows from the bounds
(9) and (10) together with the repeated squaring algorithm
and a polynomial primality test used in Step 2.

Remark 1. Our algorithm can be extended to compute
in polynomial time all irreducible factors gj with degX(gj) =
O(1), i.e., of constant degree in X, and simultaneously of
degY (gj) ≤ 2. The input condition of monicity of f can be
relaxed to accept polynomials with a leading coefficient (or
trailing coefficient) in X that does not vanish for Y = 0, Y =
−1 or Y = 1. One imposes a factor of the leading coefficient
on the interpolated polynomials, which is a technique from
sparse Hensel lifting [11]. One may also switch the roles
of X and Y . However, at this time we do not know at all
how to interpolate the factors of polynomials such as

∑

i

(X2di − 1)(Y 2ei − 1)fi(X, Y ) (11)

where the fi are supersparse.

However, in the next section, we can show how to compute
in deterministic polynomial time all factors of total degree 1
of any supersparse bivariate rational polynomial, including
those of the form (11).

4. DETERMINISTIC LINEAR FACTORS
In this section we give a deterministic polynomial time al-

gorithm that finds the linear factors of a supersparse polyno-
mial. In contrast to the randomized algorithm of section 3,
this deterministic algorithm can handle all (bivariate) su-
persparse polynomials. Our approach is based on the obser-
vation that a polynomial g(X, Y ) is divisible by Y − bX − a
iff g(X, a + bX) = 0. We will first give an algorithm that
decides whether a polynomial of the form

t
∑

j=0

ajX
αj (a + bX)βj (12)

is identically equal to zero. Here a and b and the aj are
rational numbers; the αj and βj are non-negative integers.
This algorithm can be used to check with certainty whether
a “candidate factor” Y − bX − a (for instance generated
by an interpolation technique as in section 3) really is a
factor of the bivariate polynomial

∑

j ajX
αj Y βj . In general,

deciding deterministically whether a straight-line program
computes the identically zero polynomial is a notorious open
problem. It turns out, however, that for polynomials of the
form (12) this problem has an efficient solution. We will then
see that this verification algorithm can be easily converted
into an algorithm that actually finds all linear factors.

Even though our input polynomials have rational coeffi-
cients as in the remainder of the paper, the results of this
section rely heavily on algebraic number theory.‡ We re-
view the necessary material in section 4.1. A suitable gap
theorem is established in section 4.2. Here, some crucial
ideas are borrowed from Lenstra’s [19] paper. In particular,
Proposition 1 closely follows Proposition 2.3 of [19]. Finally,
our deterministic algorithms are presented in section 4.3.

4.1 Heights of algebraic numbers
In this section we quickly recall some number theoretic

background. For any prime number p, the p-adic abso-
lute value on Q is characterized by the following properties:
|p|p = 1/p, and |q|p = 1 if q is a prime number different from
p. For any x ∈ Q \ {0}, |x|p can be computed as follows:

‡
It is an interesting open problem whether they have more elementary

proofs such as the one given in section 2.
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write x = pαy where p is relatively prime to the numera-
tor and denominator of y, and α ∈ Z. Then |x|p = 1/pα

(and of course |0|p = 0). We denote by MQ the union of the
set of p-adic absolute values and of the usual (archimedean)
absolute value on Q.

Let d, e ∈ Z be two non-zero relatively prime integers. By
definition, the height of the rational number d/e is max(|d|,
|e|). There is an equivalent definition in terms of absolute
values: for x ∈ Q, H(x) =

∏

ν∈MQ
max(1, |x|ν). Note in

particular that H(0) = 1.
More generally, let K be a number field (an extension

of Q of finite degree). The set MK of normalized absolute
values is the set of absolute values on K which extend an
absolute value of MQ. For ν ∈ MK , we write ν|∞ if ν
extends the usual absolute value, and ν|p if ν extends the
p-adic absolute value. One defines a “relative height” HK

on K by the formula

HK(x) =
∏

ν∈MK

max(1, |x|ν)dν . (13)

Here dν is the so-called “local degree”. For every p (either
prime or infinite),

∑

ν|p dν = [K : Q]. Sometimes, instead

of (13) one just writes HK(x) =
∏

ν max(1, |x|ν) if it is un-
derstood that each absolute value may occur several times
(in fact, dν times) in the product. The absolute height H(x)

of x is HK(x)1/n, where n = [K : Q]. It is independent of
the choice of K.

There is a nice connection between the height of algebraic
numbers and the Mahler measure of polynomials. Recall
that the Mahler measure M(f) of a polynomial of degree d:

f(X) = adXd + · · · + a1X + a0 = ad

d
∏

i=1

(X − αi)

is by definition equal to |ad|
∏d

i=1 max(1, |αi|). It turns out
that if α is an algebraic number of degree d and f ∈ Z[X]
its minimal polynomial, M(f) = H(α)d ([27], section 3.3).
This connection is often helpful when one has to estimate
heights, but here we will use directly the definition of height
in terms of absolute values. In Proposition 1 we will also
use the product formula:

∏

ν∈MK

|x|dν
ν = 1 (14)

for any x ∈ K \ {0}. More details on absolute values and
height functions can be found for instance in [18] or [27].

4.2 A gap theorem
We define a notion of height for an expression of the

form (12) by the formula

H(f) =
∏

ν∈MQ

|f |ν ,

where |f |ν = max0≤j≤t |aj |ν . There is a classical notion of
height for a point in projective space ([10], section B.2) and
in fact H(f) is simply the height of the point (a0, a1, . . . , at).
A nice feature of H(f) is its invariance by scalar multiplica-
tion: if λ ∈ Q \ {0}, H(λf) = H(f). Indeed, if we multiply
a polynomial by pα where p is prime, the archimedean abso-
lute value is multiplied by pα and the p-adic absolute value
is divided by pα. The other absolute values are unchanged.
Note also that H(f) = maxj |aj | if the aj are relatively

prime integers. Computing H(f) in the general case aj ∈ Q
is therefore quite easy: reduce to the same denominator to
obtain integer coefficients, divide by their gcd and take the
maximum of the absolute values of the resulting integers (so
in particular H(f) ∈ Z>0 for any f). Finally, a word of
caution: our notion of height is not intrinsic to the given
polynomial in X, since it is not invariant of the particular
representation (12). Given a bivariate polynomial g(X, Y )
one could, however, define an intrinsic height H(G) as done
above (i.e., as the projective height of its tuple of coeffi-
cients), and we would have H(f(X, a + bX)) = H(G).

Theorem 1. Let f(X) be a polynomial of the form (12)
where (a, b) is a pair of rational numbers different from the
five pairs (0, 0), (±1, 0), (0,±1). Assume without loss of
generality that the sequence (βj) is nondecreasing, and as-
sume also that there exists l such that

βl+1 − βl > log(t H(f))/ log κ,

where κ > 1 is an absolute constant defined in Lemma 2. If
f is identically zero, the polynomials g =

∑l
j=0 ajX

αj (a +

bX)βj and h =
∑t

j=l+1 ajX
αj (a+bX)βj are both identically

zero.

Proof. Let U(a, b) be the set of roots of unity defined
in Lemma 2 below. By hypothesis, f(θ) = 0 for each θ ∈
U(a, b). By Proposition 1 below, g and h are both identically
zero on U(a, b). The result follows since U(a, b) is an infinite
set.

We denote by U the set of complex roots of unity of prime
order, and by U≥5 the set of complex roots of unity of prime
order ≥ 5.

Lemma 1. There is an absolute constant κ1 > 1.045 such
that the following holds. For any θ ∈ U≥5, if a ∈ Z\{0} and
b ∈ Z \ {0} then H(a + bθ) ≥ κ1.

Remark 2. The hypothesis that θ is of order at least 5
is necessary. Indeed, if θ is of order 3 then H(1 + θ) = 1
since 1 + θ = −θ2. Moreover, the restriction to roots of
prime order can probably be removed with some additional
work.

Proof of Lemma 1. Note that |a + bθ|ν ≤ 1 for any
ultrametric absolute value. Indeed,

|a + bθ|ν ≤ max(|a|ν , |bθ|ν) = max(|a|ν , |b|ν).

Hence we only need to take the archimedean absolute values
into account to estimate the height. Recall that if θ is of
order d, its conjugates are the other roots of unity of order
d. Hence

H(a + bθ)d−1 =

d−1
∏

k=1

max(1, |a + be2ikπ/d|).

Assume first that a and b are of the same sign, and for
instance positive. Then |a + be2ikπ/d| ≥ a + b cos(2ikπ/d) ≥
1 + cos(2π/5) if k ≤ d/5. Hence

H(a + bθ) ≥ (1 + cos(2π/5))bd/5c/(d−1).

This lower bound is always > 1.045 since d ≥ 5, and its limit
as d → +∞, which is equal to (1+cos(2π/5))1/5, is > 1.055.

To complete the proof, we now consider the case where a
and b have opposite signs. Assume for instance that a ≥ 1
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and b ≤ −1. Then |a + be2ikπ/d| ≥ a + b cos(2ikπ/d) ≥ 3/2

if d/3 ≤ k ≤ 2d/3. Hence H(a + bθ) ≥ (3/2)bd/3c/(d−1).
This lower bound is again always > 1.10 and its limit as
d → +∞, which is equal to (3/2)1/3, is > 1.14.

We now deal with the case where a and b are rational
numbers.

Lemma 2. There is an absolute constant κ > 1.045 such
that the following holds: for any pair (a, b) of rational num-
bers, different from the 5 excluded pairs of Theorem 1, there
exists an infinite set U(a, b) of roots of unity such that H(a+
bθ) ≥ κ for any θ ∈ U(a, b).

Proof. Let (a, b) be a pair of rational numbers different
from the 5 excluded pairs. If b = 0, H(a + bθ) = H(a) ≥ 2
since a 6∈ {−1, 0, 1}. If a = 0, H(a + bθ) = H(bθ) = H(b) ≥
2 since b 6∈ {−1, 0, 1} (indeed, for any ν we have |bθ|ν =
|b|ν |θ|ν = |b|ν). One may therefore take for U(a, b) the set
of all roots of unity if a = 0 or b = 0.

Also, we have shown in Lemma 1 that one may take
U(a, b) = U≥5 if a ∈ Z \ {0} and b ∈ Z \ {0}. We there-
fore assume for the remainder of the proof that a and b are
both nonzero, and that they are not both integers.

By reduction to the same denominator one finds integers
c, d, e ∈ Z\{0} such that e ≥ 2, gcd(c, d, e) = 1, and a+bθ =
(dθ − c)/e for any root of unity θ. Let x = a + bθ, let p be
a prime factor of e, and fix any ν such that ν|p. Since
|x|ν ≥ p|y|ν where y = dθ − c, it remains to lower bound
|y|ν (note that we have the upper bound |y|ν ≤ 1). If θ is a
n-th root of unity, we have

(y + c)n = dn. (15)

We first assume that p divides c. In this case p cannot divide
d since gcd(c, d, e) = 1. Hence (15) implies that |y|ν = 1, so
that |x|ν ≥ p. Since this is true for any ν such that ν|p, we
have H(x) ≥ p ≥ 2. If p divides c, one may therefore take
U(a, b) equal to the set of all roots of unity.

We now examine the case p - c. We assume that θ 6= 1 is
a n-th root of unity, and distinguish 3 subcases.

(i) If c = d, we shall see that |y|ν = 1 whenever p - n.
Indeed, |y|ν = |c|ν |θ − 1|ν = |θ − 1|ν . Set z = θ − 1.
Since (z + 1)n = 1 and z 6= 0, it follows from the
binomial formula that

zn−1 + nzn−2 +
(

n
2

)

zn−3 + · · · +
(

n
2

)

z = −n.

Hence |z|ν = 1 since |n|ν = 1. We conclude that
H(x) ≥ p ≥ 2, and one may take U(a, b) equal to
the union for all integers n such that p - n of the set
of n-th roots of unity different from 1.

(ii) The second subcase (c 6= d and p - d − c) is similar,
but slightly more involved. Let U(a, b) be the set of
positive integers n such that p - (dn − cn). Note that
U(a, b) is infinite since n ∈ U(a, b) or n + 1 ∈ U(a, b)
for any n ≥ 1 , as is shown as follows: assume the
contrary, namely that p | dn+1 − cn+1 and p | dn − cn.
It follows that p | (dn+1−cn+1)−d(dn−cn) = cn(d−c).
This is impossible since p - c.

Let n ∈ U(a, b). Using again the binomial formula, it
follows from (15) that

yn + ncyn−1 +
(

n
2

)

c2yn−2 + · · · + ncn−1y = dn − cn.

Since |dn − cn|ν = 1, we must have |y|ν ≥ 1 (so that
in fact |y|ν = 1). We conclude that H(x) ≥ p ≥ 2 if
θ ∈ U(a, b).

(iii) The last subcase occurs when c 6= d and p | d − c. We
can write y = dθ−c = c(θ−1)+(c−d). By hypothesis
|c − d|ν ≤ 1/p, and by subcase (i) |c(θ − 1)|ν = 1 if θ
belongs to the set U(a, b) defined in that subcase. We
may therefore take the same U(a, b), and we conclude
again that H(x) ≥ 2 if θ ∈ U(a, b).

We have shown that H(x) ≥ 2 whenever θ ∈ U(a, b) and
a 6∈ Z \ {0}, b 6∈ Z \ {0}, a = 0 or b = 0. One may therefore
take κ = min(2, κ1) (so in fact κ = κ1).

Proposition 1. Let (a, b) be a pair of rational numbers
different from the five excluded pairs of Theorem 1. Let f be
a polynomial of the form (12), and let k ≥ 1 be an integer.
Write f = g + h where g collects all the terms of f with
βj ≤ k and h collects all the terms of f with βj > k. Let
u = min{βj ; βj > k}. Assume that θ is a zero of f , and
that θ belongs to the set U(a, b) of Lemma 2. If

u − k > log(t H(f))/ log κ, (16)

where κ is as in Lemma 2, then θ is a common zero of g
and h.

Proof. We may assume that each of the two polynomials
g and h collects at most t of the t+1 terms of f (otherwise,
the result is clear). Assume by contradiction that g(θ) 6= 0.
Let K = Q[θ] and ν ∈ MK . If |a + bθ|ν ≥ 1, each term of
g(θ) satisfies |ajθ

αj (a + bθ)βj | ≤ |f |ν |a + bθ|kν , therefore

|g(θ)|ν ≤ max(1, |t|ν)|f |ν |a + bθ|kν if |a + bθ|ν ≥ 1.

A similar argument shows that

|h(θ)|ν ≤ max(1, |t|ν)|f |ν |a + bθ|uν if |a + bθ|ν ≤ 1.

We have |g(θ)|ν = |h(θ)|ν , so we can combine these two
statements in

max(1, |a + bθ|ν |)
u−k · |g(θ)|ν ≤ max(1, |t|ν) · |f |ν · |a + bθ|uν .

Raise this to the power dν/[K : Q] and take the product over
ν ∈ MK . Using the fact that H(t) = t, and applying (14) to
g(θ) and a+bθ (which are both supposed to be nonzero) one
finds that H(a + bθ)u−k ≤ t ·H(f). However, H(a + bθ) ≥ κ
by Lemma 2. This is in contradiction with (16).

4.3 Deterministic algorithms
Theorem 2. We have a polynomial-time deterministic

algorithm for deciding whether a polynomial of the form (12)
is identically zero.

Note that there is a trivial algorithm which deals with the
case where (a, b) is one of the five excluded pairs of The-
orem 1. In the following we therefore assume that (a, b)
is not one of these five excluded pairs, and we fix a ra-
tional number ε > 0 such that one may take κ = 2ε in
Lemma 2. Set δ = dn/εe, where n is the unique integer such
that 2n−1 ≤ t H(f) < 2n. Assume that the βj ’s are sorted
by nondecreasing order as in Theorem 1. There is a unique
integer s ≥ 1 and a unique partition of the set {0, 1, . . . , t}
in subsets U1, . . . , Us of consecutive integers with the fol-
lowing property: if an integer j belongs to Ul then j + 1
also belongs to Ul if βj+1 < βj + δ, otherwise j + 1 be-
longs to Ul+1 (to obtain this partition, just sweep the list
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of the βj ’s from left to right and create a new subset when-
ever an element βj such that βj+1 − βj ≥ δ is found). Let
fl =

∑

j∈Ul
ajX

αj (a+ bX)βj . By construction f =
∑s

j=1 fl

and by Theorem 1, f is identically zero iff all the fl are iden-
tically zero. Indeed, we have δ > log(t H(f))/ log κ, where
κ = 2ε. Furthermore, we can write fl = (a + bX)γlgl where

gl =
∑

j∈Ul

ajX
αj (a + bX)δj,l , (17)

γl = min{βj ; j ∈ Ul}, and δj,l = βj − γl. Each exponent δj,l

satisfies 0 ≤ δj,l < δ. The gl are all identically zero iff f is
identically zero. We can now describe our main algorithm.

1. Compute H(f) as explained before Theorem 1 and the
integer δ defined above.

2. Construct the list (g1, . . . , gs) defined by (17).

3. Express each polynomial (a+ bX)δj,l as a sum of pow-
ers of X.

4. Substitute in (17) to express each gl as a sum of powers
of X, and decide whether the gl are all identically zero.
If so, output “f = 0”. Otherwise, output “f 6= 0”.

The correctness of this algorithm follows from the discussion
after Theorem 2, and it is clear that steps 1 and 2 run in
polynomial time. Step 3 also runs in polynomial time since
δj,l < δ and δ is bounded by a polynomial in the input
size (so we can simply expand (a + bX)δj,l by brute force).
Finally, in step 4 we express gl as a sum of at most δ|Ul| ≤
δ(t+1) terms. This completes the proof of the running time
estimate, and of Theorem 2.

Remark 3. One can deal at no additional expense with
polynomials of the slightly more general form:

f(X) =
t

∑

j=0

aj(c + dX)αj (a + bX)βj .

Indeed, the change of variable Y = c + dX yields a poly-
nomial g(Y ) of form (12). The only case which cannot be
handled in this way is the seemingly trival one b = d =
0. Here one has to decide whether the rational number
∑t

j=0 ajc
αj aβj is equal to zero. It is not clear whether this

can be done in deterministic polynomial time, even if a, c
and the aj are all integers.

Theorem 2 yields a deterministic algorithm for Step 2 with
µ = 1 in algorithm Supersparse Factorization in Section 3.
However, that variant still fails to compute linear factors of
polynomials of the form (11), which we remedy next.

Theorem 3. We have a polynomial-time deterministic
algorithm that finds all linear factors of a supersparse poly-
nomial g(X, Y ) =

∑t
j=0 ajX

αj Y βj .

Proof. We first find all linear factors of f that are in
Q[X] by applying Lenstra’s method to the coefficients of
Y βj (this is similar to step 0 of the algorithm of section 3).
After that, it remains to find all factors of the form Y −
bX−a. There are five special cases for the pair (a, b), which
correspond to the five excluded pairs of Theorem 1. As
pointed out in the proof of Theorem 2, one can check easily
for each of these five pairs whether g(X, a+ bX) = 0. In the
following we therefore look for factors Y −bX−a where (a, b)

is different from the five excluded pairs. As in Theorems 1
and 2, we assume that the βj are sorted by nondecreasing
order.

The idea is to use Theorem 1 to reduce this problem to
several factoring problems about dense polynomials. Let
U1, . . . , Us be the partition of the set of indices {0, 1, . . . , t}
which is constructed when the algorithm of Theorem 2 is
run on the polynomial f(X) = g(X, a + bX). Crucially,
this partition is in fact independent of the pair (a, b). As
in the proof of Theorem 2, one can write g =

∑s
j=1 Y γlgl,

where gl =
∑

j∈Ul
ajX

αj Y δj,l , γl = min{βj ; j ∈ Ul}, and
δj,l = βj − γl. By Theorem 1, the linear factors of g are
(excluding excluded pairs!) the common linear factors of
the gl. We have therefore reduced our initial problem to the
computation of the linear factors of each gl. This progress
is significant since, as shown in the proof of Theorem 2, in
every gl the exponents δj,l of variable Y are “small” (poly-
nomially bounded in the size of the input polynomial g).
The exponents of X may still be large, however. To deal
with this problem we run the same factoring algorithm on
input gl instead of g, with the roles of variables X and Y
interchanged. This reduces the problem to the computation
of the linear factors of polynomials where the exponents of
X and Y are all “small”. One can then use any determin-
istic polynomial time algorithm that finds the linear factors
of a dense polynomial.

5. NP-HARDNESS OF SUPERSPARSE BI-
VARIATE IRREDUCIBILITY

In [22] and the earlier papers cited there, NP-hardness
results are derived for supersparse polynomials over the in-
tegers. In [7, 17] several hard problems are extended for
supersparse polynomials over finite fields. We give similar
NP-hard problems over finite fields, but now for finite fields
of arbitrary characteristic.

Figure 1 shows D. Plaisted’s model for 3-SAT in n Boolean
variables z1, . . . , zn. Clauses correspond to factors of XN −1
with N =

∏n
j=1 pj , where pj distinct primes. We note that

all Poly(Ci) are supersparse polynomials for any clause Ci

with one, two or three literals. An immediate consequence of
the construction, justified by the rootsets in Figure 1 that
are associated with the polynomials, is that the conjunc-
tive normal form C1 ∧ · · · ∧ Cs is satisfiable if and only if
GCD(Poly(C1), . . ., Poly(Cs)) 6= 1. We first generalize that
reduction to coefficients from an arbitrary field.

Let p - N be a fresh prime and let

ΨN (y) =
∏

1≤b<N,GCD(b,N)=1

(X − e2bπi/N ) ∈ Z[y]

be the cyclotomic equation of order N .
Since ζ = (y mod ΨN (y)) is a representation for a primi-

tive N -th root of unity, we have over the integers

XN −1 ≡ (X−y1)(X−y2) · · · (X−yN ) mod (ΨN (y)). (18)

Let Fq ⊇ Zp be the splitting field of ΨN (y) mod p (one has
q = pλ where λ is the multiplicative order of p modulo N)
and let ζ ∈ Fq with ΨN (ζ) = 0 in Fq. Taking (18) modulo p
and evaluating the resulting polynomial identity at y = ζ,
that is, taking it modulo y − ζ | ΨN (y), one obtains

XN − 1 = (X − ζ1)(X − ζ2) · · · (X − ζN ) in Fq[X].§ (19)

§
With N = pµ − 1, 1 ≤ µ, we have proven that the multiplicative
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Formula Polynomial Rootset

zj XN/pj − 1 {(e2πi/N )a | a ≡ 0 (mod pj)}

¬zk
XN − 1

XN/pk − 1
=

∑pk−1
i=0 XiN/pk {(e2πi/N )b | b 6≡ 0 (mod pk)}

L1 ∨ L2 ∨ L3 LCM(Poly(L1), Poly(L2), Poly(L3))
⋃3

j=1 Roots(Lj)

zj ∨ zk ∨ zl
(XN/pj − 1)(XN/pk − 1)(XN/pl − 1)(XN/(pjpkpl) − 1)

(XN/(pkpj) − 1)(XN/(pkpl) − 1)(XN/(pjpl) − 1)

zj ∨ ¬zk ∨ zl
(XN/(pjpk) − 1)(XN − 1)(XN/(pkpl) − 1)

(XN/pk − 1)(XN/(pjpkpl) − 1)

¬zj ∨ ¬zk ∨ zl
(XN − 1)(XN/(pjpkpl) − 1)

XN/(pjpk) − 1

¬zj ∨ ¬zk ∨ ¬zl
XN − 1

XN/(pjpkpl) − 1

C1 ∧ · · · ∧ Cs GCD(Poly(C1), . . . , Poly(Cs))
⋂s

i=1 Roots(Ci)

Figure 1: D. Plaisted’s polynomials for literals, clauses and CNFs (N =
∏n

j=1 pj).

Since p - N , the polynomial XN − 1 mod p has no multi-

ple roots, and we can replace e2πi/N by ζ in D. Plaisted’s
construction. We thus have established the following.

Proposition 2. The set of tuples of relatively prime su-
persparse polynomials in Fq[X] is co-NP-hard for arbitrary
q = pµ.

In [22], co-NP-hardness is shown for pairs of supersparse
relatively prime polynomials over Z. However, D. Plaisted’s
pairs do not remain relatively prime modulo all primes p.
We overcome that deficiency via randomized reductions.

Lemma 3. Let fi(X) ∈ K[X] be nonzero polynomials for
i = 1, . . . , s, s ≥ 2, K a field, d = deg(f1) and S ⊂ K.
Then for randomly chosen ci ∈ S, 3 ≤ i ≤ s, we have the
probability estimate

Prob
(

GCD
1≤i≤s

(fi) = GCD(f1, f2+

s
∑

i=3

cifi)
)

≥ 1−d
/

|S| (20)

Furthermore, if f2 is squarefree and e = deg(f2) ≥ deg(fi)
for i ≥ 3, then with probability no less than 1− (2e− 1)/|S|
the polynomial f2 +

∑s
i=3 cifi will remain squarefree.

Proof. The estimate (20) is Lemma 2 in [5]. Square-
freeness follows by the same techniques as given there by
considering the discriminant of F = f2 +

∑s
i=3 yifi as a

Sylvester resultant of F and ∂F/∂X with symbolic yi.

We obtain the following NP-hardness problems under ran-
domized reduction, which generalize the results in [17] to
arbitrary characteristic.

Theorem 4. The set of pairs of relatively prime super-
sparse polynomials in K[X], the set of squarefree supersparse
polynomials in K[X], and the set of irreducible supersparse
polynomials in K[X, Y ] are co-NP-hard under randomized
reduction for K = Q and K = Fq with arbitrary p and
sufficiently large q = pm. Co-NP-hardness of irreducibility
remains valid if we assume that the supersparse bivariate
polynomials are monic in X.

group of a finite field Fpµ is cyclic. For that proof the only property
of ΨN needed is that it is the monic integral minimum polynomial of
a primitive N-th root of unity in C.

Proof. Reduction to two polynomials follows from Propo-
sition 2 and Lemma 3 (cf. [7]). NP-hardness of squarefree-
ness follows by considering the product f1(f2 +

∑s
i=3 cifi).

Since D. Plaisted’s polynomials fi = Poly(Ci) are divisors
of XN − 1 and therefore are squarefree, with high probabil-
ity both factors will be squarefree. Therefore their product
is not squarefee if and only if the two factors have a com-
mon GCD, which is NP-hard under randomized reduction.
NP-hardness of irreducibility follows by considering the pol-
ynomial

F (X, Y ) = Xuf1(X) + Y (f2(X) + X
s

∑

i=3

cifi(X))

for sufficiently large u to make F (X, Y ) monic in X (cf. [17,
Proof of Theorem 1]). Note that D. Plaisted’s polynomials
fi = Poly(Ci) are not divisible by X. Shifting f3, . . . , fs

by a factor of X ensures that f2 + c3Xf3 + · · · + csXfs is
relatively prime to Xu. Clearly, F (X, Y ) is irreducible if
and only if GCD(f1, f2 + X

∑s
i=3 cifi) = 1, that if and only

if GCD(f1, . . . , fs) = 1 with high probability.

For example, co-NP-hardness of supersparse bivariate ir-
reducibility yields via [1] the following reduction to integer
factoring.

Corollary 1. Suppose we have a Monte Carlo polyno-
mial-time irreducibility test for supersparse polynomials in
F2m [X, Y ] for sufficiently large m. Then large integers can
be factored in Las Vegas polynomial-time.

Already in [17], Hilbert irreducibility is mentioned as a
means to establish NP-hardness of irreducibility of super-
sparse polynomials in Z[X]. Note that one can evaluate the
linear variable Y at a polynomial-sized integer. However, no
proven effective versions seem to be known that would yield
a randomized polynomial reduction (cf. [26, 24]). Nonethe-
less, if a fast irreducibility test of supersparse polynomials
in Z[X] were discovered, we believe that Hilbert irreducibil-
ity would yield fast algorithms for NP-complete problems,
thus resulting in what we call a “good heuristic” for NP-
completeness [15]. Of course, the Hilbert irreducibility the-
orem is not valid over Fq and the hardness of supersparse
irreducibility in Fq[X] remains open.
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In addition, the complexity of root finding of supersparse
polynomials over finite fields is open. In [15], we have posed
two open problems: Given a prime number p and integers
b, c ∈ Zp and α, β with with p − 1 > α > β > 0, compute
a ∈ Zp such that aα + baβ + c ≡ 0 (mod p) in (log p)O(1) bit
operations. Alternatively, prove that computing a root in
Zp of a polynomial given by straight-line program over Zp

is NP-hard.
Acknowledgments: Pascal Koiran would like to thank
Nicolas Brisebarre for useful number-theoretic discussions
on Lemma 1. We thank Joachim von zur Gathen and Igor
Shparlinksi for pointing out their work on NP-hardness to
us. The authors would like to thank the referees whose com-
ments where very useful for improving the final version of
this paper.

6. REFERENCES
[1] Agrawal, M., Kayal, N., and Saxena, N.

PRIMES is in P. Manuscript, 2002. Available from
http://www.cse.iitk.ac.in/news/primality.pdf.

[2] Barvinok, A. I., and Woods, K. Short rational
generating functions for lattice point problems. J.
Amer. Math. Soc. 16 (2003), 957–979.

[3] Cucker, F., Koiran, P., and Smale, S. A
polynomial time algorithm for diophantine equations
in one variable. J. Symbolic Comput. 27, 1 (1999),
21–29.

[4] De Loera, J. A., Hemmecke, R., Huggins, P.,

Sturmfels, B., and Yoshida, R. Short rational
functions for toric algebras and applications. J.
Symbolic Comput. 38, 2 (2004), 959–973.

[5] Dı́az, A., and Kaltofen, E. On computing greatest
common divisors with polynomials given by black
boxes for their evaluation. In Proc. 1995 Internat.
Symp. Symbolic Algebraic Comput. (ISSAC’95) (New
York, N. Y., 1995), A. H. M. Levelt, Ed., ACM Press,
pp. 232–239.

[6] von zur Gathen, J., and Gerhard, J. Modern
Computer Algebra. Cambridge University Press,
Cambridge, New York, Melbourne, 1999. Second
edition 2003.

[7] von zur Gathen, J., Karpinski, M., and

Shparlinski, I. Counting curves and their
projections. Computational Complexity 6, 1
(1996/1997), 64–99.

[8] Goldstein, A. J., and Graham, R. L. A
Hadamard-type bound on the coefficients of a
determinant of polynomials. SIAM Rev. 16 (1974),
394–395.
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