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ABSTRACT
We describe the design and implementation of two com-

ponents in the LinBox library. The first is an implemen-
tation of black box matrix multiplication as a lazy matrix-
times-matrix product. The implementation uses template
meta-programming to set the intermediate vector type used
during application of the matrix product. We also describe
an interface mechanism that allows incorporation of exter-
nal components with native memory management such as
garbage collection into LinBox. An implementation of the
interface based on SACLIB’s field arithmetic procedures is
presented.

Categories and Subject Descriptors
I.1.3 [Computing Methodologies]: Symbolic and Alge-

braic Manipulation—Languages and Systems; D.1.5 [Soft-

ware]: Programming Techniques—Object-oriented program-
ming

General Terms
design, languages

Keywords
black box matrix, C++ templates, C++ allocator, system

integration, garbage collection, memory management, exact
linear algebra

1. INTRODUCTION
LinBox is a C++ template library that provides generic

implementations of black box linear algebra algorithms [5].
The library was developed by a consortium of universities in
Canada, France and the USA. See http://www.linalg.org
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for the list of participating researchers and for the open
source code. Our goal is to supply “efficient black box solu-
tions for a variety of problems including linear equations and
matrix normal forms with the guiding design principle of re-
usability” [5]. The LinBox library utilizes two different ab-
straction devices. The first is algorithmic, and it introduces
the notion of a black box matrix [10]†, which is a matrix
representation by a procedure that efficiently computes the
product of the matrix times an arbitrary vector. The sec-
ond abstraction is the programming methodology of generic,
reusable software design. We use the C++ template instan-
tiation mechanism to compile code for the most efficient
ways of performing the arithmetic in the various entry fields
[5, 6, 13]. This paper describes two components that exhibit
the generic programming techniques LinBox provides. The
first is the implementation of blackbox matrix multiplica-
tion and the second is the incorporation of external libraries
that utilize garbage collection.

We have implemented matrix multiplication by a lazy
matrix-times-matrix product for the black box matrix type
of the LinBox library. Let A, B be black box matrices that
have matrix-times-vector functions y = Ax and y = Bx,
where x and y are vector objects. In LinBox, the matrix-
times-vector functions are named “apply”, and are member
template functions with parametric types for both the input
vector x and the output vector y, which can be sparse or
dense vector types or columns of matrices. The apply func-
tion for the matrix product y = (A · B)x is implemented
as the function composition z = Ax; y = Bz. The issue is
the choice for the vector data type of the intermediate vec-
tor z. Each black box matrix class defines a preferred input
and a preferred output vector type. Our composed black box
class now has a template parameter switch that lets the user
choose at compile time different vector types for z: either
the preferred output type of B or preferred input type of A.
Or one may force a conversion from the preferred output
vector type of B to the preferred input vector of A, or select
a default intermediate vector type. Of course, neither must
be done when the output/input types are the same. We use
C++’s partial template specialization rules for building the
proper instantiations of the template class for composition
(see sections 2 and 3).

In sections 4–6, we describe an interface mechanism by
which one can plug a library of functions whose objects are

†
The term “black box” matrix seems to have first been coined in our

paper.
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garbage collected, such as Maple procedures or Java meth-
ods, into our LinBox algorithms. Our benchmark test is with
SACLIB’s [15, 2] modular integer arithmetic. The problem
is that LinBox algorithms need to allocate temporary inter-
mediate values which are arrays of SACLIB’s modular digits
that must be registered with SACLIB’s garbage collector.
Watt [16] gives a solution in the Aldor-Maple setting. Our
solution is based on C++’s STL allocator template class, so
that genericity in our algorithms is maintained and minimal
reprogramming is needed.

2. DESIGN ISSUES OF THE COMPOSITION
CLASS

The design of the composition class described in this pa-
per is predicated on a change made in the black box archetype
in LinBox. In the initial design, all black box matrices were
templated by the vector type they expected as input and
output vectors [5]. The current version of the black box
archetype moves the vector type template parameter from
the archetype itself to its member functions. The methods
apply and applyTranspose are member template functions
[9, 14.5.2], with two template parameters, an input vector
type and an output vector type. A member template apply

allows the design of a generic matrix times vector function
that can be instantiated with several vector types that ad-
here to the vector object interface used. Different vector
types may arise in the future, which then can be directly
plugged into the matrix code.

After the decision was made to have member template
functions apply and applyTranspose in the black box arche-
type, the idea of preferred input and output vector types
was introduced. Black box matrices may have efficient im-
plementations of their apply methods when working with
a particular vector type. If this is true, then a user or
an algorithm working with the black box matrix in ques-
tion could choose this input and output vector type accord-
ingly to speed up computation. Placing typedefed members
PreferredInputVector and PreferredOutputVector in the
definition of a black box matrix gives users access to the pre-
ferred input and output types of the matrix. Figure 1 shows
the black box archetype with preferred input and output
vectors.

The composition class is based on the lazy evaluation
scheme for black box matrix multiplication. As a conse-
quence, the class will use an intermediate vector in its cal-
culations. Since the black box matrices themselves are not
templated by the vector type, there are several ways to
choose the vector type of the intermediate vector. Suppose
A is user defined blackbox matrix with preferred input vec-
tor type dense and preferred output vector type sparse. As-
sume P is a preconditioner that can be used as a left or right
multiplier and let P have preferred input and output vector
types sparse. When P is used as a left preconditioner, the
composed matrix PA should use a sparse vector as the in-
termediate type, since the types are the same. If P is used
as a right preconditioner and code efficiency is the highest
priority, then the input type of A, a dense vector, should be
used as the intermediate type of AP . However, if memory
is limited and a top priority, then the output type of P , a
sparse vector, would be the best choice for the intermediate
vector. Finally, if space is not a problem and if the cost
of copying one vector type into another is made up for by

template <class Field> class Blackbox{
public:

typedef Field Field;
typedef Vector In PreferredInputVector;
typedef Vector Out PreferredOutputVector;
// Constructors and destructor
. . .
template<class OutVector, class InVector>
OutVector& apply(OutVector& y,

const InVector&);
template <class OutVector, class InVector>
OutVector& applyTranspose(OutVector& y,

const InVector& x);
const Field& field();
size t rowdim();
size t coldim();

private:

// Internal storage and methods
. . . };

Figure 1: Black box Archetype with preferred vec-

tors

the gain in efficiency of the apply methods, then a conver-
sion between types would be the best choice for handling
the intermediate vectors.

The design of the new composition class will provide the
user with four methods for selecting the type of the inter-
mediate vector. Assume you are composing two black box
matrices A, B into the black box matrix AB. The default
method will compare the preferred input of A and the pre-
ferred output of B, and if they are the same use that type,
else use a dense vector as the default type. In addition,
the preferred input type of A or the preferred output type
of B can be used as the intermediate vector type. Finally,
the user can use both types and do a conversion between
the two types during the computation in apply methods.
A selection method that allows users to control how the
intermediate vector type is chosen will be provided. The in-
termediate vector type will be chosen upon instantiation of
the composition class and each composition object will use
one instance of the intermediate vectors to be used for all
applications of the composed matrix.

There are two design ideas not incorporated into the com-
position class described within this paper that warrant ex-
planation. A user may wish to provide an intermediate vec-
tor type to be used regardless of the preferred input and
output types. This is not allowed in the implementation
and design of the composition class currently, but the op-
tion may be added later. Second, the apply methods (not
the entire class) could be templated to choose the intermedi-
ate vector type. Allowing the apply methods themselves to
choose the intermediate vector type is not possible under the
black box archetype in LinBox. The composition class must
follow the black box archetype, since it is itself a black box
matrix, and so the apply methods can only be templated by
the input and output vector type. Further, having the apply
methods choose the intermediate vector type would mean
the creation of many temporary vectors, which could slow
down running times. Having the class choose the type and
construct one intermediate vector that will be reused many
times is more efficient and less prone to memory leaks.

217



3. IMPLEMENTATION OF THE COMPO-
SITION CLASS

The composition class will use partial template special-
ization to implement all the features listed in section 2.
Since partially specialized template classes are instantiated
instead of primary template classes when the template pa-
rameters match the partial definition, it becomes possible
to program a conditional “if-then-else” during compile time
expansion (template “meta” programming, see [14] and [9,
14.5.4.2]).

Partial template specialization is used several ways in the
composition class. First it is the driving mechanism behind
the selection method presented to a user. The user can select
how the intermediate vector is chosen by passing a flag as a
template parameter. The flag is an enumerated type defined
in the composition header file with the declaration in figure
2.

enum IntermediateVector { DEFAULT,
INPUT, OUTPUT, CONVERSION };

Figure 2: Enumerated type IntermediateVector

This flag defines all the choices of how the intermediate vec-
tor type can be selected. The composition class is passed
the user’s choice as a template parameter as you can see in
the declaration of the class Compose, shown in figure 3.

template <class Blackbox1,
class Blackbox2 = Blackbox1,
IntermediateVector flag = DEFAULT>
class Compose;

Figure 3: Declaration of Compose

The Compose class is specialized by the third template
parameter, with each specialization making the appropriate
choice for the type of the intermediate vector. Further the
flag is defaulted to DEFAULT so a user does not need to make
a selection.

The DEFAULT specialization requires that a comparison of
the preferred input and output vector types be done and if
they are the same, then we use that type, else we will use
a dense vector for the intermediate type. This check and
choice of types is done at compile time to avoid any un-
necessary computations during run time. To perform this
selection of types at compile time, a type choosing class
is used. The DEFAULT specialization of Compose will in-
stantiate a type choosing class, passing the preferred vector
types as template parameters, and the template expansion
mechanism will make the appropriate choice for the inter-
mediate vector type. The code for the type choosing class
TypeChooser is given in figure 4 and the instantiation of the
class in DEFAULT is shown in figure 5.

The type choosing class in figure 4 compares the types T

and S. If they are different then the top implementation of
the class TypeChooser is instantiated by the compiler and
the default type D is chosen. If the types T and S are the
same then the second definition is instantiated and the type
T=S is chosen.

The CONVERSION specialization compares the preferred in-
termediate vector types to specialize the apply methods. If
the types are equal then no conversion needs to be done dur-

template <class T, class S, class D>

class TypeChooser {
public:

typedef D TYPE;
TypeChooser() { } };

template <class T, class D>

class TypeChooser<T , T, D> {
public:

typedef T TYPE;
TypeChooser() { } };

Figure 4: Type choosing class

typedef TypeChooser<
typename Blackbox2::PreferredOutputType,
typename Blackbox1::PreferredInputType,
std::vector<Element> > VectorType;

Figure 5: Instantiation of TypeChooser in DEFAULT

ing an apply call, while a conversion between vector types
must be performed if the types are not equal. As recom-
mended by a referee, the comparison of types and choice of
apply methods is made at compile time. The CONVERSION

specialization contains a nested class that is templated by
the preferred intermediate vector types and implements the
apply methods. The encapsulated class has a partial spe-
cialization that eliminates the conversion of types when the
two vector types are equal.

4. EXTERNAL LIBRARIES AND MEMO-
RY MANAGEMENT IN LINBOX

The memory management problems created when incor-
porating an external library into LinBox arise because Lin-
Box uses C++ pointers and references as well as operators
new and delete to address, manipulate, allocate, and deal-
locate memory. This fact ties the library to the details and
representation of the physical memory and does not allow for
the use of such abstractions as garbage collected memory or
memory coming from a pre-allocated pool. It is important
to introduce an interface that will provide a link between
the external libraries and the LinBox objects that interact
with them. The following paragraphs describe the LinBox
objects that need such an interface.

LinBox uses several external libraries to perform field op-
erations. The different implementations of the field arith-
metic are contained in the objects that adhere to the field
archetype, a common object interface defined by LinBox. It
is these implementations that encapsulate the exact repre-
sentation of the field elements and allow their manipulation
by providing methods such as add, mul, etc. All these meth-
ods operate directly on the elements, and, therefore, need
to be aware not only of how the elements are represented in
the memory, but also how the memory is represented in the
system.

Black box matrices may need to allocate field elements
and then use field objects to operate on those elements. In
such cases, a black box acts as a container and needs to be
aware of the way in which elements are allocated and deallo-
cated (the operations that replace operators new and delete,
respectively) as well as how elements are addressed. Vec-

tors in LinBox are usually containers of field elements, and
in such case need to be provided with the same information
as black boxes that contain elements: the ways in which ele-
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ments can be allocated, deallocated, and addressed. Vectors
may also be used to encapsulate the functionality of external
vectors (for example, those native to the computer algebra
systems that are using LinBox), and in such cases usually
are accompanied by the field objects that describe how the
elements stored in such external vectors should be manipu-
lated. The last important part of the library that needs to
be aware of how memory is represented and managed is the
algorithm implementations.

A concrete example of the problems that may arise if an
external library is to be used with LinBox is presented with
SACLIB [2, 15]. SACLIB provides a number of facilities that
can be of use to LinBox; from the perspective of memory
management it is not important which specific facilities we
employ, so we will concentrate on SACLIB’s functions that
perform field arithmetic over Zp fields. What is important,
however, is the fact that SACLIB uses a garbage collector
to manage its memory, and applying SACLIB functions to
the memory allocated using operator new or its underlying
malloc will cause the program to crash since the elements
will not be registered with the garbage collector. In fact,
any memory that is used by SACLIB needs to be allocated
by the library’s own functions. For instance, to allocate a
continuous array of elements, SACLIB provides a function
GCAMALLOC(n) that takes the size of the array n as its argu-
ment. Since the memory is automatically garbage collected
one may simply remove all the references to such an array in
order for it to be returned into the pool of available memory.

5. STL ALLOCATORS
The problem of providing generic algorithms and generic

abstractions for memory management is not unique to Lin-
Box. It has been addressed and solved before by the C++
Standard Template Library [11]. STL employs the technique
of allocators, objects “used to insulate implementers of al-
gorithms and containers that must allocate memory from
the details of physical memory” [14, page 567]. Allocators
accomplish this function by providing a common interface
that encapsulates the memory management functionality by
providing standard names for types and functions that are
involved in memory management such as pointers, refer-
ences, functions to allocate, deallocate memory, and con-
struct C++ objects in that memory. To understand better
what functionality an allocator is supposed to provide, we
examine the way in which the standard allocator may be
declared. The standard allocator is provided by the STL in
the header <memory> and is used by default by all the STL
standard containers. The example in figure 6 is from [14,
page 567]:

The functionality of each element of the allocator’s design
is implied by its name. For more information on the alloca-
tors and their use in the STL, see [11, Chapter 24] and [14,
§19.4], here we will examine some of the important aspects
of their design.

A notable element of the allocator design are the typedef
declarations at the beginning of the std::allocator decla-
ration. While in the implementation of the standard allo-
cator the basic types (pointers and references) are defined
to be called pointer, reference, and so on, one can eas-
ily imagine how, for example, a smart pointer class could be
typedefed to be called pointer. The fact that the allocators
provide not only the functions that are used to allocate and
deallocate memory, but also the data types used to repre-

template <class T> class std::allocator
{ public:

typedef T value type;
typedef size t size type;
typedef ptrdiff t difference type;
typedef T* pointer;
typedef const T* const pointer;
typedef T& reference;
typedef const T& const reference;
pointer address(reference r) const { return &r; }
const pointer address(const reference r) const

{ return &r; }
allocator() throw();
template <class U>

allocator(const allocator<U>&) throw();
˜allocator() throw();
// space for n Ts
pointer allocate(size type n,
allocator<void>::const pointer hint = 0);
// deallocate n Ts, don’t destroy
void deallocate(pointer p, size type n);
// initialize *p by val
void construct(pointer p, const T& val)
{ new(p) T(val); }

// destroy *p but don’t deallocate
void destroy(pointer p) { p−>˜T(); }
size type max size() const throw();
// in effect: typedef allocator<U> other
template <class U> struct rebind
{ typedef allocator<U> other; } };

template<class T> bool operator==(
const allocator<T>&, const allocator<T>&) throw();
template<class T> bool operator!=(
const allocator<T>&, const allocator<T>&) throw();

Figure 6: STL Allocator

sent the memory is very important: one can imagine a class
that captures not only the information about the address of
an object in the main memory, but also an address of the
machine on which that object is stored, thus, providing a
representation for distributed memory.

One has to note that the C++ Standard [9, 20.1.5 4] re-
laxes the requirements for the STL container implementa-
tions:

Implementations of containers described in this
International Standard are permitted to assume
that their Allocator template parameter meets
the following two additional requirements beyond
those in Table 32:

— All instances of a given allocator type are
required to be interchangeable and always
compare equal to each other.

— The typedef members pointer, const

pointer, size type, and difference type

are required to be T*, T const*, size t, and
ptrdiff t, respectively.

However, at the same time it encourages the implementors
of the libraries to not make such assumptions [9, 20.1.5 5]:

Implementors are encouraged to supply libraries
that can accept allocators that encapsulate more
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general memory models and that support non-
equal instances. In such implementations, any
requirements imposed on allocators by contain-
ers beyond those requirements that appear in Ta-
ble 32, and the semantics of containers and al-
gorithms when allocator instances compare non-
equal, are implementation-defined.

Unfortunately, common implementations of the STL used
today, including the one supplied by the C++ compiler from
the GNU Compiler Collection [7] (one of the key compilers
targeted by LinBox), do make assumptions about the re-
quirements on the typedef members of the allocators, which
strictly limits the kinds of models that can be described.

One element of allocators’ design that deserves closer at-
tention is the member struct rebind. As the comment in
the code in figure 6 states, rebind effectively typedefs its
member other to be of type allocator<U>. This manipu-
lation is provided so that storage for objects of a type other
than the container element type can be managed. See [12,
Chapter 4, p. 101]. For example, STL list nodes can thus
be allocated via a user defined allocator.

6. ALLOCATORS IN LINBOX

6.1 Fields
As we have established earlier (in section 4) the part of

the library whose addressing, allocation, deallocation, etc.
requires special attention is the field elements: they most
often occupy the most storage in any library operation, and
they are the end target of black box manipulations. While
all parts of the library need to be adjusted to be ready to
accept different memory models, we should note that Lin-
Box has already been designed in a way where all the details
of the representation of field elements are hidden both from
other parts of the library and the user by the field objects. In
fact, field elements themselves do not even need to be classes
(for example, in an implementation of Zp field where p fits
in a word, the elements themselves may be of type unsigned
int), so it is only natural that we add another piece of in-
formation about elements — namely, how the memory in
which they are stored is represented — to the field objects.

As a result, the field archetype and all the compliant field
implementations get two new components:

• a typedef member ElementAllocator

• a method
ElementAllocator getElementAllocator() const.

The first is the actual allocator type — the class that must
adhere to the STL allocator requirements (see [9, 20.1.5]).
The second member is the function that returns an instance
of the allocator that the containers, algorithms and the user
should use after possibly copying to a rebound allocator of
appropriate type. This instance contains all the informa-
tion necessary for memory management. A typical example
of an allocator that needs additional information is a pool
allocator.‡

‡
A pool allocator is an excellent example of an allocator for different

memory models because of its conceptual simplicity and usefulness:
several POSIX facilities (such as shared memory and memory mapped
files) describe the memory that they provide by supplying a pointer
to the appropriate segment of memory, the size of which is known.

We should also note that some fields may need to store
field elements as part of the field’s description. Such ele-
ments can no longer be just members of the field since fields
may be allocated on the stack: rather, the references (or
pointers) to such elements should be stored in the field it-
self, and the elements should be allocated using the field’s
allocator. See subsection 6.3 for the details of how the solu-
tion to the same problem with temporary elements used in
the algorithm implementations should be implemented.

It is also interesting to note that the only modification nec-
essary to the fields that have already been implemented to
allow them to retain their current functionality is typedefing
std::allocator<Element> to be their ElementAllocator

member, and defining getElementAllocator() member
function to return ElementAllocator(). While such modi-
fications are sufficient to retain their functionality, for many
fields it is acceptable to operate on top of many different
memory models§, so many common field implementations
may become template classes themselves, and allow a user
to supply an allocator type which they would in turn pass
to other library facilities as well as use to address the field
elements. In such cases, LinBox shall follow the C++ Stan-
dard’s encouragement ([9, 20.1.5 5] — cited in section 5),
and use ElementAllocator::reference (pointer, etc.) in
its fields’ method declarations to accept more general mem-
ory models.

6.2 Vectors and black boxes
All the vectors used in LinBox internally adhere to the in-

terfaces of various STL containers (most notably,
std::vector<Element> for storing dense vectors of field el-
ements, std::vector< std::pair<size t, Element> > for
storing sparse sequence vectors of elements, and std::map<

size t, Element > for storing sparse associative vectors).
As it was mentioned above, STL defines its containers to be
parametrized by an additional allocator type specifically for
providing descriptions of alternative memory models. Since
we have defined Field::ElementAllocator to adhere to the
STL allocator object interface, and the declarations of con-
tainers are aware of which field objects are used (technically,
they only need to be aware of the element type, but in reality
such types are always obtained from the field object which is
known in the context of the particular declaration), we sim-
ply require the library and the user to provide the allocator
type to the vector declarations. As a result, the typical dec-
larations of the vector objects are now of the form shown in
figure 7. We also note that an allocator may contain auxil-

std::vector<Field::Element, Field::ElementAllocator>
// dense vectors,
std::vector<std::pair<size t, Field::Element>,

Field::ElementAllocator>// sparse sequence vectors
std::map<size t, Field::Element, Field::ElementAllocator>
// sparse associative vectors

Figure 7: Vector declarations with allocators

With the pointer to the segment and its size one can construct a pool
allocator that would abstract the memory to the library’s facilities.
A sample implementation of a pool allocator can be found in Boost
memory library [1].
§
This is not the case, however, when the underlying library that im-

plements field arithmetic is tied to some specific memory model. For
an example, see section 7.2.
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iary information that is necessary to describe the underlying
memory model, so an instance of the allocator object has to
be passed to a container. Internally, vectors are used pri-
marily by various algorithms, so we consider an example of
such use in subsection 6.3.

LinBox may also use “external vectors” — vectors that are
native to and adhere to some internal representation of the
computer algebra systems that are employing LinBox’s func-
tionality. In such cases, those vectors have to be adapted to
conform to some interface that LinBox understands (e.g.,
the STL vector interface), so a wrapper class has to be
provided. Then all the memory management information
that is related to the representation of the vector depends
on individual implementations and should be encapsulated
inside that class.

While some of the black boxes provided by LinBox do not
need to store field elements (for example, Transpose black
box) the majority perform operations on field elements as
part of the matrix times vector product. Such black boxes
always have a field object passed to them, which now also
contains information about how the memory used by the
field elements needs to be managed. Black boxes in turn can
simply pass allocators from such field objects to the under-
lying containers in the same way that is described above for
vectors. If a black box uses temporary field elements in the
implementation of its apply method, special attention needs
to be paid to such elements, namely, to the fact that they
cannot be allocated on the run-time stack as before. The
same problem is present for algorithm implementations, so
we discuss the details in the following section.

6.3 Algorithms
Just like any other part of the library, when a LinBox

algorithm needs to manipulate field elements it is passed a
field object that encapsulates information about the field
including the representation of the field elements. When an
algorithm needs to create a vector, it needs to allocate such
a vector by passing the allocator type and object to it, so
a typical declaration of a vector now may be of the form
shown in figure 8. Here f is the field object (of the type
Field) and n is the size of the vector that is being declared.

std::vector<Field::Element, Field::ElementAllocator>
v(n, Field::Element(), f.getElementAllocator());

Figure 8: Declaration of LinBox vectors

An issue that requires special attention are temporary el-
ements that an algorithm may allocate. Such elements may
no longer be allocated on the stack due to the fact that a
memory model that the given field uses may not allow it:
for example, SACLIB (discussed in section 7.2) implements
specific routines to scan the stack for its Words; however, the
authors of that library could make a requirement (for exam-
ple, for the sake of system-independence) that the memory
used by the library can only be allocated using the library’s
own functions, i.e., placing data on the stack would not be
allowed. When an algorithm needs temporary elements for
its implementation, it has to utilize the field’s allocator for
their allocation, construction, etc. While one may use the
allocator’s methods allocate, construct, etc. directly, it
is advisable to employ the “resource acquisition is initializa-

tion” technique [14, page 366] to avoid potential mistakes.
See figure 9 for an example. The same technique should be

some algorithm()
{ Field f;

. . .
std::vector<Field::Element, Field::ElementAllocator>
tmp vec(2, Field::Element(), f.getElementAllocator());
Field::ElementAllocator::reference one = tmp vec[0];
Field::ElementAllocator::reference two = tmp vec[1];
. . .}

Figure 9: Creating temporary elements using allo-

cators

used in the implementations of black boxes, fields, and any
other places that use temporary elements or where elements
could be placed on the stack (for example, as members of
field objects that could themselves be placed on the stack).

7. SAMPLE CODE
This section provides some sample code that illustrates

the design and implementation ideas described previously.

7.1 Composition
The following shows how to use the Compose class in Lin-

Box. First, figure 10, shows a blackbox matrix that extends
the current implementation of diagonal matrices, and pro-
vides preferred input and output vector types. Figure 11

template<class Field, class Input,
class Output> class MyDiagonal{

public:

//Diagonal matrix data structures
typedef Input PreferredInputType;
typedef Output PreferredOutputType;
// Implementation of required functions
. . .};

Figure 10: Diagonal matrix implementing preferred

vectors

is an example of a program that illustrates how to use the
Compose class and all of the options for choosing the inter-
mediate vector type.

The code in figure 11 has an example of each option for
selecting the intermediate vector type. The black box matrix
AA will use the preferred input type of A, which is a dense
vector. The matrix BC will use the output type of C which is
an STL list of pairs. The matrix CB uses the DEFAULT option,
and since the input type of C and the output type of B are the
same, then the intermediate vector will be a sparse sequence
vector. Finally the matrix BB uses the CONVERSION option.
Because the input and output types of B are different, then
the composed matrix will have to do a conversion between
the two types.

7.2 Allocators
Next is an illustration of allocators in LinBox based on

the SACLIB library. “SACLIB is a library of C programs
derived from the SAC2 system” [2, 15]. It includes facilities
for list processing, integer, modular number, and rational
number arithmetic, polynomial arithmetic, linear algebra,
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int main(int argc, char **argv){
//Declarations
typedef MyDiagonal<Field, Vector<Field>::Dense,
Vector<Field>::Dense > Blackbox1;
typedef MyDiagonal<Field, Vector<Field>::Dense,
Vector<Field>::SparseSeq > Blackbox2;
typedef MyDiagonal<Field,
Vector<Field>::SparseSeq,
std::list<std::pair<size t, Field::Element> > >
Blackbox3;
//Initialization
Blackbox1 A(F, d1);
Blackbox2 B(F, d2);
Blackbox3 C(F, d3);
//Compose the matrices and apply them to vectors
Compose<Blackbox1, Blackbox1, INPUT>

AA(&A, &A);
Compose<Blackbox2, Blackbox3, OUTPUT>

BC(&B, &C);
Compose<Blackbox3, Blackbox2> CB(&C, &B);
Compose<Blackbox2, Blackbox2, CONVERSION>

BB(&B, &B);
y1=AA.apply(y1, x1);
y2=BC.apply(y2, x2);
y3=CB.apply(y3, x3);
y4=BB.apply(y4, x4);
return 0; } //End main

Figure 11: Composition test program

computing polynomial GCD and resultants, polynomial fac-
torization.

All of SACLIB’s objects are presented to the user via
their handles each of which occupies one word in memory
(which SACLIB conveniently calls Words). While most of the
SACLIB’s functions manipulate lists, the library also pro-
vides a facility to allocate garbage collected arrays: arrays
that can both be referred to by the SACLIB structures (and
garbage collected when they become inaccessible) and con-
tain handles to other SACLIB structures that will be taken
care of by the garbage collector. The specific functions that
are of interest are GCAMALLOC(n) that allocates a garbage col-
lected array of size n and GCA2PTR(A) that returns a pointer
to the actual elements of the array, thus, allowing the user
to refer to the elements directly without using the supple-
mentary accessor functions. One cannot place a reference
to a SACLIB structure in the dynamically allocated mem-
ory since the garbage collector will not be aware of such
references, will collect the structures that it will consider
inaccessible, and further behavior of the program will be
undefined.

In order to make SACLIB’s facilities available to LinBox
one has to define not only a field object (see SacLibModular-
Field in figure 13) that uses SACLIB’s functions to im-
plement arithmetic over Zp, but also an allocator (SacLib-
Allocator) that communicates to the algorithms and con-
tainers how the memory needs to be allocated for SACLIB.
It is interesting to note that SacLibAllocator has very few
differences from the standard allocator described in sec-
tion 5, so here we present only those key differences in fig-
ure 12. The main differences appear in methods allocate

and deallocate. In method allocate, after computing the
size of the garbage collected array that needs to be allo-
cated, the allocator calls function GCAMALLOC to allocate the
actual array, then it adds it to a globally registered list

Word allocated GCA list = NIL;
int num of allocators = 0;
template<class T>
class SacLibAllocator
{ public:

. . .
SacLibAllocator() throw()
{ if (num of allocators == 0)
{ GCGLOBAL(&allocated GCA list);

// register allocated GCA list with
// the garbage collector

}
++num of allocators;

}
pointer allocate(size type n,
const void* hint = 0)
{int size to alloc =
n * sizeof(T) / sizeof(Word) +
(n * sizeof(T) % sizeof(Word) == 0 ? 0 : 1);
Word h = GCAMALLOC(size to alloc, GC CHECK);
allocated GCA list = COMP(h,
allocated GCA list);
return (pointer) GCA2PTR(h);
}
void deallocate(pointer p, size type n)
{ std::pair<Word, Word> res =

remove from list(p, allocated GCA list);
allocated GCA list = res.second;

}
. . . };

Figure 12: SacLib Allocator

allocated GCA list to make sure the array will be accessi-
ble and will not be removed by the garbage collector, and
returns the pointer to the actual elements stored in the array.
Method deallocate, in turn, removes a previously allocated
array from the allocated GCA list, the actual collection of
the memory occupied by the array occurs during the next
invocation of the garbage collector.
SacLibModularField provides the allocator and uses the

appropriate SACLIB functions to implement various field
operations, see figure 13.

SACLIB has to be initialized using its function BEGIN-

SACLIB before it can be used in a program, and after SACLIB
is uninitialized using ENDSACLIB, all of its structures will be
unavailable, therefore, all the SacLibModularFields should
be destroyed by the time ENDSACLIB is called. To achieve
this goal one should again use “resource acquisition is ini-
tialization” technique by putting all of the operations that
utilize SACLIB in an unnamed scope as in figure 14.

8. CONCLUDING REMARKS
First, we address the issue of code efficiency for our generic

framework. All decisions in matrix composition are resolved
at compile time and there is no loss of efficiency due to gener-
icity. Similarly, if a standard STL std::allocator is used,
the templates are compiled out, and the generated code in-
curs no additional run-time overhead. Our customization
of an allocator to handle SACLIB objects can introduce
an inefficiency: each time a SACLIB Word is allocated, it
is prepended to a list that is registered with the SACLIB
garbage collector, which can be both time and space ineffi-
cient. However, as an STL allocator, SacLibAllocator can

222



class SacLibModularField
{ public:

typedef Word Element;
typedef SacLibAllocator<Element> Allocator;
typedef ElementAllocator::reference

ElementReference;
typedef ElementAllocator::const reference

ElementConstReference;
typedef ElementAllocator::pointer ElementPointer;
. . .
SacLibModularField (const integer& m,
const ElementAllocator& alloc = ElementAllocator())
: alloc(alloc) {

modulus = alloc.allocate(1);
. . . }

ElementReference add (ElementReference x,
ElementConstReference y,
ElementConstReference z) const

{ return x = MISUM(* modulus, y, z); }
. . .
ElementAllocator getElementAllocator() const

{ return alloc; }
private:

ElementAllocator alloc;
ElementPointer modulus;
// cannot be just Element because the field could
// be allocated in the dynamic memory, see section 6.1
. . . };

Figure 13: SacLib field implementation

#include <linbox/fields/saclib−modular−field.h>
. . .
int main(int argc, char* argv[ ])
{ BEGINSACLIB(&argc);
{ // “SACLIB safety scope”

integer m;
. . .// initialize m to some large prime number
SacLibModularField F(m);
// perform field operations, create black boxes,
//invoke algorithms, etc
. . .

} // end “safety scope”
ENDSACLIB(SAC FREEMEM); }//End main

Figure 14: SacLib test program

also allocate an array of SACLIB Words by a single call, thus
allowing the application program to “pool” native memory
chunks. One can also provide automatic memory blocking
via the allocator mechanism, but we have not done so.

In its current state, the LinBox library contains numer-
ous algorithms for sparse, structured and black box matri-
ces. We have described a framework that permits black box
matrix multiplication, which can be employed, for example,
in the pre-conditioners needed in some of the algorithms
[3]. We have also given a means to incorporate external
memory managers, which allows the use of external garbage
collected libraries in LinBox and which can implement a
memory model where allocation is distributed over several
computers.
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