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Structured Low Rank Approximation
of a Sylvester Matrix
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Abstract. The task of determining the approximate greatest common divisor
(GCD) of univariate polynomials with inexact coefficients can be formulated
as computing for a given Sylvester matrix a new Sylvester matrix of lower
rank whose entries are near the corresponding entries of that input matrix.
We solve the approximate GCD problem by a new method based on structured
total least norm (STLN) algorithms, in our case for matrices with Sylvester
structure. We present iterative algorithms that compute an approximate GCD
and that can certify an approximate ǫ-GCD when a tolerance ǫ is given on
input. Each single iteration is carried out with a number of floating point
operations that is of cubic order in the input degrees. We also demonstrate
the practical performance of our algorithms on a diverse set of univariate pairs
of polynomials.
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1. Introduction

The problem of perturbation errors in the scalars of the inputs to a symbolic com-
putation task has been studied extensively in the recent past, giving rise of the
subject of hybrid symbolic/numeric algorithms. Approximate GCDs and factors
have been at the center of investigations. One can formulate the algorithm specifi-
cations as an optimization problem without appealing to floating point arithmetic
[11, 5]. In the GCD case one has the following.
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PROBLEM 1.1. Input are two univariate polynomials f , g ∈ C[x] with degree
deg(f) = m and deg(g) = n. For a positive integer k with k ≤ min(m,n), we wish
to compute △f , △g ∈ C[x] such that deg(△f) ≤ m, deg(△g) ≤ n, deg(GCD(f +
△f, g + △g)) ≥ k and such that ‖△f‖2

2 + ‖△g‖2
2 is minimized.

When k = 1, a polynomial time solution is presented in [18]; see also [5, Sec-
tion 2.6]. One may restrict the above problem to polynomials with entirely real
coefficients. Several authors assume that an error estimate ǫ is also input and
either output a pair △f,△g with ‖△f‖2

2 + ‖△g‖2
2 ≤ ǫ, yielding an ǫ-GCD equal

GCD(f + △f, g + △g), or prove that no such pair exists or output “undecided,”
the latter when the used numerical techniques cannot settle the problem.

The computation of approximate GCDs of univariate polynomials has been
extensively studied [27, 21, 5, 7, 17, 10, 2, 22, 26, 32, 6, 30, 31]. The singular value
decomposition (SVD) of the Sylvester matrix derived from the input polynomials is
used in [5, 7, 32, 6, 8, 31] to deduce approximate GCDs. By dropping insignificant
singular values, the SVD yields a nearby matrix of lower rank, but that matrix
has no longer the Sylvester structure. The approximate GCD can be found by
additional manipulation, for example from the singular vectors.

Here we propose to approximate the given Sylvester matrix with a rank de-
ficient matrix that also has Sylvester structure, which is an instance of the class
of structure preserving total least squares problems. There are several methods at
our disposal, and we have tested the STLN (structured total least norm) algorithm
[23] and the iterated projection algorithm in [4]. STLN is an efficient method for
obtaining an approximate solution (A+E)X = B+H to an overdetermined linear
system AX ≈ B, preserving the given linear structure in the minimal perturbation
[E H]. We show how to solve PROBLEM 1.1, at least for a local minimum, by ap-
plying STLN with L2 norm to a submatrix of the Sylvester matrix. The algorithm
in [4] projects the nearest rank deficient matrix by imposing Sylvester structure,
thus destroying rank deficiency. Then it repeats the SVD/projection steps on the
new Sylvester matrices.

We achieve excellent performance of STLN on our test cases, requiring only a
handful of iterations and yielding a backward error that is comparable and better
than earlier algorithms. For instance, our STLN-based approximations can have a
relative backward error that is about 10 times smaller than the one achieved by
the SVD-Gauss Newton approach [30]. In contrast, the algorithm in [4] does not
perform well, exhibiting slow convergence similarly as experienced earlier on the
factoring problem.

The organization of this paper is as follows. In Section 2, we introduce some
notations and discuss the equivalence between the GCD problems and the low
rank approximation of a Sylvester matrix. In Section 3, we consider solving an
overdetermined system with Sylvester structure based on STLN. In Section 4, we
describe our approximate GCD based on STLN and discuss the achieved practical
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performance on a number of benchmark pairs of univariate polynomials. Further-
more, we compare our results with preceding work. We conclude in Section 5 with
remarks on the complexity and the rate of convergence of our algorithms.

2. Preliminaries

We first shall prove that the minimization Problem 1.1 in Section 1 always has
a solution, in contrast to general and structured total least norm problems [19,
Section 3.1]. Let f , g ∈ C[x]\{0} with degree deg(f) = m and deg(g) = n, namely

f = amxm + am−1x
m−1 + · · · + a1x + a0, am 6= 0,

g = bnxn + bn−1x
n−1 + · · · + b1x + b0, bn 6= 0.

Theorem 2.1. Let k be a positive integer with k ≤ min(m,n). There exist f̂ , ĝ ∈

C[x] with deg(f̂) ≤ m, deg(ĝ) ≤ n, and deg GCD(f̂ , ĝ) ≥ k such that for all

f̃ , g̃ ∈ C[x] with deg(f̃) ≤ m, deg(g̃) ≤ n and deg GCD(f̃ , g̃) ≥ k we have

‖f̂ − f‖2
2 + ‖ĝ − g‖2

2 ≤ ‖f̃ − f‖2
2 + ‖g̃ − g‖2

2.

Proof. Let h ∈ C[x] be monic with deg(h) = k and let u, v ∈ C[x] with deg(u) ≤
m − k and deg(v) ≤ n − k. For the real and imaginary parts of the coefficients of
h (excluding the leading coefficient, which is set to 1), and of u and v we consider
the continuous objective function

F (h, u, v) = ‖uh − f‖2
2 + ‖vh − g‖2

2.

We prove that the function has a value on a closed and bounded set (with respect
to the Euclidean metric) of its real argument vector that is smaller than elsewhere.
Hence the function attains, by Weierstrass’s theorem, a global minimum. Consider
f̄ = amxm and ḡ = bnxn, which have a GCD of degree ≥ k. Clearly, any triple
h, u, v with F (h, u, v) > ‖f̄ −f‖2

2 +‖ḡ−g‖2
2 can be discarded. So the coefficients of

uh and vh can be bounded from above, and by any polynomial factor coefficient
bound, so can the coefficients of h, u, v (provided ‖u‖2 or ‖v‖2 are bounded away
from zero for monic h; see [15, Section 1.2] for more detail). Thus the domain of
the function F (h, u, v) can be restricted to a sufficiently large ball. It remains to
exclude u = v = 0 as the minimal solution. We have F (h, 0, 0) = ‖f‖2

2 + ‖g‖2
2 >

‖f̄ − f‖2
2 + ‖ḡ − g‖2

2. �

Remark 2.2. The above theorem 2.1 remains valid when one restricts the input
and perturbed polynomials to have real coefficients. We note that for real input
polynomials the optimal complex solution may be nearer than the optimal real
solution. In fact, for the pair f = x2 + 1 and g = x2 + 2, the optimal real solution

for k = 1 is f̂ = 0.723598x2 + 1.170810 and ĝ = 1.170822x2 + 1.894436 with ‖f̂ −
f‖2

2+‖ĝ−g‖2
2 = 0.145898, while there is a nearer pair of complex polynomials with

a common root, namely
ˆ̂
f = 0.81228x2 − 0.14813 ix + 1.1169 and ˆ̂g = 1.1220x2 +

0.096263 ix + 1.9240 with ‖
ˆ̂
f − f‖2

2 + ‖ˆ̂g − g‖2
2 = 0.1007615. Moreover, in such a
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case, the nearest pair is never unique. The second solution is the complex conjugate

of
ˆ̂
f and ˆ̂g. A real example with an ambiguous real nearest pair with a GCD is

f = x2 − 2 and g = x2 − 1. We note that ambiguity of approximate solutions was
already noted in [33, 12]. �

Now suppose S(f, g) is the Sylvester matrix of f and g. It is well-known that
the degree of GCD of f and g is equal to the rank deficiency of S, we have

min
deg(GCD(f̃ ,g̃))≥k

‖f̃ − f‖2
2 + ‖g̃ − g‖2

2

⇐⇒ min
rank(S̃)≤ñ+m̃−k

‖f̃ − f‖2
2 + ‖g̃ − g‖2

2 (2.1)

where S̃ is the Sylvester matrix generated by f̃ and g̃, with deg f̃ = m̃ ≤ m and
deg g̃ = ñ ≤ n. Note that for f̃ = 0 or g̃ = 0, the Sylvester matrix S̃ is not
defined. If one polynomial is zero, we shall assume that rank(S̃) ≤ ñ + m̃ − k is

satisfied since then GCD is the other non-zero polynomial. If both f̃ = g̃ = 0, we
shall assume rank(S̃) = ∞, as that solution is always sub-optimal (see proof of
Theorem 2.1).

The k-th Sylvester matrix Sk ∈ C
(m+n−k+1)×(m+n−2k+2) is a submatrix of

S obtained by deleting the last k − 1 rows of S and the last k − 1 columns of
coefficients of f and g separately in S.

Sk =














am bn

am−1
. . . bn−1

. . .
...

. . . am

...
. . . bn

a0 am−1 b0 bn−1

. . .
...

. . .
...

a0 b0














︸ ︷︷ ︸

n−k+1

︸ ︷︷ ︸

m−k+1

,

For k = 1, S1 = S is the Sylvester matrix. In paper [8], we know the strong
relationship between the Sylvester matrix S and its k-th submatrix Sk.

Theorem 2.3. [8] Given univariate polynomials f, g ∈ C[x], deg(f) = m, deg(g) =
n and 1 ≤ k ≤ min(m,n). S(f, g) is the Sylvester matrix of f and g, Sk is the
k-th Sylvester matrix of f and g. Then the following statements are equivalent:

(a) rank(S) ≤ m + n − k
(b) Rank deficiency of Sk is greater than or equal to one.
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Having the above theorem, the formulation (2.1) can be transformed into:

min
deg(GCD(f̃ ,g̃))≥k

‖f̃ − f‖2
2 + ‖g̃ − g‖2

2

⇐⇒ min
dim Nullspace(S̃k)≥1

‖f̃ − f‖2
2 + ‖g̃ − g‖2

2, (2.2)

where S̃k is the k-th Sylvester matrix generated by f̃ and g̃, with deg f̃ ≤ m and
deg g̃ ≤ n.

If we solve the following overdetermined system using STLN [25, 24, 23, 19]

Ak x ≈ bk, (2.3)

for Sk = [bk Ak], where bk is the first column of Sk and Ak are the remain-
der columns of Sk, then we obtain a minimal perturbation [hk Ek] of Sylvester
structure such that

bk + hk ∈ Range(Ak + Ek).

Therefore, S̃k = [bk +hk, Ak +Ek] is a solution with Sylvester structure (provided

the highest order coefficients remain non-zero) and dim Nullspace(S̃k) ≥ 1.
The reason why we choose the first column to form the overdetermined system

(2.3) can be seen from the following example and theorem.

Example 1. Suppose we are given two polynomials

f = x2 + x = x (x + 1),

g = x2 + 4x + 3 = (x + 3) (x + 1),

S is the Sylvester matrix of f and g,

S =







1 0 1 0
1 1 4 1
0 1 3 4
0 0 0 3







.

The rank deficiency of S is 1. We partition S in two ways: S = [Â1 b̂1] = [b̄1 Ā1],

where b̂1 is the last column of S, whereas b̄1 is the first column of S.
The overdetermined system

Â1x = b̂1

has no solution, while the system

Ā1x = b̄1

has an exact solution as x = [−3, 1, 0]T .

Theorem 2.4. Given univariate polynomials f , g ∈ C[x] with deg(f) = m, deg(g) =
n and a positive integer k ≤ min(m,n). Suppose Sk is the k-th Sylvester matrix
of f and g. Partition Sk = [bk Ak], where bk is the first column of Sk and Ak

consists of the last n + m − 2k + 1 columns of Sk. Then we have

dim Nullspace(Sk) ≥ 1 ⇐⇒ Akx = bk has a solution. (2.4)
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Proof. “⇐=”: Let Akx = bk have a solution, then bk ∈ Range(Ak). Since bk is
the first column of Sk, the rank deficiency of Sk = [bk Ak] is at least 1.

“=⇒:” Suppose the rank deficiency of Sk = [bk Ak] is at least 1. Multiplying
the vector [xn+m−k, . . . , x, 1] to the two sides of the equation Akx = bk, it turns
out to be

[xn−k−1f, . . . , f, xm−kg, xm−k−1g, . . . , g]x = xn−kf. (2.5)

The solution x of (2.5) corresponds to the coefficients of polynomials u, v, with
deg(u) ≤ n − k − 1,deg(v) ≤ m − k and satisfy

xn−kf = u f + v g.

Let d = GCD(f, g), f1 = f/d, g1 = g/d. Since dim Nullspace(Sk) ≥ 1, we
have deg(d) ≥ k and deg(f1) ≤ m − k,deg(g1) ≤ n − k. Dividing xn−k by g1, we
have a quotient q and a remainder p such that

xn−k = q g1 + p,

where deg(q) ≤ deg(d) − k,deg(p) ≤ n − k − 1. Now we can check that

u = p, v = q f1,

are solutions of (2.5), since deg(u) ≤ n − k − 1,

deg(v) = deg(q) + deg(f1) ≤ deg(d) − k + deg(f1) ≤ m − k,

and
v g + u f = f1 q d g1 + p f = f q g1 + f p = f xn−k. �

Next, we show that for any given Sylvester matrix, when all the elements
are allowed to be perturbed, it is always possible to find matrices [hk Ek] with
k-Sylvester structure (implying that the leading entries are non-zero) such that
bk + hk ∈ Range(Ak + Ek), where bk is the first column of Sk and Ak are the
remainder columns of Sk.

Theorem 2.5. Given the integers m,n and k , k ≤ min(m,n), then there exists a
Sylvester matrix S ∈ C

(m+n)×(m+n) with rank m + n − k.

Proof. For all m and n, we always can construct polynomials f , g ∈ C[x] such
that deg(f) = m, deg(g) = n, and the degree of GCD(f, g) is k. Hence S is the
Sylvester matrix generating by f , g and its rank is m + n − k. �

Corollary 2.6. Given the positive integers m, n, k ≤ min(m,n), and k-th Syl-
vester matrix Sk = [bk Ak], where Ak ∈ C

(m+n−k+1)×(m+n−2k+1) and bk ∈
C

(m+n−k+1)×1, it is always possible to find a perturbation [hk Ek] of k-th Sylvester
structure such that bk + hk ∈ Range(Ak + Ek).
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3. STLN for Overdetermined Systems with Sylvester Structure

In this section, we illustrate how to solve the overdetermined system

Ak x ≈ bk, (3.1)

where Ak ∈ C
(m+n−k+1)×(m+n−2k+1) and bk ∈ C

(m+n−k+1)×1, Sk = [bk Ak] is
the k-th Sylvester matrix. According to Theorem 2.5 and Corollary 2.6, there
always exists k-th Sylvester structure perturbation [hk Ek] such that (bk + hk) ∈
Range(Ak +Ek). In the following, we illustrate how to find the minimum solution
using STLN.

First, the Sylvester-structure preserving perturbation [hk Ek] of Sk

[hk Ek] =














z1 zm+2

z2
. . . zm+3

. . .
...

. . . z1

...
. . . zm+2

zm+1 z2 zm+n+2 zm+3

. . .
...

. . .
...

zm+1 zm+n+2














︸ ︷︷ ︸

n−k+1

︸ ︷︷ ︸

m−k+1

can be represented by a vector z ∈ C
(m+n+2)×1:

z = [z1, z2, . . . , zm+n+1, zm+n+2]
T .

Since hk is the first column of the above matrix, we can define a matrix Pk as

Pk =

[
Im+1 0

0 0

]

∈ C
(m+n−k+1)×(m+n+2), (3.2)

where Im+1 is a (m + 1) × (m + 1) identity matrix, such that hk = Pkz.
We solve the equality-constrained least squares problem:

min
z, x

‖z‖2, subject to r = 0, (3.3)

where the structured residual r is

r = r(z,x) = bk + hk − (Ak + Ek)x.

We do not know if the above STLN problem always has a solution. But
even if that were the case (cf. [19, Theorem 3.1.2]), the optimal solution may not
correspond to a nearest GCD pair, as it may correspond to polynomials of smaller
degrees that, for instance, remain relatively prime. The structured minimization
problem (3.3) can be solved by using the penalty method in [1], transforming (3.3)
into:

min
z ,x

∥
∥
∥
∥

wr(z,x)
z

∥
∥
∥
∥

2

, w ≫ 1, (3.4)
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where w is a large penalty value between 108 and 1010. It is shown in [1, 28] that
an algorithm based on Givens rotations produces accurate results regardless of row
sorting and even with extremely large penalty values.

Following [24, 23], we use a linear approximation to r(z,x) to solve the mini-
mization problem. Let △z and △x represent a small change in z and x respectively,
and △Ek represents the corresponding change in Ek. Then the first order approx-
imation to r(z + △z ,x + △x) is

r(z + △z ,x + △x) = bk + Pk(z + △z) − (Ak + Ek + △Ek)(x + △x)

≈ bk + Pkz − (Ak + Ek)x + Pk△z − (Ak + Ek)△x − △Ekx

= r + Pk△z − (Ak + Ek)△x − △Ekx.

We introduce a matrix of Sylvester structure Yk ∈ C
µ×ν , where µ = m+n− k +1

and ν = m + n + 2, such that

Yk △z = △Ek x with x = [x1 , x2, . . . , xm+n−2k+1]
T . (3.5)

Now (3.4) can be approximated by

min
△x, △z

∥
∥
∥
∥

[
w(Yk − Pk) w(Ak + Ek)

Im+n+2 0

] [
△z

△x

]

+

[
−wr

z

] ∥
∥
∥
∥

2

. (3.6)

In the following, we propose a new method to construct the matrix Yk. Sup-
pose f , g, E, z and x are given above. Multiplying the vector

v = [xm+n−k, xm+n−k−1, . . . , x2, x1, 1] ∈ C[x]m+n−k+1

to the two sides of the equation (3.5), we obtain the polynomial identity

v Yk z = v Ek x.

For

[
0
x

]

we obtain

v Ek x = v [hk, Ek] x̂ = ĝ1û1 + ĝ2û2, (3.7)

where ĝ1 is the polynomial of degree m, generated by the subvector of z:

[z1, z2, . . . , zm+1],

ĝ2 is the polynomial of degree n, generated by the subvector of z:

[zm+2, zm+3, . . . , zm+n+2],

û1 is the polynomial of degree n − k − 1, generated by the subvector of x̂:

[0, x1, x2, . . . , xn−k],

û2 is the polynomial of degree m − k, generated by the subvector of x̂:

[xn−k+1, xn−k+2, . . . , xm+n−2k+1].
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Yk is the coefficient matrix formed from the above linear system (3.7) with respect
to powers of x and the variables zi,

Yk =














0 xn+1−k

x1
. . . xn+2−k

. . .
...

. . . 0
...

. . . xn+1−k

xn−k x1 xm+n+1−2k xn+2−k

. . .
...

. . .
...

xn−k xm+n+1−2k














︸ ︷︷ ︸

m+1

︸ ︷︷ ︸

n+1

.

Example 2. Suppose m = n = 3, k = 2, then S2 = [b2 A2], where

A2 =









0 b3 0
a3 b2 b3

a2 b1 b2

a1 b0 b1

a0 0 b0









, b2 =









a3

a2

a1

a0

0









,

P2 =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0









,

Y2 =









0 0 0 0 x2 0 0 0
x1 0 0 0 x3 x2 0 0
0 x1 0 0 0 x3 x2 0
0 0 x1 0 0 0 x3 x2

0 0 0 x1 0 0 0 x3









.

It is easy to see that the coefficient matrix in (3.6) is also of block Toeplitz
structure. We could apply fast least squares method to solve it quickly. Preliminary
results on that are reported in [20].

4. Approximate GCD Algorithm and Experiments

The following algorithm is designed for finding an approximate solution to PROB-
LEM 1.1.

Algorithm AppSylv-k

Input - A Sylvester matrix S generated by two polynomials f, g ∈ C[x] of total
degrees m ≥ n respectively, an integer 1 ≤ k ≤ n and a tolerance tol.
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Output - Polynomials f̃ and g̃ with dim Nullspace(S(f̃ , g̃)) ≥ k and the Euclidean

distance ‖f̃ − f‖2
2 + ‖g̃ − g‖2

2 is reduced to a minimum.

1. Form the k-th Sylvester matrix Sk, choose the first column of Sk as bk, and
Ak be the remainder columns of Sk. Let Ek = 0, hk = 0.

2. Compute x from min ‖Akx − bk‖2 and r = bk − Akx. Form Pk and Yk as
shown in the above sections.

3. Repeat

(a) min
△x, △z

∥
∥
∥
∥

[
w(Yk − Pk) w(Ak + Ek)

Im+n+2 0

] [
△z

△x

]

+

[
−wr

z

] ∥
∥
∥
∥

2

.

(b) Set x = x + △x, z = z + △z.
(c) Construct the matrix Ek and hk from z, and Yk from x. Set Ak =

Ak + Ek, bk = bk + hk, r = bk − Akx.
until (‖△x‖2 ≤ tol and ‖△z‖2 ≤ tol).

4. Output the polynomials f̃ and g̃ formed from bk and Ak.

Given a tolerance ǫ, the algorithm AppSylv-k can be used to compute an ǫ-
GCD of polynomials f and g with degrees m ≥ n respectively. The method starts
with k = n ≤ m, using AppSylv-k to compute the minimum N = ||f̃ − f ||2 + ||g̃−

g||2 with rank(S(f̃ , g̃)) ≤ m + n − k. If N < ǫ, then we can compute the ǫ-GCD

from the matrix Sk(f̃ , g̃) [8, 30]; Otherwise, we reduce k by one and repeat the
AppSylv-k algorithm. Another method tests the degree of ǫ-GCD by computing
the singular value decomposition of Sylvester matrix S(f, g), find the upper bound
degree r of the ǫ-GCD as shown in [5, 7]. So we can start with k = r rather than
k = n to compute the certified ǫ-GCD of the highest degree.

Example 3. The following example is given in Karmarkar and Lakshman’s paper
[18]. We wish to find the minimal polynomial perturbations △f and △g

f = x2 − 6x + 5 = (x − 1)(x − 5),

g = x2 − 6.3x + 5.72 = (x − 1.1)(x − 5.2),

such that polynomials f + △f and g + △g have a common root. We consider this
problem in two cases: the leading coefficients can be perturbed and the leading
coefficients can not be perturbed.

Case 1: The leading coefficients can be perturbed. Applying the algorithm App-
Sylv-k to f, g with k = 1 and tol = 10−3, after three iterations, we obtain
the polynomials f̃ and g̃ :

f̃ = 0.9850x2 − 6.0029x + 4.9994,

g̃ = 1.0150x2 − 6.2971x + 5.7206,

with a distance

N = ‖f̃ − f‖2
2 + ‖g̃ − g‖2

2 = 0.0004663.

The common root of the f̃ and g̃ is 5.09890429.
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Case 2: The leading coefficients can not be perturbed, i.e., the first and fourth
terms of q are fixed as one. Running the algorithm AppSylv-k for k = 1 and
tol = 10−3, after three iterations, we get the polynomials f̃ and g̃ :

f̃ = x2 − 6.0750x + 4.9853,

g̃ = x2 − 6.2222x + 5.7353,

with minimum distance as

N = ‖f̃ − f‖2
2 + ‖g̃ − g‖2

2 = 0.01213604583.

The common root of f̃ and g̃ is 5.0969478.

In the paper [18] the perturbed polynomials are restricted to be monic.
The minimum perturbation Karmarkar and Lakshman obtained is 0.01213605293,
which corresponds to the perturbed common root 5.096939087.

Ex. m,n k
it.

(Chu)
it.

(STLN)
error
(Zeng)

error
(STLN)

σk σ̃k

1 2, 2 1 4.73 1.90 1.89e–4 2.87e–5 3.53e–3 10−9

2 3, 3 2 8.49 1.98 1.36e–3 1.05e–4 8.21e–3 10−9

3 5, 4 3 11.44 2.00 1.00e–3 1.25e–4 1.01e–2 10−9

4 5, 5 3 13.64 2.00 7.43e–4 1.25e–4 9.57e–3 10−9

5 6, 6 4 23.07 2.00 1.46e–3 1.41e–4 9.64e–3 10−9

6 8, 7 4 32.64 2.00 6.53e–4 1.31e–4 8.04e–3 10−9

7 10, 10 5 43.12 2.00 1.61e–3 2.01e–4 1.21e–2 10−9

8 14, 13 7 58.16 2.00 1.23e–3 2.52e–4 1.51e–2 10−9

9 28, 28 10 161.74 2.00 2.61e–3 3.41e–4 1.48e–2 10−10

10 65, 65 15 633.64 2.00 6.19e–3 5.50e–4 1.90e–2 10−9

Table 1. Algorithm performance on benchmarks (univariate case)

Remark 4.1. The above algorithm will for real inputs compute the optimal pair
over the reals only. As stated in remark 2.2 even for real inputs the optimal complex
pair may have complex coefficients. The following change in the initialization in
Step 2 can accomplish that:

2C. Compute x from min ‖(Ak+δAk)x−(bk+δbk‖2 and r = bk+δbk−Ak−δAkx,
where δAk and δbk are structured perturbations of random purely imaginary
complex noise. Form Pk and Yk as shown in the above sections.

For the first iteration in step 3 we use the original real input coefficients. The
optimal complex solutions in remark 2.2 could be found by adding random noise
of magnitute 10−2.

We have also tested our algorithm on inputs where both polynomials have
small leading coefficients and observed that the method can produce valid results
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provided the “tails,” of the polynomials, i.e., the parts without the leading coeffi-
cients, are approximately relative prime. We present an example.

f = .1000000000 · 10−9x2 + x,

g = .1000000000 · 10−9x2 + x + 1.

The roots of f are −1010, 0, the roots of g are −9999999999, −1. We compute two
polynomials f̄ and ḡ by our algorithm:

f̄ = .100000000005000000 · 10−9x2 + 1.x,

ḡ = .99999999994999994 · 10−10x2 + 1.x + 1.

The roots of f̄ are now −9999999999.5, 0 and the roots of ḡ are now −9999999999.5,
−1. The perturbation by our algorithm is

‖f̄ − f‖2
2 + ‖ḡ − g‖2

2 = .500000000000000 · 10−40.

However, if the tails have a nearby GCD, the algorithm as stated does not find
a good result due to the choice of bk as the first column of the Sylvester matrix.
That problem appears in a more general manner when applying our approach to
multivariate approximate GCDs when some terms of maximal total degree can
vanish in the nearest pair. The remedy is to determine the proper right side vector
from the components of the first singular vector; see [13, 15] for more detail. �

In Table 1, we show the performance of our algorithm for computing ǫ-GCDs
of univariate polynomials randomly generated in Maple 9 with Digits = 10. For
every example, we use 50 random cases for each (m,n), and report the average
over all results. For each example, the prime parts and GCD of two polynomials
are constructed by choosing polynomials with random integer coefficients in the
range −10 ≤ c ≤ 10, and then adding a perturbation. For noise we choose a relative
tolerance 10−e, then randomly choose a polynomial that has the same degree as the
product, and coefficients in [−10e, 10e]. Finally, we scale the perturbation so that
the relative error is 10−e. In our test cases we set e = 2. Here m and n denote the
total degrees of polynomials f and g; k is the degree of approximate GCD of f and
g; it. (Chu) is the number of the iterations needed by Chu’s method[4]; whereas it.
(STLN) denotes the number of iterations by AppSylv-k algorithm; error (Zeng)
denotes the perturbation ‖f̄ − f‖2

2 + ‖ḡ − g‖2
2 computed by Zeng’s algorithm [30];

whereas error (STLN) is the minimal perturbation ‖f̃ − f‖2
2 + ‖g̃ − g‖2

2 computed
by AppSylv-k algorithm; σk and σ̃k are the last k-th singular values of S(f, g) and

S(f̃ , g̃), respectively. Riemannian SVD has been considered in [3] for computing
approximate GCDs. We would like to compare with their implementation in the
future.
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5. Concluding Remarks

In this paper we present a practical and reliable way based on STLN to compute
the approximate GCD of univariate polynomials. Note that the overall compu-
tational complexity of the algorithm AppSylv-k depends on the number of it-
erations needed for completing the Step 3 and the computational complexity of
each iteration. If the starting values are good, then the iteration will converge
quickly. This can be seen from the above table. For each iteration, Givens rota-
tions are applied. Checking the size of the matrix involved in solving the min-
imization problem in the Step 3, we obtain that each iteration needs less than
(4m + 4n − k + 6) (2m + 2n − 2 k + 3)

2
operations. Since the matrices involved

in the minimization problems are all structured matrix, they have low displacement
rank. It would be possible to apply the fast algorithm to solve these minimization
problems [20]. This would reduce the complexity of our algorithm to be only qua-
dratic with respect to the degrees of the given polynomials.

Our methods can be generalized to several polynomials and to several vari-
ables [14, 15]. Moreover, as observed in [9], arbitrary linear equational constraints
can be imposed on the coefficients of the input and perturbed polynomials. Such
constraints can be used to preserve monicity and sparsity, but also relations among
the input polynomials’ coefficients [14, 15].

Acknowledgement

We thank the referees of this paper and its earlier version for their helpful remarks.
A preliminary version of this paper appears in [16].

References

[1] A. A. Anda and H. Park, Fast plane with dynamic scaling, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 162–174.

[2] B. Beckermann and G. Labahn, When are two polynomials relatively prime?, J.
Symbolic Comput., 26 (1998), pp. 677–689.

[3] B. Botting, M. Giesbrecht, and J. May, Using Riemannian SVD for problems
in approximate algebra, in Wang and Zhi [29], pp. 209–219.

[4] M. T. Chu, R. E. Funderlic, and R. J. Plemmons, Structured low rank approx-
imation, Linear Algebra and Applications, 366 (2003), pp. 157–172.

[5] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt, The singular
value decomposition for polynomial systems, in Proc. 1995 Internat. Symp. Symbolic
Algebraic Comput. ISSAC’95, A. H. M. Levelt, ed., New York, N. Y., 1995, ACM
Press, pp. 96–103.

[6] R. M. Corless, S. M. Watt, and L. Zhi, QR factoring to compute the GCD
of univariate approximate polynomials, IEEE Transactions on Signal Processing, 52
(2004), pp. 3394–3402.

[7] I. Z. Emiris, A. Galligo, and H. Lombardi, Certified approximate univariate
GCDs, J. Pure Applied Algebra., 117 & 118 (1996), pp. 229–251. Special Issue on
Algorithms for Algebra.



82 Erich Kaltofen, Zhengfeng Yang and Lihong Zhi

[8] S. Gao, E. Kaltofen, J. P. May, Z. Yang, and L. Zhi, Approximate factorization
of multivariate polynomials via differential equations, in ISSAC 2004 Proc. 2004
Internat. Symp. Symbolic Algebraic Comput., J. Gutierrez, ed., New York, N. Y.,
2004, ACM Press, pp. 167–174.

[9] M. A. Hitz and E. Kaltofen, Efficient algorithms for computing the nearest poly-
nomial with constrained roots, in Proc. 1998 Internat. Symp. Symbolic Algebraic
Comput. (ISSAC’98), O. Gloor, ed., New York, N. Y., 1998, ACM Press, pp. 236–
243.

[10] V. Hribernig and H. J. Stetter, Detection and validation of clusters of polyno-
mials zeros, J. Symbolic Comput., 24 (1997), pp. 667–681.

[11] E. Kaltofen, Polynomial factorization 1987-1991, in Proc. LATIN ’92, I. Simon,
ed., vol. 583 of Lect. Notes Comput. Sci., Heidelberg, Germany, 1992, Springer Ver-
lag, pp. 294–313.

[12] E. Kaltofen and J. May, On approximate irreducibility of polynomials in several
variables, in ISSAC 2003 Proc. 2003 Internat. Symp. Symbolic Algebraic Comput.,
J. R. Sendra, ed., New York, N. Y., 2003, ACM Press, pp. 161–168.

[13] E. Kaltofen, Z. Yang, and L. Zhi, Structured low rank approximation of a gen-
eralized Sylvester matrix, in Proc. of the Seventh Asian Symposium on Computer
Mathematics, S. Pae and H. Park, eds., Seoul, South Korea, 2005, Korea Institute
for Advanced Study, pp. 219–222. Extended abstract.

[14] , Approximate greatest common divisors of several polynomials with linearly
constrained coefficients and singular polynomials, in ISSAC MMVI Proc. 2006 Inter-
nat. Symp. Symbolic Algebraic Comput., J.-G. Dumas, ed., New York, N. Y., 2006,
ACM Press, pp. 169–176.

[15] , Approximate greatest common divisors of several polynomials with linearly
constrained coefficients and singular polynomials. Manuscript, 20 pages, Nov. 2006.

[16] , Structured low rank approximation of a Sylvester matrix, in Wang and Zhi
[29], pp. 188–201.

[17] N. Karmarkar and Lakshman Y. N., Approximate polynomial greatest common
divisors and nearest singular polynomials, in Proc. 1996 Internat. Symp. Symbolic
Algebraic Comput. (ISSAC’96), Lakshman Y. N., ed., New York, N. Y., 1996, ACM
Press, pp. 35–42.

[18] N. K. Karmarkar and Lakshman Y. N., On approximate GCDs of univariate
polynomials, J. Symbolic Comput., 26 (1998), pp. 653–666. Special issue of the JSC
on Symbolic Numeric Algebra for Polynomials, S. M. Watt and H. J. Stetter, editors.

[19] P. Lemmerling, Structured total least squares: analysis, algorithms and applications,
dissertation, Katholieke Universiteit Leuven, Belgium, 1999.

[20] B. Li, Z. Yang, and L. Zhi, Fast low rank approximation of a Sylvester matrix by
structured total least norm, J. JSSAC (Japan Society for Symbolic and Algebraic
Computation), 11 (2005), pp. 165–174.

[21] M. T. Noda and T. Sasaki, Approximate GCD and its application to ill-conditioned
algebraic equations, J. Comput. Appl. Math., 38 (1991), pp. 335–351.

[22] V. Y. Pan, Numerical computation of a polynomial GCD and extensions, Informa-
tion and computation, 167 (2001), pp. 71–85.



Approximate GCD of Univariate Polynomials 83

[23] H. Park, L. Zhang, and J. B. Rosen, Low rank approximation of a Hankel matrix
by structured total least norm, BIT, 39 (1999), pp. 757–779.

[24] J. B. Rosen, H. Park, and J. Glick, Total least norm formulation and solution
for structured problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 110–128.

[25] , Structured total least norm for nonlinear problems, SIAM J. Matrix Anal.
Appl., 20 (1999), pp. 14–30.

[26] M. Sasaki and T. Sasaki, Polynomial remaider sequence and approximate GCD,
ACM SIGSAM Bulletin, 31 (2001), pp. 4–10.

[27] A. Schönhage, Quasi-gcd computations, Journal of Complexity, 1 (1985), pp. 118–
137.

[28] G. W. Stewart, On the asymptotic behavior of scaled singular value and QR de-
compositions, Mathematics of Compuatation, 43 (1983), pp. 488–489.

[29] D. Wang and L. Zhi, eds., Internat. Workshop on Symbolic-Numeric Comput. SNC
2005 Proc., distributed at the Workshop in Xi’an, China, July 19–21, 2005.

[30] Z. Zeng, The approximate GCD of inexact polynomials. part I: a univariate algo-
rithm. Manuscript, 2004.

[31] Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comput., 74
(2005), pp. 869–903.

[32] L. Zhi, Displacement structure in computing approximate GCD of univariate polyno-
mials, in Proc. Sixth Asian Symposium on Computer Mathematics (ASCM 2003),
Z. Li and W. Sit, eds., vol. 10 of Lecture Notes Series on Computing, Singapore,
2003, World Scientific, pp. 288–298.

[33] L. Zhi and W. Wu, Nearest singular polynomial, J. Symbolic Comput., 26 (1998),
pp. 667–675. Special issue on Symbolic Numeric Algebra for Polynomials S. M. Watt
and H. J. Stetter, editors.

Erich Kaltofen
Dept. of Mathematics
North Carolina State University
Raleigh, North Carolina 27695-8205, USA
e-mail: kaltofen@math.ncsu.edu

Zhengfeng Yang and Lihong Zhi
Key Lab of Mathematics Mechanization
AMSS, Beijing 10080 China
e-mail: {zyang, lzhi}@mmrc.iss.ac.cn


	1. Introduction
	2. Preliminaries
	3. STLN for Overdetermined Systems with Sylvester Structure 
	4. Approximate GCD Algorithm and Experiments
	5. Concluding Remarks
	Acknowledgement

	References

